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Abstract

Surface parameterization establishes bijective maps &sorface onto a topologically equivalent standard domgis well known that the spherical parame-
terization is limited to genus-zero surfaces. In this wevk,design a new parameter domain, two-layered sphere, asdiira framework for mapping high genus
surfaces onto sphere. This setup allows us to transfer fhrexapplications based on general spherical pararaat@n to the field of high genus surfaces, such
as remeshing, consistent parameterization, shape asaysi so on.

Our method is based on Riemann surface theory. We consterctmorphic functions on surfaces: for genus one surfacespply Weierstrass P-functions;
for high genus surfaces, we compute the quotient betweehdtenorphic one-forms.

Our method of spherical parameterization is theoreticadlynd and practically efficient. It makes the subsequeniicapipns on high genus surfaces very
promising.

CR Categories: 1.3.5 [Computer Graphics]: Computational Geometry ande@bjpModeling—Curve, Surface and Solid and Object Repre-
sentations.

Keywords: Conformal Spherical Parameterization, Meromorphic Fon¢cHigh Genus Surface, Layered Sphere

1 Introduction

Surface parameterization (for a recent survey, we referghder to [Floater and Hormann 2005]) is a fundamental toobimputer graphics
and benefits many digital geometry processing applicasaoh as texture mapping, shape analysis, compressionhimgrpemeshing, etc.
Some problems become much easier to deal with a uniform gaeadomain. Usually in these settings surfaces are rapegbas triangle
meshes, and the maps are required to be at least no-foldmvetisw-distortion in terms of area, angle, or both aspects.

In graphics, spherical parameterizations for genus zeysed surfaces have been proposed and widely used in the iast. methods
[Gotsman et al. 2003; Gu et al. 2004; Haker et al. 2000; Sheffal. 2004; Praun and Hoppe 2003] are to directly map thennes
spherical domain, which is usually formulated as a sphkeisargy minimization problem, such as conformal, Tuttejdbiet, area, spring,
stretch energies, or their combinations, as cited in [Eloahd Hormann 2005]. The optimization process is to relexrtial map to reach
no-foldovers under specified distortion metric.

In medical imaging, spherical parameterizations are byoagplied for brain cortex surface mapping. In this settipgeservation of local

shapes are crucial. Therefore, different conformal sphkparameterizations are proposed. Angenent et.al. [Aengect al. 1999] construct
meromorphic functions on the brain surface directly, thi#gthe mapping onto the sphere using inverse stereogrgpbjections. Gu et.al.
[Gu et al. 2004] compute harmonic maps between the braiexstrface and the unit sphere and use Mobius transformttiadjust the

map. Stephenson [Stephenson 2005] uses circle packingetitonstruct conformal brain mapping.

However, it is well known that the spherical parameteraais limited to genus-zero models. To the best of our knogdedhere are few
works on high genus surfaces. Recently, Lee et.al. [Lee. &08I6] present a construction method by Boolean operatibpssitive and
negative spheres. This method requires a lot of interabtivean recognitions and geometry editing techniques. EBurtore, the results are
not conformal.

In this work, we aims at automatic generalizing conformdilesjtal parameterizations for high genus surfaces. Bedaigh genus surfaces
and spheres are not topologically equivalent, we allow ditence of branch points.

Our method relies on the conformal structure for higher gemeshes. There are two ways to compute conformal structfirgsneral
surfaces: one method is based on Hodge theory [Gu and Yay,20@Pthe other on discrete surface Ricci flow [Gu et al. 2QDB;et al.
20064a; Jin et al. 2006b].

According to Riemann surface theory, a conformal map betveesurface and the sphere is equivalent to a meromorphitidandgefined
on the surface. The map wraps the surface onto the spherevésabtayers and has several branch points, the number efdand the
branch points are determined by the topology of the surfagdr{emann-Hurwitz theorem). The key is how to constructrtitezomorphic
functions on the input surface. For genus one closed swfameconstruct the well-known Weierstrass P-function.Hgh genus surfaces,
the quotient between two holomorphic 1-forms is a meromierfamction.

Compared with the existing planar parameterization foh lgignus meshes, the layered sphere is more natural domaiththplanar domain.
Employing the properties of sphere geometry and the egigpherical parameterization related applications on gi&ewo meshes, the
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spherical parameterization designed for high genus mestmeget more insights on shape analysis, and introduce nosebe applications
for high genus meshes.

