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Abstract

This paper proposes a new concept of polycube splines amdogiswnovel modeling techniques for using the polycubensplin solid modeling
and shape computing. Polycube splines are essentially &l maxiant of manifold splines which are built upon the palye map, serving as
its parametric domain. Our rationale for defining splinefates over polycubes is that polycubes have rectangulactstes everywhere over
their domains except a very small number of corner pointe Bbundary of polycubes can be naturally decomposed intd af segular
structures, which facilitate tensor-product surface dédim, GPU-centric geometric computing, and image-baseongetric processing. We
develop algorithms to construct polycube maps, and shotthieaintroduced polycube map naturally induces the affingcire with a finite
number of extraordinary points. Besides its intrinsic aagular structure, the polycube map may approximate amynati scanned data-set
with a very low geometric distortion, so our method for birfgl polycube splines is both natural and necessary, as itsrric domain
can mimic the geometry of modeled objects in a topologicatlyrect and geometrically meaningful manner. We designva dea structure
that facilitates the intuitive and rapid construction ofymoaibe splines in this paper. We demonstrate the polycubieespwith applications in
surface reconstruction and shape computing.
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1. Introduction and Mativation patches, cover each patch by a single coordinate systeimatso t
each patch can be modelled by a spline surface. Finally, any
. . generic approach must glue all the spline patches together b
Real-world physical prototypes are frequently 2-manifotd  agjysting the control points and the knots along their commo
complex geometry and arbitrary topology. With the rapid ad-oundaries in order to ensure continuity of certain degFee.
vancement of modern 3D scanning technologies, CAD-basegntire segmenting and patching process is primarily peréar
digital prototypes are routinely acquired in forms of rawnt®  manually, and it requires users’ knowledge and skills, and f

and/or triangular meshes. In order to enable geometrigdesi non-trivial topology and complicated geometry this taskais
and downstream product development processes (e.g. A4 CUrporious and error-prone.
shape analysis, finite element simulation, and e-manufagiu
in CAE environments, discrete data inputs must be converte@io overcome the above modeling and design difficulties and
into continuous, compact representations for scientifiomat-  address the topological issue, we seek novel modeling tech-
ing and engineering applications. In order to model an arbiniques that would allow designers to directly define continu
trary manifold in 3D using conventional spline schemesienir  ous spline models over any manifolds (serving as parametric
approaches will segment the manifold to many smaller openlomains). Such a global approach would have many modeling
benefits, including no need of the transition from local patc
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tomate the entire reverse engineering process (by congerti as their behaviors and smoothness properties differ sigunitiy
points and/or polygonal meshes to spline surfaces with higfrom other regular regions nearby. Subdivision surfacesbea
accuracy) without human intervention. considered special cases of manifold splines accordingap [

Towards the aforementioned goal, most recently the mahifol In this paper, we forge ahead with our new research efforts by
splines proposed by Gu, He, and Qin [10] also aim to provideleveloping the polycube splines, with a goal to further iover
a technical solution for directly defining continuous suga  the current state of knowledge for manifold splines. In & nut
over arbitrary manifold domains. In their work, a manifolshc ~ shell, our polycube splines can be considered as a novel vari
be equivalently treated as a set of coordinate char®?iria  ant of manifold splines with many new and attractive modglin
local parameterization, and these local charts are theedglu Properties. Unlike the previous manifold splines, the palye
coherently to form a complete manifold surface. As a resultsplines are built directly upon the polycube map, servingsas
manifold splines are essentially piecewise polynomiatatio- ~ parametric domain. Because of its regularity, the polycsbe
nal polynomials defined on affine manifolds, whose transitio NOwW only covered by charts which are uniquely associatel wit
functions between different charts are all affine transftion. ~ faces and edges belonging to one of the cubes. As a resué of th
Thus, the evaluation algorithms and other computationa pr Polycube map, all the corner points are now becoming singu-
cedures are both efficient and robust. They have also showddr- The key motivation for us to pursue the definition and-con
that any planar spline schemes (defined over an open planar dgfruction of polycube splines is the fact that the polycutzeom
main) which satisfy the parametric affine invariant propeen  offers a rectangular structure which for sure will factiggeo-
be straightforwardly extended to manifolds of arbitrarpab ~ metric computing and shape analysis. Another main advantag
ogy within the manifold spline framework [14,13,15]. of the polycube spline is that its parametric domain can mimi
the geometry of any modeled objects in a topologically airre
Despite this earlier success, certain drawbacks of ma:hifOlway’ hence, it is much easier to isolate and control the posi_
splines still remain and demand more powerful modelingtechtion of the singularities. Furthermore, there are only fainds
niques. First of all, there must be singularities for anyseld  of connectivity on the singularities, valence 3 to 6, whiemc
manifold except tori. Hence, for a closed manifold@f 1,  greatly simplify our procedures to handle extraordinarinfm
there has to be singularities of the atlas which can notbereov  The polycube domain can be constructed to approximate the
by any chart within its collection set. The existence of silag  modeled geometry with better accuracy, but at the expense of
ities comes from the topological obstruction, which cantm®t  more cubes and more charts. So, users will have freedom to
avoided within the current manifold Spline framework. Give control the Comp|exity ofthe under|ying parametric donexal
a closed domain manifold of gengs[10] proposed a method place singularity points with great flexibility. Figure 1rden-
to compute the affine structure with Euler numkr 2g| ex-  strates an example of our polycube splines. Similar to notghif
traordinary points and showed that the induced transitiocf sp"nesy po]ycube Sp“nes also afford a genera| theorettt a
tions are simply the translation. Although in theory sirgity  engineering framework in which all the existing planar seé
points are simply points without occupying any regions er ar can be generalized to any polycube domain via affine strectur
eas, in practice “small” holes must be punched in order to enm this paper, we develop algorithms to construct T-splimes
able the easy construction of manifold Splines in the finite d po|ycubes and demonstrate their app"ca’[ions in Shape Imode
mension space. Their earlier work makes no efforts to dgtual ing and reverse engineering in order to take advantage of the
fill the “small” holes in the viCinity of extraordinary pois,tin properties of partition-of-unity, level-of-detail contr and hi-
spite of their theoretic contributions. In addition, gl\m& fact erarchical representaﬁon_ It may be noted that other pﬁm}ver

that the number of Singularities is actually flxed, but tl’[!IJF Sp"ne Schemesy such as triang%p”nesi can be emp|oyed
sitions are somehow globally related, which are determimved in a similar fashion.

the intrinsic conformal structure of the underlying sugfamnd
are usually difficult to control, i.e., it is impossible toesify
the locations of all the singularities on the domain mauifol ~ 1.1. Contributions

Aside from splines, subdivision surfaces have also beetnext

sively investigated during the recent past for the contirsuo The specific contributions of this paper are as follows:
representation of discrete data inputs. It defines a smawoth s
face as the limit of a sequence of successive refinementsdrom
given coarse polygonal mesh. All the chart transition fior
are rotation, translation and scaling. Despite their miadel
advantages for arbitrarily complicated geometry and toggp|
subdivision surfaces have two drawbacks: (1) accuratacerf
evaluation is frequently conducted via explicit, recuessub-
division since most subdivision schemes (especially thiose
terpolatory schemes) do not allow closed-form analytiofor (i) We show that the introduced polycube maps naturally
lation for their basis functions; (2) extraordinary poidepend induce the affine structure by removing a finite number
on the connectivity of the control mesh and need special care of corner points. Thus, polycube splines become a novel

(i) We present a systematic way to construct polycube maps
for surfaces of arbitrary topology. Our method is fun-
damentally different from Tarinét al’s technique [29]
in that we do not need to compute the projection of the
points from the 3D shape to the polycube, thus, the poly-
cube can be flexibly constructed at any resolution and
complexity.
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a true local refinement without introducing additional, aon
essary control points in nearby regions. Sederlgtrgl. also
developed an algorithm to convert industry standard NURBS
surfaces into T-spline surfaces, in which a large percentag
of superfluous control points are eliminated [26]. Zheh@l.
developed techniques for adaptively fitting T-splines tocfu
tional data [34]. Wang and Zheng addressed the issue of con-
trol point removal for T-spline surfaces [30]. