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Abstract

3D surface matching is fundamental for shape analy-
sis. As a powerful method in geometric analysis, Ricci flow
can flexibly design metrics by prescribed target curvature.
In this paper we describe a novel approach for matching
surfaces with complicated topologies based on hyperbolic
Ricci flow. For surfaces with negative Euler characteristics,
such as a human face with holes (eye contours), the canon-
ical hyperbolic metric is conformal to the original and can
be efficiently computed. Then the surface can be canon-
ically decomposed to hyperbolic hexagons. By matching
the corresponding hyperbolic hexagons, the matching be-
tween surfaces can be easily established. Compared to
existing methods, hyperbolic Ricci flow induces diffeomor-
phisms between surfaces with complicated topologies with
negative Euler characteristics, while avoiding singularities.
Furthermore, all the boundaries are intrinsically mapped
to hyperbolic lines as alignment constraints. Finally, we
demonstrate the applicability of this intrinsic shape repre-
sentation for 3D face matching and registration.

1. Introduction

In recent decades, there has been a lot of research into
surface representations for 3D surface analysis, which is
a fundamental issue for many computer vision applica-
tions, such as 3D shape registration, partial scan align-
ment, 3D object recognition, and classification [5, 15, 25,
35]. In particular, as 3D scanning technologies improve,
large databases of 3D scans require automated methods
for matching and registration. However, matching sur-
faces undergoing non-rigid deformation is still a challeng-
ing problem, especially when data is noisy and with com-
plicated topology. Different approaches include curvature-
based representations [31, 36], regional point representa-
tions [25, 29], spherical harmonic representations [8, 9],
shape distributions [24], multi-dimensional scaling[3, 4],

local isometric mapping [28], summation invariants [21],
landmark-sliding [7], physics-based deformable models
[30], Free-Form Deformation (FFD) [14], and Level-Set
based methods [23]. However, many surface representa-
tions that use local geometric invariants can not guaran-
tee a global convergence and might suffer from local min-
ima in the presence of non-rigid deformations. To address
this issue, many global parameterization methods have been
developed recently based on conformal geometric maps
[37, 20, 11, 27, 33, 34, 32]. Although the previous methods
have met with a great deal of success in both computer vi-
sion and graphics, there are two major shortcomings in con-
formal maps when applied to matching of real discrete data
such as the output of 3D scanners: 1) complicated topology
of the inputs, and 2) singularities of the conformal maps. In
this paper we will address the above two issues by introduc-
ing a novel algorithm for multiply connected surfaces based
on hyperbolic Ricci flow [18].

Figure 1. Hyperbolic hexagon decomposition.

Most existing conformal mapping methods can only han-
dle surfaces with the simplest topology, namely, genus zero
surface with a single boundary. In reality, due to partial
occlusion, noise, an arbitrary surface patch acquired by a
single scan by a camera-based 3D scanner, eg. face frontal
scan, cloth, machine parts etc, is a genus zero surface with
arbitrary number of holes, which are called multiply con-
nected domains and have negative Euler characteristic num-
ber x = 2 — 2g — b, where g is the number of genus and
b is the number of boundaries. For a human face with two
eyes open, x = —1, where ¢ = 0, b = 3. The only pre-



vious existing conformal geometric method that can handle
such surfaces is the Euclidean Ricci Flow (ERF) method in
[17, 16, 10]. ERF is globally one-to-one but has singulari-
ties whose placement affects the area distortion of discrete
conformal mapping greatly [12, 19, 10, 16]. Other methods,
such as harmonic maps [34] and Least-Squares Conformal
Maps (LSCMs) [20], are not guaranteed to generate diffeo-
morphisms between multiply connected domains.

According to conformal geometry, for surfaces with neg-
ative Euler characteristic number such as a human face with
multiple holes, there exists a unique Riemannian metric,
such that the boundaries are geodesics, and each interior
point has constant —1 Gaussian curvature. Such a metric is
called the hyperbolic uniformization metric [18, 16]. The
Hyperbolic uniformization metric is conformal to the met-
ric of the surface. Such conformal maps are called hyper-
bolic conformal maps. By using this powerful tool, Hy-
perbolic Ricci Flow (HRF) [18], the canonical hyperbolic
metric can be efficiently computed. Then the surface can be
canonically decomposed to hyperbolic hexagons, which are
embedded in the hyperbolic space. The boundaries of the
hexagons are hyperbolic lines, so they are intrinsic to the
surface and the alignment of boundaries can be enforced
during matching. By matching the corresponding hyper-
bolic hexagons, the mapping between surfaces can be easily
established.

In this work, we applied hyperbolic conformal maps
and hyperbolic hexagon decomposition for surface match-
ing. Figure 1 gives an example, where a human face sur-
face is decomposed to 2 parts by 3 geodesics between each
two boundaries and each part is mapped to a hyperbolic
hexagon. Hyperbolic conformal maps by hyperbolic Ricci
flow method have no singularity, and can be efficiently used
for matching surfaces with complicated topology, without
any restriction on the number of holes. In the hyperbolic
representation, all boundaries are mapped to hyperbolic
lines, which facilitates boundary alignment.

The rest of the paper is organized as follows: the the-
oretic background is introduced in Section 2. The algo-
rithm for the hyperbolic mapping of genus zero surfaces
with complicated topology using discrete hyperbolic Ricci
flow is described in Section 3. The algorithms for 3D sur-
face matching and canonical segmentation are proposed in
Section 4. Experiments are presented in Section 5, and we
conclude with discussion and future work in Section 6.

2. Theoretic Background

Here, we introduce the basic theoretic concepts. For
more details, we refer readers to [12, 17, 18, 16].

Riemannian Metric Suppose S is a surface embedded
in the Euclidean space R3, its first fundamental form is
called the Riemannian metric, which is represented as a

tensor g = (gi;). A metric defines an inner product for
the tangent vectors. Suppose two tangent vectors v; =
(duy,dvy),ve = (dug,dvy) are on the tangent plane at a
point p € S, then their inner product is defined as

< Vi1,V >g= Zg”duldvj
ij
The angle between v1, vy measured by g is given by

1 < Vi1, V2 >g
V<V, V1 >g< Vg, Va >g

ey

Og = cos

Suppose g is another Riemannian metric on .S, if
= 2)
g=e¢"g,

where )\ is a function. Then we say g is conformal to g.
Using Eqn. 1, we can show that for all angles between two
tangent vectors, g = 0. \ measures the area distortion
and called conformal factor.

Uniformization Metric Suppose S is a surface embed-
ded in the Euclidean space R3 with negative Euler charac-
teristic numbers x(.S) < 0. Then S has an induced Eu-
clidean metric g = {g;;}. The Gaussian curvature K of the
interior point and the geodesic curvature of the boundary
point on the surface are determined by the metric g. The
total curvature satisfies the Gauss-Bonnet theorem:

/KdA+/ kqgds = 2mx(S), 2)
s as

where 05 represents the boundary of the surface and is non
empty, dA the area element, and dS the length element. Ac-
cording to the Riemann uniformization theorem [16], there
exists a unique Riemannian metric g, such that g is con-
formal to g, § = e2“g. The Gaussian curvature induced
by g equals to —1 everywhere and the geodesic curvature
kg equals to 0. Such a metric is called the uniformization
metric of S.

Ricci Flow Ricci flow is a powerful curvature flow
method, invented by Hamilton for the proof of the Poincaré
conjecture [13]. Intuitively, Ricci flow is the process to
deform the Riemannian metric according to the curvature,
such that the curvature evolves like a heat diffusion process.

x(S)

dgij
= 29K+ +~—~ 3
7 + 1 (3)

where K is the Gaussian curvature induced by the metric
g(t), A is the area of the surface. For surfaces with non-
positive Euler numbers, Hamilton proved the convergence
of Ricci flow in [13]:



Theorem 2.1 (Hamilton 1988) For a closed surface of
non-positive Euler characteristic, if the total area of the
surface is preserved during the flow, the Ricci flow will con-
verge to a metric such that the Gaussian curvature is con-
stant every where.

In our work, we compute the hyperbolic uniformization
metric using the surface Ricci flow method.

3. Discrete Hyperbolic Ricci Flow

In this section, we introduce the conformal mapping
using discrete hyperbolic Ricci flow and refer readers to
[18, 16] for detailed discussion.

Hyperbolic Geometry Most computation in this work is
carried out in the background of hyperbolic geometry. Here,
we briefly introduce the elementary concepts in hyperbolic
geometry. The Hyperbolic space H? can not be realized in
IR3, instead we use the following Poincaré model to repre-
sent it. The Poincaré disk is the unit disk on the complex
plane |z| < 1,z = z + iy, with Riemannian metric

4dzdz
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The rigid motion in the hyperbolic space is a Mobius trans-
formation

Z—exXp
1— 242z
A hyperbolic line ( a geodesic ) is a circular arc, which is
orthogonal to the unit circle |z| = 1. A hyperbolic circle
(c,r) (where c is the center, r is the radius) looks like a

Euclidean circle (C, R), where
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where 1 = z:—;}, as shown in Figure 2.
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Figure 2. Hyperbolic triangle, lines and circles.

There are other models of hyperbolic space. Another
commonly used one is the Klein model [18]. The Klein
model is also the unit disk, all geodesics are straight Eu-
clidean lines, this fact greatly simplifies the processing. The
conversion from the Poincaré disk to the Klein model is
straightforward:

2z

1+ 2z @)

z —

The Poincaré model is conformal, whereas Klein model is
not.

Hyperbolic Ricci Flow In practice, all surfaces are ap-
proximated by triangular meshes. Let M be a triangular
mesh, {v1,vs, - -, v, } be the vertex set, [v;, v;] be an edge
connecting v; and v;, [v;,v;,v;] be a face. Then the dis-
crete metric of M is the edge lengths. Let 95 * be the corner
angle at vertex v; in the face [v;, v, vg]. We treat each face
[vi,v;, vg] as a hyperbolic triangle, therefore 92 ¥ is deter-
mined by the edge lengths using hyperbolic cosine law. The
discrete Gaussian curvature is defined as the angle deficit,

K o— QW—Zng v; & OM
! W—Zegk v; € OM

We define circle packing metric on M in the following way.

Definition 3.1 (Circle Packing Metric) Let M be a trian-
gular mesh. We associate each vertex v; with a disk with
radius ;. On edge e;; = [v;,v;], the two circles intersect
at the angle ¢;;. Then the edge length l;;0f e;; is determined
by the hyperbolic cosine law:

cosh l;; = cosh~y; cosh«y; + sinhy; sinh «; cos ¢;5.  (5)

A circle packing metric is denoted as (M, ", ®), where T :
v; — 7y, represents the radius, ® : e;; — ¢;; represents the
intersection angle. See Figure 3.

Figure 3. Circle packing metric.

Then the discrete hyperbolic Ricci flow is defined as:

Definition 3.2 (Hyperbolic Ricci Flow) Ler wu; =

logtanh Z, u = (uj,us, - ,uy,), then the discrete
Ricci flow is defined as
du,' (t)
dt 79 ( )

where K; is the discrete Gaussian curvature at v;.

The convergence of the discrete hyperbolic Ricci flow is
proven by Chow and Luo [6]:

Theorem 3.3 (Convergence) A hyperbolic discrete Ricci
flow converges, furthermore the convergence is exponen-
tially fast,

|K;(t) — K;i| < cqexp™ !,



and
- —caot
[7i(t) — %il < ciexp™
where c1 and co are two positive constants.

Furthermore, we can show that the discrete Ricci flow is the
negative gradient flow of the following Ricci energy [6].

Definition 3.4 (Ricci Energy) The Ricci energy for circle
packing metric (M, T, ®) is defined as

E(u) = ) > (Ki = Ki)dus, (7

o =1
where ug = (0,0,---,0).

Theorem 3.5 (Hyperbolic Ricci Energy) The discrete hy-
perbolic Ricci energy is convex. It has a unique global min-
imum, which induces the target curvature K;.

Therefore, in order to compute the uniformization metric,
we can set the target curvature K; = 0 for all vertices,
and optimize the Ricci energy using Newton’s method. The
Hessian matrix of the Ricci energy can be easily computed
by

32E (u) 6K,

8ui8uj - a’U,j '

4. Algorithm for Surface Matching

Suppose S; and S2 are two given surfaces, then our goal
is to find an one to one map f : S; — Sy, which is as
close to an isometry as possible. Instead of matching the
two surfaces in R? directly, we find two conformal maps
oK : Sy — Dy, k = 1,2 which map the surface to the
planar domains Dy, then we compute a planar map between

the planar domains f : D1 — Ds. Then the matching is the
composition f = Qﬁgl o fod.

51#52

N

D, L) Do
In theory, if f is isometric and the boundary conditions are
consistently set, then fisan identity. In our applications for
3D face matching, the mappings are close to isometry [1].
Therefore, the planar mappings are near to the identities.
This greatly simplifies the matching process.