The contributions of this work are briefly as follows:
e To present a novel practical framework to compute confosphkrical parameterizations for general surfaces;
e To extend the applications of general spherical paranzettion onto that of high genus meshes, including re-meshmogphing, etc;
e To introduce a systematic method to compute meromorphictifums on general Riemann surfaces.

The remainder of the paper is organized as follows: SectitinS?rates the basic definition and theorem in theory usdtlis work, Section
3 describes the algorithm flow, and Section 4 shows the axgetal results, and discussion on the method. The papetuciascwith a
conclusion and future work in Section 5.

2 Basic Theory

In this section, we will briefly introduce the basic theor@smeromorphic function on Riemann surfaces. We refer nesatte[Farkas and
Kra 1980] for details.

2.1 Riemann Surfaces

Definition 2.1. Manifold. SupposeM is a topological space, each point has a neighborlugpdnd ahomeomorphism ¢y : Uy — Vg from
Uq to an open sé¥y in R". (Ug, @) is called a local chart. If two such neighborhoddis, Ug intersect, then the chart transition function

Pap = BP " @ (Ua NUp) — @5 (Ug NUq)

is a homeomorphism from one open seRjfto another. TheM is an dimensional manifold, the set of all local chaft®)q, @)} form an
atlas.
Definition 2.2. Holomorphic functions. In complex analysis, a functiofi: C — C, (x,y) — (u,v) is holomorphic, if and only if it satisfies
the following Riemann-Cauchy equation

ou dv du_  ov

ox ady’dy  ox
Definition 2.3. Riemann Surfaces. A Riemann surface is a two dimensional manifold with an afl&hy , ¢n ) }, such that all chart transitions
@y are holomorphic functions. The atlas is called the confoatias, and each local coordinatas(Uq ) are called holomorphic coordinates.
The maximal conformal atlas is called a conformal structdréne surface.
Definition 2.4. Riemannian Metric. A Riemannian metric on a manifold is a tengpwhich defines an inner produet, >4 on the tangent
spaces of the manifold. Suppoggv, are two tangent vectors on the tangent space at pothien the angle between them can be calculated
as
1 < V]_,V2 >g

VLV >gy/< Vo, Vo >g

6 =cos

In the current work, we focus on surfaces embedded in thedaari spacRe’. Therefore, all the surfaces are with induced Euclideamimet
g. We require the conformal structure and the Riemannianiciie¢ér compatible in the following way. Suppo$§fJq, @y )} is a conformal
atlas, we denote the local coordinateg\df , ¢ ) as(Xa,yg), then the metric tensor is represented

ds? = e a¥a) (A + dy?),

whereA (Xq,Yq ) is @ function. It can be easily verified that the intersectiogle measured lyequals to that measured by Euclidean metric
defined on the parameter domain

d&? = dx2 +dy2.

Namely, the local coordinates preserve angles; therefarBoomal structure is also called angle-preserving stinect

2.2 Holomorphic 1-forms

Our algorithm heavily depends on the calculation of holgshar 1-forms of a given Riemann surface.
Definition 2.5. Holomorphic 1-forms. Given a Riemann surfacé with a conformal atlas\y, zy), aholomorphic 1-form w is defined by a
family (Uq, Zo, wg), such that (1yoy = fo (2 )dza, wherefy is holomorphic oiJq, and (2) ifzg = qoaﬁ(zﬁ) is the coordinate transformation

onUq NUg(# @), fa(za)%% = fg(zp), the local representation of the differential forosatisfies the chain rule.

For a Riemann surfac¥ with genusg(g > 0), all holomorphic 1- forms oiX form a complexg-dimensional vector spacedZ2eal dimen-
sions), denoted a@1(X). The quality of a global conformal parameterization forighhgenus surface is mainly determined by the choice



Figure 1: Example of holomorphic 1-forms. For genus-two cases, thegefour 1-forms, described by the check-board texture mgpp
The parametefu, v) of each vertex is the average of 1-forms of its connectededge

of the holomorphic 1-form. The zero points of a holomorphifodm w are the points where, on any local representatidy, @, wy),
wq equals zero. For a genggg > 0) surface, there are in genera 2 2 zero points for each holomorphic 1-form. Figure 1 illustsathe
holomorphic 1-forms on a genus-two surface.

