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Abstract

Surface parameterization establishes bijective maps froma surface onto a topologically equivalent standard domain.It is well known that the spherical parame-
terization is limited to genus-zero surfaces. In this work,we design a new parameter domain, two-layered sphere, and present a framework for mapping high genus
surfaces onto sphere. This setup allows us to transfer the existing applications based on general spherical parameterization to the field of high genus surfaces, such
as remeshing, consistent parameterization, shape analysis, and so on.

Our method is based on Riemann surface theory. We construct meromorphic functions on surfaces: for genus one surfaces, we apply Weierstrass P-functions;
for high genus surfaces, we compute the quotient between twoholomorphic one-forms.

Our method of spherical parameterization is theoreticallysound and practically efficient. It makes the subsequent applications on high genus surfaces very
promising.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, Surface and Solid and Object Repre-
sentations.
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1 Introduction

Surface parameterization (for a recent survey, we refer thereader to [Floater and Hormann 2005]) is a fundamental tool in computer graphics
and benefits many digital geometry processing applicationssuch as texture mapping, shape analysis, compression, morphing, remeshing, etc.
Some problems become much easier to deal with a uniform parameter domain. Usually in these settings surfaces are represented as triangle
meshes, and the maps are required to be at least no-foldoversand low-distortion in terms of area, angle, or both aspects.

In graphics, spherical parameterizations for genus zero closed surfaces have been proposed and widely used in the past.Most methods
[Gotsman et al. 2003; Gu et al. 2004; Haker et al. 2000; Sheffer et al. 2004; Praun and Hoppe 2003] are to directly map the mesh to
spherical domain, which is usually formulated as a spherical energy minimization problem, such as conformal, Tutte, Dirichlet, area, spring,
stretch energies, or their combinations, as cited in [Floater and Hormann 2005]. The optimization process is to relax the initial map to reach
no-foldovers under specified distortion metric.

In medical imaging, spherical parameterizations are broadly applied for brain cortex surface mapping. In this setting, preservation of local
shapes are crucial. Therefore, different conformal spherical parameterizations are proposed. Angenent et.al. [Angenent et al. 1999] construct
meromorphic functions on the brain surface directly, then lift the mapping onto the sphere using inverse stereographicprojections. Gu et.al.
[Gu et al. 2004] compute harmonic maps between the brain cortex surface and the unit sphere and use Möbius transformation to adjust the
map. Stephenson [Stephenson 2005] uses circle packing method to construct conformal brain mapping.

However, it is well known that the spherical parameterization is limited to genus-zero models. To the best of our knowledge, there are few
works on high genus surfaces. Recently, Lee et.al. [Lee et al. 2006] present a construction method by Boolean operationsof positive and
negative spheres. This method requires a lot of interactivehuman recognitions and geometry editing techniques. Furthermore, the results are
not conformal.

In this work, we aims at automatic generalizing conformal spherical parameterizations for high genus surfaces. Because high genus surfaces
and spheres are not topologically equivalent, we allow the existence of branch points.

Our method relies on the conformal structure for higher genus meshes. There are two ways to compute conformal structuresof general
surfaces: one method is based on Hodge theory [Gu and Yau 2002], and the other on discrete surface Ricci flow [Gu et al. 2005;Jin et al.
2006a; Jin et al. 2006b].

According to Riemann surface theory, a conformal map between a surface and the sphere is equivalent to a meromorphic function defined
on the surface. The map wraps the surface onto the sphere by several layers and has several branch points, the number of layers and the
branch points are determined by the topology of the surface (by Riemann-Hurwitz theorem). The key is how to construct themeromorphic
functions on the input surface. For genus one closed surfaces, we construct the well-known Weierstrass P-function. Forhigh genus surfaces,
the quotient between two holomorphic 1-forms is a meromorphic function.

Compared with the existing planar parameterization for high genus meshes, the layered sphere is more natural domain than the planar domain.
Employing the properties of sphere geometry and the existing spherical parameterization related applications on genus-zero meshes, the
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spherical parameterization designed for high genus meshescan get more insights on shape analysis, and introduce more possible applications
for high genus meshes.

The contributions of this work are briefly as follows:

• To present a novel practical framework to compute conformalspherical parameterizations for general surfaces;

• To extend the applications of general spherical parameterization onto that of high genus meshes, including re-meshing, morphing, etc;

• To introduce a systematic method to compute meromorphic functions on general Riemann surfaces.

The remainder of the paper is organized as follows: Section 2illustrates the basic definition and theorem in theory used in this work, Section
3 describes the algorithm flow, and Section 4 shows the experimental results, and discussion on the method. The paper concludes with a
conclusion and future work in Section 5.

2 Basic Theory

In this section, we will briefly introduce the basic theoriesof meromorphic function on Riemann surfaces. We refer readers to [Farkas and
Kra 1980] for details.

2.1 Riemann Surfaces

Definition 2.1. Manifold. SupposeM is a topological space, each point has a neighborhoodUα and ahomeomorphism φα : Uα →Vα from
Uα to an open setVα in Rn. (Uα ,φα) is called a local chart. If two such neighborhoodsUα ,Uβ intersect, then the chart transition function

φαβ = φβ φ−1
α : φα (Uα ∩Uβ ) → φβ (Uβ ∩Uα )

is a homeomorphism from one open set ofRn to another. ThenM is an dimensional manifold, the set of all local charts{(Uα ,φα)} form an
atlas.
Definition 2.2. Holomorphic functions. In complex analysis, a functionf : C → C, (x,y) → (u,v) is holomorphic, if and only if it satisfies
the following Riemann-Cauchy equation

∂u
∂x

=
∂v
∂y

,
∂u
∂y

= −∂v
∂x

.

Definition 2.3. Riemann Surfaces. A Riemann surface is a two dimensional manifold with an atlas{(Uα ,φα)}, such that all chart transitions
φαβ are holomorphic functions. The atlas is called the conformal atlas, and each local coordinatesφα (Uα ) are called holomorphic coordinates.
The maximal conformal atlas is called a conformal structureof the surface.
Definition 2.4. Riemannian Metric. A Riemannian metric on a manifold is a tensorg, which defines an inner product<,>g on the tangent
spaces of the manifold. Supposev1,v2 are two tangent vectors on the tangent space at pointp, then the angle between them can be calculated
as

θ = cos−1 < v1,v2 >g√
< v1,v1 >g

√
< v2,v2 >g

.

In the current work, we focus on surfaces embedded in the Euclidean spaceR3. Therefore, all the surfaces are with induced Euclidean metric
g. We require the conformal structure and the Riemannian metric be compatible in the following way. Suppose{(Uα ,φα )} is a conformal
atlas, we denote the local coordinates of(Uα ,φα ) as(xα ,yβ ), then the metric tensor is represented

ds2 = e2λ (xα ,yα )(dx2
α +dy2

α ),

whereλ (xα ,yα ) is a function. It can be easily verified that the intersectionangle measured byg equals to that measured by Euclidean metric
defined on the parameter domain

ds̄2 = dx2
α +dy2

α .

Namely, the local coordinates preserve angles; therefore conformal structure is also called angle-preserving structure.

2.2 Holomorphic 1-forms

Our algorithm heavily depends on the calculation of holomorphic 1-forms of a given Riemann surface.
Definition 2.5. Holomorphic 1-forms. Given a Riemann surfaceX with a conformal atlas (Uα , zα ), aholomorphic 1-form ω is defined by a
family (Uα , zα , ωα ), such that (1)ωα = fα(zα )dzα , wherefα is holomorphic onUα , and (2) ifzα = φαβ (zβ ) is the coordinate transformation

onUα
⋂

Uβ (6= �), fα (zα) dzα
dzβ

= fβ (zβ ), the local representation of the differential formω satisfies the chain rule.

For a Riemann surfaceX with genus-g(g > 0), all holomorphic 1- forms onX form a complexg-dimensional vector space (2g real dimen-
sions), denoted asΩ1(X). The quality of a global conformal parameterization for a high genus surface is mainly determined by the choice



Figure 1: Example of holomorphic 1-forms. For genus-two cases, thereare four 1-forms, described by the check-board texture mapping.
The parameter(u,v) of each vertex is the average of 1-forms of its connected edges.

of the holomorphic 1-form. The zero points of a holomorphic 1-form ω are the points where, on any local representation (Uα , zα , ωα ),
ωα equals zero. For a genus-g(g > 0) surface, there are in general 2g−2 zero points for each holomorphic 1-form. Figure 1 illustrates the
holomorphic 1-forms on a genus-two surface.

2.3 Meromorphic Functions

Definition 2.6. Holomorphic Map. SupposeX ,Y are Riemann surfaces with conformal atlases{(Uα ,φα)} and{(Vβ ,ψβ )}, a holomorphic
map betweenX andY is a continuous mapf : X →Y such that for each holomorphic coordinatesφα onUα containingx onX andψβ defined
in a neighborhood off (x) onY , the composition

ψβ ◦ f ◦φ−1
α

is holomorphic.

Intuitively, a holomorphic map is a conformal (angle preserving) map between two surfaces. In general, such map doesn’texist between two
high genus surfaces. But conformal maps between a high genusto the unit sphere (with branch points) always exist.
Definition 2.7. Meromorphic Function. A meromorphic functionf on a Riemann surfaceX is a holomorphic map to the Riemann sphere
S = C

⋃{∞}.

The meromorphic function on a Riemann surface usually has multiple branch points. A branch point may be informally thought of as a point
at which a ”multiple-valued function” changes values when one winds once around it. The neighborhood of branch points wrap around the
range a finite or infinite number of times.
Definition 2.8. Branch Point. A branch point of an analytic function is a point in the complex plane whose complex argument can be mapped
from a single point in the domain to multiple points in the range.

For example, ifn > 1, thenzn has a degreen branch point at 0.

The relationship between the Euler characteristics of the source surface and the target surface is described by the following theorem, when
one is a covering of the other (here, using Riemann sphere) with branch points.
Theorem 2.9. Riemann-Hurwitz. Let f : X → S be a meromorphic function of degreed on a closed connected Riemann surfaceX , and
suppose it has branch pointsx1, ...,xn where the local form off (x)− f (xk) is a holomorphic function with a zero of multiplicitymk. Then

χ(X) = 2d −
n

∑
k=1

(mk −1)

whereχ(X) is the Euler number ofX and there isχ(S) = 2.

In the settings of this paper, the function is two-valued, there are two overlapped layers on the complex plane, which is lifted to be atwo-
layered sphere by inverse stereo graphic projection, seen in Figure 2. Thus, from the Riemann-Hurwitz formula, the number of branch points
can be computed indirectly. Given a closedg-holed tori, there are 2g+2 branch points (See Figure 3, 4).

3 Algorithm

This section explains the algorithm for computing the conformal spherical parameterizations for high genus surfaces based on meromorphic
functions.

3.1 Holmorphic 1-forms

At the first stage, we calculate the basis for the holomorphic1-form groupΩ1(M). The method is based on the Hodge theory. All the surfaces
are represented as triangular meshes (simplicial complex). The followings are the major steps, for details we refer readers to [Gu and Yau
2003]. We assume the input surface is a genusg closed surface.



Figure 2: Two-layered Sphere for genus-one and genus-two cases of ourmethod. From left to right, they are (1) one-hole torus mesh with
10,000 vertices and 20,000 faces, (2) two-layered sphere with four branch points, (3) two-holes torus mesh with 12,286 vertices and 24,576
faces, and (4) two-layered sphere with six branch points. Two layers are connected by branch points where the lines twisttogether.

Figure 3: Branch points illustration for genus-g(g > 0) surfaces. There are 2g + 2 branch points, two for each tunnel. The outer space is
regarded as a tunnel here.

1. Compute the basis of the first homology groupH1(M,Z), {γ1,γ2, · · · ,γ2g}.

2. Compute the dual cohomology group basisH1(M,Z), {ω1,ω2, · · · ,ω2g}, such thatωi(γ j) = δ i
j.

3. Diffuse cohomology basis to harmonic 1-forms, such that∆ωi = 0, where∆ is the Laplace-Beltrami operator.

4. Compute the conjugate harmonic 1-forms,ω∗
i , where∗ is the Hodge star operator.{ω1+

√
−1ω∗

1 ,ω2+
√
−1ω∗

2 , · · · ,ω2g +
√
−1ω∗

2g}
form a basis for the holomorphic 1-form group.

3.2 Genus One Surfaces

For a genus one closed surfaceM, we first compute the holomorphic 1-form basis, we denote a holomorphic 1-form asω. ω induces a
Riemannian metric

ds2 = ωω̄,

which is flat everywhere, namely, the Gaussian curvature induced byω is zero.
Definition 3.1. Universal Covering Space. SupposeM is a surface,π : M̄ → M is a covering space if for every pointp in M there is a
neighborhoodU of p so thatπ−1(U) is a disjoint union of open setsVi, i ∈ I, and the restrictionπ|Vi : Vi →U is a homeomorphism for each
i. If M̄ is simply connected, thenπ : M̄ → M is a universal covering space.
Definition 3.2. Deck Transformation. SupposeM is a surface, the pair(M̄,π) is the universal covering space ofM, φ : M̄ → M̄ is called a
deck transformation, ifπ ◦φ = π.

All the deck transformations of a surface form a group. For the one-hole torus case, we can embed the universal covering space onto
the complex plane using the flat metric. Then the deck transformations of(M̄,ds2) are translations. We compute the generators of the
deck transformation groupDeck(M), which are translations, and denote them as{w1,w2}. Any deck transformation can be represented as
w = mw1 +nw2,m,n ∈ Z.

The meromorphic function can be easily constructed using the Weierstrass P-function on the planar domain. Define

℘(z) =
1
z2 + ∑

w 6=0
(

1
(z−w)2 − 1

w2 )

where the sum is over all non-zerow ∈ Deck(M). Because the sum is essentially over all deck transformations, therefore the Weierstrass
function is invariant under the action ofDeck(M),

℘(z+w) =℘(z),∀w ∈ Deck(M),

so that this is a meromorphic function defined on the surfaceM. The branch points of℘(z) are 0, w1
2 ,

w
2 ,

w1+w2
2 , (see Figure 5 and 6). The

computation example can be seen in Figure 7.



Figure 4: Branch points of torus. The branch points are shown by the texture, where the region is formed by eight edges. The corresponding
location is shown in its right by practical method.

w1

w2

O

Figure 5: Generator(w1,w2) of deck transformations. The branch points here are labeledby four solid circle points, denoting 0, w1
2 ,

w2
2 , and

w1+w2
2 respectively.

3.3 Genus-g(g > 1) Surfaces

SupposeM is a genusg closed surface,{ω1,ω2, · · · ,ω2g} form a basis of the holomorphic 1-form group. A meromorphic function can be
constructed using the ratio between two holomorphic 1-forms.

Supposeτ1 andτ2 are two holomorphic 1-forms,
τk = ∑

j
ak jω j,k = 1,2.

Suppose{(Uα ,φα )} is the conformal atlas of the surfaceM, on a local chart(Uα ,φα ),

τ1 = f1(zα)dzα ,τ2 = f2(zα )dzα , (1)

the ratio is

F(zα) =
f1(zα)

f2(zα)
.

On an overlapping chart(Uβ ,φβ ), it can be easily verified thatF(zβ ) = F(zα (zβ )), thereforeF is a globally well defined meromorphic
function onM.

We construct the meromorphic function asF = ω1+ω2
ω1−ω2

. The computation example can be seen in Figure 8.

3.4 Branch Point Location

According to Riemann-Hurwitz theorem, meromorphic function on a Riemann surface has branch points, which are important geometric
features of the conformal structure of the surface. In practice, it is crucial to accurately locate these branch points.

In order to locate the branch points, we apply the following algorithm to compute the winding number of a closed planar curve. For each
point p ∈ M on the surface,F(p) ∈ C is on the complex plane. We choose a simple closed curveγ surroundingp on M, thenF(γ) is a curve
onC, we define the winding number as

I(γ , p) =
1

2π
√
−1

∫
F(γ)

dz
z−F(p)

.

If I(γ , p) 6= ±1, thenp is a branch point.

In practice, in order to improve the accuracy of computing the winding number, we can zoom the neighborhood of a pointp by a Möbius
transformation,

φ : C → C,φ(z) =
az+b
cz+d

,a,b,c,d ∈ C,ad −bc = 1.0.



Figure 6: Universal covering space and Weierstrass P-function. Fromleft to right, they are (1) kitten mesh, (2) part of universalcovering
space, including 24 parameter periods, (3) one parameter period, and (4) parameter domain under Weierstrass p-function.

Figure 7: Genus-one case by Weierstrass p-function. For one-hole torus case, the computation steps are (from left to right) (1) one parameter
period with zoomed-in part (right), (2) parameter domain under Weierstrass p-function with zoomed-in part (right), (3) sphere by inverse
stereographic projection, (4) parameter domain after Möbius transformation, and (5) sphere of (4) by inverse stereographic projection.

In order to map the complex plane to the sphere conformally, we use the stereographic projection, suppose a point(x,y,z) is on the unit sphere
S2. It is mapped to the planar point( 2x

2−z +
√
−1 2y

2−z ).

In practice, for different purposes, in order to improve thequality of the spherical conformal surface parameterizations, we can choose the
holomorphic 1-formsτ1,τ2 in Equation 1, and use Möbius transformation to further improve the parameterizations.

4 Results and Discussion

In our implementation, all surfaces are triangular meshes and represented as half edge data structure. The holomorphic1-forms are represented
as simplicial co-chains on the mesh. The whole algorithm is implemented using c++ on windows platform.

Under the theoretical support of meromorphic function, theimplementation of our method needs only a simple extension of existing conformal
planar mesh parametrization methods

[Gu and Yau 2002; Gu and Yau 2003]. The results are bijective maps (except at the branch points) and conformal as illustrated in figures 9,
10, 11, and 12, with colored check-board texture.

We conducted experiments on a variety of meshes. Since our method is based on a composition of several maps, planar parameterization,
stereographic projection and conformal relaxation, the validity and conformality of each them guarantees the validity and conformality of the
whole map. Using the valid embedding and the periodicity of the planar parameterization, the validity is guaranteed except the overlapping
around the branch points.

For high genus surfaces, the branch points can be detected technically or computed from theoretical definition. Their numberb is determined
by the numberh of tunnels. Here, we regard the outer boundary as an outer tunnel. So, for closed two-manifolds, there are formulah = g+1,
andb = 2h. You can easily get this view from that there are two branch points for each tunnel boundary. Figure 4 illustrates the experimental
results for genus-one, genus-two surfaces. For genus-one case, their exact locations depend on the start point of computation, because of the
periodicity of parameterization domain. Different choices ofω1 andω2 get different branch points.

From the planar illustration (Figure 3), you can get the insight that the whole surface is split into two parts by the sequence connection of
each branch points, labeled in dashed lines. Each part is corresponding to a layer on the spherical domain, which can be seen in Figure 9,
where the parameter(u,v) is the spherical curvilinear coordinate(θ ,φ) [Zayer et al. 2006].

As the most direct application of parameterization, texture mapping results are shown in Figure 9, 10, and 11. The conformal parameters
(u,v) by stereographic projection may cover a lot of periods of thetexture image, so there are many duplicated texture periods.

Compared with Gaussian spherical mapping, our method embeds the high genus surfaces onto sphere with one twisting layer(or multiple
layers connecting with branch points) and shows one more natural way for their spherical representations. The simple Gaussian mapping
generates the overlapping on handles and can not be embeddedproperly even under powerfully iterative harmonic relaxation. The handles
finally shrink to dense bands, see Figure 13, i.e., the handleinformation is lost, where under-sampling occurs.



Figure 8: Genus-n(n > 1) case by holomorphic 1-forms. For two-holes torus case, the computation steps are (from left to right) (1) two
holomorphic 1-formsω1 andω2, (2) parameter domain under quotient function byω1 andω2, (3) sphere by inverse stereographic projection,
(4) parameter domain after Möbius transformation, and (5)sphere of (4) by inverse stereographic projection.

Figure 9: Spherical conformal parameterization for one-hole torus case. The 1st and 2nd rows are mapped by different textures. From left
and to right, each column denotes: (1) conformal parameterization result on layered sphere, (2) initial spherical conformal parameterization
result on original surface, (3) spherical conformal parameterization result with Möbius transformation, and (4) curvilinear parameterization
of (1), and (5) curvilinear parameterization of (2).

5 Conclusions and Future Work

Conventional conformal spherical parameterizations are limited to genus-zero surfaces. In this work, we generalizedconformal spherical
parameterizations to surfaces with arbitrary topologies.The proposed method is based on constructing meromorphic functions on Riemann
surfaces. High genus surfaces are conformally mapped to theunit sphere with branching points, which are the key features for the conformal
structure of the surface. The method is theoretically soundand practically efficient.

In the future, we will explore along the following directions:

• Intrinsic triangulations. Triangulate the spherical images with branch points, such that all branch points are vertices, pull back the
triangulation to the original surface. This method gives usan intrinsic triangulation, which is solely determined by the conformal
structure of the surface.

• Surface matching based on the consistent spherical triangulation. If two surfaces are with similar conformal structures, they can be
triangulated in a consistent way using the above intrinsic triangulations. The related applications around consistent parameterization
[Praun et al. 2001] can be developed onto high genus surfaces, such as morphing, mapping, matching, etc.

• Meromorphic function based on Poincaré series. Current meromorphic functions on high genus surfaces are the quotientof holomor-
phic 1-forms, we will develop novel method based on Poincar´e series.
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