Through the hyperbolic mapping, each open surface with
two holes can be decomposed to 2 hyperbolic hexagons,
H,, Hs, as shown in Figure 1. In practice, it is often useful
to add feature constraints, such as point and curve corre-
spondences when comparing 3D shapes. Since the bound-
aries of hyperbolic hexagons are geodesics, it is intrinsic to
enforce the corresponding geodesics to be matched.

The general algorithm pipeline is as follows:

1. Compute the uniformization metric using discrete hy-
perbolic Ricci flow.

2. Flatten the surface with the hyperbolic metric onto the
Poincaré model.

3. Segment the surface with the hyperbolic metric to
canonical hyperbolic hexagons along geodesics on the
planar image, which form the planar domain D.

4. Build the mapping between hyperbolic hexagons and
construct the mapping between the original surfaces.

Step 1 has been explained in the last section. In the fol-
lowing subsections, we explain each step in details.

4.1. Flattening the Surface

Once the hyperbolic metric has been computed, we can
flatten the surface isometrically onto the Poincaré disk [18,
16].

1. Suppose a hyperbolic triangle has edge lengths
{li,1;, 1}, then we compute the angle 6}, using the hy-
perbolic cosine law of Eqn. 5.

2. Set the coordinates of v, to 0, those of v; to cosh %,
those of v; to e'%* cosh .

3. Glue the planar images of adjacent triangles by Mobius
transformations. Suppose f1 = [v;,v;,vx] and fo =
[vj, vs, v] are two adjacent triangles, the planar com-
plex coordinates of v;,v;, vy are z;, z;, 2. We con-
struct a Mobius transformation ¢, : f; — D, such
that ¢ (;) is the origin, ¢1(z;) is on the real axis. ¢;

zZ— Z;

Tz —
! 1-— 51‘2,
then 7 maps z; to 0, maps edge [v;,v;] to a straight
line. Then we construct another Mobius transforma-
tion

Tz — €2,
where 0 = argri(z;). Let o1 = mmom @ fi — D,
then ¢; maps v; to the origin, ¢; maps v; to be on
the real axis. Similarly, we construct ¢o : fo — D,
which maps v; to the origin, and v; to be on the real
axis. Then the Mobius transformation ¢, Yooy glues
the planar image of f5 to the planar image of f; along
edge [v;, v].

The improvements of computational accuracy for hyper-
bolic flattening have been discussed in [16].
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Figure 4. Topological pants and hyperbolic hexagons.

4.2. Canonical Segmentation

Suppose surface M has the uniformization hyperbolic
metric g. In our work, we consider genus zero surfaces
with multiple holes. First, we consider a topological disk
with two holes inside, which we call a pair of fopological
pants, as shown in Figure 4. Let the boundary OM of M
to be {71,72,7v3}. Intuitively, v, looks like the waist and
the other two like trouser turnups. Then there exist three
geodesics {71, 72, T3}, such that 7; is perpendicular to both
vj,Yk- TkS partition the surface to 2 congruent hyperbolic
hexagons, whose corner angles are all 90°’s.

If the topology of the surface is more complicated, we
need to decompose the surface to pairs of pants first in a
canonical way. Suppose, there are n boundaries of the sur-
face, OM = {v1,72, - ,Vn}, then we can use the follow-
ing procedure to partition it to a sequence of pairs of pants.
First, we find a loop ~y surrounding both ; and 5. Then ac-
cording to the following theorem [26], there exists a unique
geodesic homotopic to 7.

Theorem 4.1 Suppose S is a surface with hyperbolic met-
ric, then each homotopy class of S has a unique geodesic.

We still denote that geodesic as 7. v segments M to two
parts, My and Ms, M is a pair of pants, My has n — 1
boundary components. By repeating this process, we can
decompose M to n — 2 pairs of pants.

4.3. Hyperbolic Hexagon Matching

We carried out the matching between both hyperbolic
hexagons using harmonic mapping with feature correspon-
dence constraints. It is known that if the target shape is
convex, then the harmonic map is diffeomorphism. Since
the hyperbolic hexagon is not convex, this step requires the
usage of another hyperbolic space model, the Klein model
[18]. In the Klein model, the hyperbolic hexagon is mapped
to a convex Euclidean polygon with 6 sides, as shown in
Figure 5.

The computation procedures for hyperbolic hexagon
matching are:

1. Compute a hyperbolic mapping the ¢y, : S — Dx.

2. Convert the Poincaré disk model to Klein model us-
ing Eqn. 4, then each hyperbolic hexagon becomes a
convex polygon.

3. Let the corresponding feature points on Sy, be Fj, =
{pk, pk ph,--- pk}. Compute a harmonic map f :
D1 — Do, such that A f = 0, with the following con-
straints:

(a) Feature constraints: f(¢1(p})) = p2(p?), VpF €
Fy.

(b) Boundary constraints: f(¢1(7})) = ¢2(72), if
v} € 051 and 72 € 95 are consistent.

4. The matching is given by f = ¢, ' o fodr.

The algorithm is applied on discrete meshes. The final
mapping is represented as follows: Suppose v € S is a
vertex on the first mesh, f(v) is a point p € S2 on the
second surface, and p is on a face [v1,v9,v3] € Sa, such
that p = pyvy + pove + psvs, where (uy, po, 43) are the
barycentric coordinates of p in [v1, v, v3]. Then we repre-
sent f(v) as a pair

f() = ([v1,v2,vs], (p1, p2, 13)), 3

and call it a natural representation of the matching f.

5. Experimental Results

In this section, we demonstrate the performance of our
framework. This work handles 3D moving deformable data
with complex topologies, which are very difficult to acquire.
We thoroughly tested our algorithms on 30 facial scans with
dynamic expressions, represented by the triangular meshes
with about 15K vertices and 30K faces. The facial surfaces
are topological two-hole annuli (both eye contours are diffi-
cult to detect accurately). These surfaces are representative
because of their general topologies, with big distortions and
very inconsistent boundaries. Such difficult experiments
sufficiently support the generality and effectiveness of our
method.

Matching and Registration for Dynamic Non-rigid 3D
Faces Figures 6 and 7 illustrate our experimental results
on matching two human faces with different expressions,
acquired using the method described in [34] with greyscale
texture. The feature points were computed directly using
the SIFT [22] algorithm on the textures. We visualized
the matching and registration results by consistent checker-
board texture mapping. It also shows that the intrinsic de-
compositions by geodesics are consistent between the 3D
non-rigid faces to be matched.

Morphing by Registration Figure 7 shows the morphing
between two 3D faces with large motion of eyes and signif-
icantly inconsistent boundaries.

Performance Comparison We compared our method
with previous work [34, 20, 10] for 3D face matching and
registration.



(a) Original Surface (b) Upper Poincaré

(c) Lower Poincaré

(d) Upper Klein

Figure 5. Conversion from Poincaré hexagon to Klein hexagon.

Accuracy The matching accuracy is measured by regis-
tration error among Iterative Closest Point (ICP) [2], Eu-
clidean Ricci Flow (ERF) [10] and Hyperbolic Ricci Flow
(HRF) methods, see Table 1. First, we computed the reg-
istration error for facial surfaces by the relative Hausdorff
average distance (RHAD) under rigid deformation (ICP),
and non-rigid deformation (HRF). In detail, the distance er-
ror is the average distance between the source point and the
corresponding image point, normalized by the diagonal of
the bounding box of the target surface. As a baseline sys-
tem, ICP is one of the most popular 3D shape matching
method and has relatively good performance. All the tests
demonstrate that HRF outperforms ICP. Then, we used the
texture error in [10] for evaluation between both non-rigid
deformations, ERF and HRF, see Table 1. The matching ac-
curacy of the ERF method is highly sensitive to the choice
of singularity.

Singularity The ERF method in [10] is the only previous
method to compute the matching for multiple connected
domains, but it often generates singularities which make
the matching computation error-prone. The HRF method
does not induce singularities. Intuitively, the singularities
are those points whose neighborhood can not be flattened to
the planar domain. For example, as shown in Figure 8, the
ERF method has one singularity at the tip of nose, whose
neighboring angles sum to 47 denoted by 8 right angles
01,69, ...,0s. At the same time, HRF makes the neighbor-
ing angles sum to 27 everywhere on the planar domain.

Discretization For surfaces with negative Euler number, the
ERF method in [10] uses the singularity as the only land-
mark for domain decomposition to rectangle or trapezoid
patches. The matching accuracy based on decomposition
is directly determined by the choice of singularity. The
HRF method uses the geodesics detected automatically to
get hyperbolic hexagons. Such discretization is intrinsic and
unique, and does not arouse the ambiguity.

Efficiency We implemented our algorithm using generic
C++ on Windows XP and used conjugate gradient optimiza-
tion for acceleration. Table 2 reports the computational time
on a Laptop with CPU 2.00 GHZ, RAM 3.00 GB. Other
mapping methods for computing such surfaces, like har-
monic maps [34] and LSCMs [20], can not guarantee one-

(©

Figure 6. E1: Non-rigid matching and registration for 3D faces. (a)
original surfaces A,B,C with expression change and mouth closed,
which are genus zero with 2 holes. (b) the geodesics between each
two boundaries corresponding to the hyperbolic lines on hyper-
bolic hexagons. (c) The registration results are visualized by dif-
ferent consistent checkerboard texture.

to-one maps and may generate intersections (see Figure 9),
which depends on the prescribed points. The comparison
among each mapping method is illustrated in Table 3.

Automaticity The method is completely automatic. Given
the target curvature, the hyperbolic mapping can be auto-
matically and uniquely computed by Ricci flow till conver-
gence. The canonical segmentation and pants decomposi-
tion are performed directly by automatic geodesic detec-
tion, which is unique and rigorous. The matching between
each pair of hexagons with feature points is also automatic.
If the open surface has n boundaries (including the outer
boundary), then there are totally n — 2 pairs of hyperbolic
hexagons for matching.



Table 3. Performance comparison of geometric mapping methods.

Harmonic Map LSCM Euclidean RF Hyperbolic RF
Is one-to-one map No No Yes Yes
Time complexity Linear Linear Non-linear Non-Linear
Boundary occlusion Sensitive Not sensitive Sensitive Sensitive
Boundary constraint Needed Not Needed Needed Needed
Feature constraint Not needed Two points needed Not Needed Not Needed
Resolution change Not sensitive Not sensitive Not sensitive Not sensitive
Topology limited Topological disk | Topological disk | Arbitrary surface | Arbitrary surface
Singularity Yes Yes Yes No
(a) D
(b) E
()

D:t=0.0

Table 1. Registration error under ICP, ERF and HRF methods.

M;:t=0.33

Distance Error (%) A-B A-C D-E
ICP 260 248 252
HRF 0.25 030 0.22
Texture Error (%) A-B  A-C D-E
ERF 403 4.06 8.24
HRF 405 4.11 8.13

6. Conclusion

This paper proposes a novel 3D non-rigid face matching
and registration method based on surface Hyperbolic Ricci
Flow (HRF). For genus zero surfaces with multiple holes,

MQZ t=0.67

E:t=1.0
Figure 7. E2: Non-rigid morphing by registration. (a) and (b) are the two surfaces to be matched: (1) the original surfaces D, E with eye
motion and inconsistent boundaries, (2) the traced geodesics, and (3) the hyperbolic mapping. (c) The morphing results M1, My with
interpolation factors ¢ = 0.33,0.67 between D, E, visualized by consistent checkerboard texture mapping.

Table 2. Computational time.

Name A B C D E

Faces 28,800 28,759 28,820 13,671 13,461

Verts 14,743 14,733 14,767 6,983 6,865
HREF (s) 210 210 210 150 148

the canonical hyperbolic metric is conformal to the origi-
nal and can be efficiently computed by HRF. Through the
intrinsic canonical segmentation, the surface can be decom-
posed to hyperbolic hexagons, which are easy for establish-
ing surface matching. Hyperbolic Ricci flow induces diffeo-
morphisms between surfaces without singularity, and all the
boundaries are intrinsically mapped to hyperbolic lines for
alignment constraints. We demonstrate the generality and
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Figure 8. Singularity for Euclidean Ricci flow method. (a) The original surface with singularity at the tip of nose, where the surrounding
angles are summed to 47. (b) The mapping generated by Euclidean Ricci flow, where 61, 05, ..., 0 correspond to right angles on the planar
domain. (c) The Poincaré model generated by Hyperbolic Ricci flow method.

VOO s

(a) Original
Surface

(b) Harmonic
Map

(c) Least-Square
Conformal Map

(d) Euclidean

(e) Hyperbolic

Ricci Flow Ricci Flow

Figure 9. Comparison of geometric mappings for multiply connected domains. (b) HM makes the boundary areas much stretched to
degenerated triangles. (c) LSCM needs two feature points, here labeled at the brow and the tip of nose. (d) and (e) are one-to-one and onto.

flexibility of this intrinsic shape representation for 3D hu-
man face matching and registration by various experiments.
In future work, we will continue to explore properties of
Ricci flow maps and reduce computational complexity. We
also plan to apply our method for applications such as 3D
object classification and recognition.
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