2.3 Meromorphic Functions

Definition 2.6. Holomorphic Map. SupposeX,Y are Riemann surfaces with conformal atlag@sy , ¢ )} and{(Vg, Yj;)}, a holomorphic
map betweeiX andY is a continuous map : X — Y such that for each holomorphic coordinaigsonUq containingx on X andijg defined

in a neighborhood of (x) onY , the composition
Ypo fo qoa_l
is holomorphic.

Intuitively, a holomorphic map is a conformal (angle preggy) map between two surfaces. In general, such map daeesttbetween two
high genus surfaces. But conformal maps between a high geris unit sphere (with branch points) always exist.
Definition 2.7. Meromorphic Function. A meromorphic functionf on a Riemann surfac¥ is a holomorphic map to the Riemann sphere

S=CU{w}.

The meromorphic function on a Riemann surface usually hdBpieubranch points. A branch point may be informally thbtigf as a point

at which a "multiple-valued function” changes values whee winds once around it. The neighborhood of branch poinépwaround the
range a finite or infinite number of times.

Definition 2.8. Branch Point. A branch point of an analytic function is a point in the compbéane whose complex argument can be mapped
from a single point in the domain to multiple points in thegan

For example, ih > 1, thenz" has a degrer branch point at 0.

The relationship between the Euler characteristics of tluecg surface and the target surface is described by tr@ioly theorem, when
one is a covering of the other (here, using Riemann spheth)orénch points.

Theorem 2.9. Riemann-Hurwitz. Let f : X — Sbe a meromorphic function of degreleon a closed connected Riemann surfxceand
suppose it has branch points ..., xn where the local form of (x) — f(xk) is a holomorphic function with a zero of multiplicity. Then

24— Y (-
X(X) k;(mk 1)

wherex (X) is the Euler number oX and there i((S) = 2.

In the settings of this paper, the function is two-value@r¢hare two overlapped layers on the complex plane, whidftésl Ito be atwo-
layered sphere by inverse stereo graphic projection, seen in Figure 2. [Tios the Riemann-Hurwitz formula, the number of brancmpei
can be computed indirectly. Given a clogetoled tori, there are@+ 2 branch points (See Figure 3, 4).

3 Algorithm

This section explains the algorithm for computing the comi@ spherical parameterizations for high genus surfaaesdon meromorphic
functions.

3.1 Holmorphic 1-forms

At the first stage, we calculate the basis for the holomorfakfiorm groupQ!(M). The method is based on the Hodge theory. All the surfaces
are represented as triangular meshes (simplicial complehg followings are the major steps, for details we refedeeato [Gu and Yau
2003]. We assume the input surface is a gega®sed surface.



Figure 2: Two-layered Sphere for genus-one and genus-two cases ofi@hod. From left to right, they are (1) one-hole torus meih w
10,000 vertices and 20,000 faces, (2) two-layered sphdtefaur branch points, (3) two-holes torus mesh with 12,28@iees and 24,576
faces, and (4) two-layered sphere with six branch points [ayers are connected by branch points where the linestwgsther.

Figure 3: Branch points illustration for genug(g > 0) surfaces. There arg2-2 branch points, two for each tunnel. The outer space is
regarded as a tunnel here.

1. Compute the basis of the first homology grétigM,Z), {y1, V2, -, Yog}.
2. Compute the dual cohomology group basi{M,Z), {w, wp, - , wpq}, such thaty (yj) = 61'
3. Diffuse cohomology basis to harmonic 1-forms, such fligt= 0, whereA is the Laplace-Beltrami operator.

4. Compute the conjugate harmonic 1-formg, wherex is the Hodge star operatdfw, + v/ —1wp, a4+ v/ =165, , apg+ \/—1(059}
form a basis for the holomorphic 1-form group.

3.2 Genus One Surfaces

For a genus one closed surfage we first compute the holomorphic 1-form basis, we denotelanmorphic 1-form asw. w induces a
Riemannian metric
ds? = w,

which is flat everywhere, namely, the Gaussian curvatureded byw is zero.

Definition 3.1. Universal Covering Space. SupposeM is a surfaceji: M — M is a covering space if for every poiptin M there is a
neighborhoodJ of p so thatrr1(U) is a disjoint union of open set, i € |, and the restrictiomty, : Vi — U is a homeomorphism for each
i. If M is simply connected, theri: M — M is a universal covering space. _

Definition 3.2. Deck Transformation. SupposeM is a surface, the pa{iM, m) is the universal covering space Mf, ¢ : M — M is called a
deck transformation, ifto ¢ = 11.

All the deck transformations of a surface form a group. Far ¢ine-hole torus case, we can embed the universal coverawe smto
the complex plane using the flat metric. Then the deck tramsftions of(M,ds?) are translations. We compute the generators of the
deck transformation groupeck(M), which are translations, and denote then{was,w,}. Any deck transformation can be represented as
W =MW1 +NWp, MmN € Z.

The meromorphic function can be easily constructed usiag¥hierstrass P-function on the planar domain. Define

1 1 1
O(2)= ) +W§0(m - m)

where the sum is over all non-zewe Deck(M). Because the sum is essentially over all deck transformsititherefore the Weierstrass
function is invariant under the action Bieck(M),

O(z+w) =0(2),vw € Deck(M),

so that this is @ meromorphic function defined on the surfdcé he branch points dfl(z) are Q %, g, w (see Figure 5 and 6). The

computation example can be seen in Figure 7.



Figure4: Branch points of torus. The branch points are shown by thertexwhere the region is formed by eight edges. The correpg
location is shown in its right by practical method.

Figure5: Generatol(wy,W,) of deck transformations. The branch points here are lalisiédur solid circle points, denoting, @i, % and
wt% respectively.

3.3 Genus-g(g > 1) Surfaces

SupposeM is a genugy closed surface{wy, wp,- - -, g} form a basis of the holomorphic 1-form group. A meromorphiadtion can be
constructed using the ratio between two holomorphic 1-form
Suppose; andT, are two holomorphic 1-forms,
Tk = Zak,-w,-,k: 1,2
]

Suppos€(Uq, @)} is the conformal atlas of the surfabt on a local chartUq, ¢ ),

11 = f1(2a)dZa, T2 = f2(24)dZa, )
the ratio is f(2)
1(Za
F(za) = fo(za)’

On an overlapping chafUg, @), it can be easily verified the (zg) = F(za(23)), thereforeF is a globally well defined meromorphic
function onM.

We construct the meromorphic functionfas= %f% The computation example can be seen in Figure 8.

3.4 Branch Point Location

According to Riemann-Hurwitz theorem, meromorphic fuacton a Riemann surface has branch points, which are impayemetric
features of the conformal structure of the surface. In pragit is crucial to accurately locate these branch points.

In order to locate the branch points, we apply the followitgpethm to compute the winding number of a closed planaveufor each
point p € M on the surfacef: (p) € C is on the complex plane. We choose a simple closed custeroundingp on M, thenF (y) is a curve
on C, we define the winding number as

P =5 [
' 2m/~1Jr(y) z—F(p)’
If I(y, p) # £1, thenpis a branch point.

In practice, in order to improve the accuracy of computing winding number, we can zoom the neighborhood of a ppiby a Mobius
transformation,
_az+b

——,ab,c,de C,ad—bc=1.0.
cz+d

0:C—C,0(2



Figure 6: Universal covering space and Weierstrass P-function. Refinto right, they are (1) kitten mesh, (2) part of universalering
space, including 24 parameter periods, (3) one parameatiedpand (4) parameter domain under Weierstrass p-fumctio

Figure7: Genus-one case by Weierstrass p-function. For one-hals tase, the computation steps are (from left to right) (&)marameter
period with zoomed-in part (right), (2) parameter domaidemWeierstrass p-function with zoomed-in part (right), §8here by inverse
stereographic projection, (4) parameter domain afteriM®transformation, and (5) sphere of (4) by inverse stesgayc projection.

In order to map the complex plane to the sphere conforma#iyuse the stereographic projection, suppose a rintz) is on the unit sphere
S2. Itis mapped to the planar poif 2:(2 + \/71%).

In practice, for different purposes, in order to improve tfuglity of the spherical conformal surface parameterirsti we can choose the
holomorphic 1-formg, 2 in Equation 1, and use Mobius transformation to furtherrionp the parameterizations.

4 Results and Discussion

In our implementation, all surfaces are triangular meshdsepresented as half edge data structure. The holomdrghbiens are represented
as simplicial co-chains on the mesh. The whole algorithmi@émented using c++ on windows platform.

Under the theoretical support of meromorphic function,itiglementation of our method needs only a simple extendieristing conformal
planar mesh parametrization methods

[Gu and Yau 2002; Gu and Yau 2003]. The results are bijecti@par{except at the branch points) and conformal as illestriat figures 9,
10, 11, and 12, with colored check-board texture.

We conducted experiments on a variety of meshes. Since dinothés based on a composition of several maps, planar p&eraion,
stereographic projection and conformal relaxation, thiglieg and conformality of each them guarantees the vafiditd conformality of the
whole map. Using the valid embedding and the periodicityhefplanar parameterization, the validity is guarantee@mxhe overlapping
around the branch points.

For high genus surfaces, the branch points can be detectaudelly or computed from theoretical definition. Theimmoerb is determined
by the numbeh of tunnels. Here, we regard the outer boundary as an outeekuso, for closed two-manifolds, there are formluta g+ 1,
andb = 2h. You can easily get this view from that there are two brandhtpdor each tunnel boundary. Figure 4 illustrates the grpental
results for genus-one, genus-two surfaces. For genusame their exact locations depend on the start point of ctatipn, because of the
periodicity of parameterization domain. Different chaia# cy andwy, get different branch points.

From the planar illustration (Figure 3), you can get theghsithat the whole surface is split into two parts by the sagaeconnection of
each branch points, labeled in dashed lines. Each partiesgamding to a layer on the spherical domain, which can ée seFigure 9,
where the parametéu, v) is the spherical curvilinear coordinaté, ) [Zayer et al. 2006].

As the most direct application of parameterization, texturapping results are shown in Figure 9, 10, and 11. The amalgparameters
(u,v) by stereographic projection may cover a lot of periods oftéixéure image, so there are many duplicated texture periods

Compared with Gaussian spherical mapping, our method esribechigh genus surfaces onto sphere with one twisting l@yenultiple
layers connecting with branch points) and shows one mongralavay for their spherical representations. The simplessi&an mapping
generates the overlapping on handles and can not be embpurduetly even under powerfully iterative harmonic reléxat The handles
finally shrink to dense bands, see Figure 13, i.e., the hanftlemation is lost, where under-sampling occurs.



Figure 8: Genusn(n > 1) case by holomorphic 1-forms. For two-holes torus case, tinepatation steps are (from left to right) (1) two
holomorphic 1-formso, andawy,, (2) parameter domain under quotient functiondayanday, (3) sphere by inverse stereographic projection,
(4) parameter domain after Mobius transformation, andsbere of (4) by inverse stereographic projection.

Figure 9: Spherical conformal parameterization for one-hole toasec The 1st and 2nd rows are mapped by different texturesn keft
and to right, each column denotes: (1) conformal paranzsation result on layered sphere, (2) initial spherical oomfal parameterization
result on original surface, (3) spherical conformal parmieation result with Modbius transformation, and (4)\dlinear parameterization
of (1), and (5) curvilinear parameterization of (2).

5 Conclusions and Future Work

Conventional conformal spherical parameterizations iangdd to genus-zero surfaces. In this work, we generalcmadormal spherical
parameterizations to surfaces with arbitrary topologig®e proposed method is based on constructing meromorphatiéuns on Riemann
surfaces. High genus surfaces are conformally mapped tantihephere with branching points, which are the key featfwethe conformal
structure of the surface. The method is theoretically samtpractically efficient.

In the future, we will explore along the following directign

e Intrinsic triangulations. Triangulate the spherical irragvith branch points, such that all branch points are \estipull back the
triangulation to the original surface. This method givesansintrinsic triangulation, which is solely determined Ime tconformal
structure of the surface.

e Surface matching based on the consistent spherical thiangu If two surfaces are with similar conformal struasy they can be
triangulated in a consistent way using the above intrinsémgulations. The related applications around condigiarameterization
[Praun et al. 2001] can be developed onto high genus surfagels as morphing, mapping, matching, etc.

e Meromorphic function based on Poincaré series. Currenbmerphic functions on high genus surfaces are the quatigmblomor-
phic 1-forms, we will develop novel method based on Poiecaries.
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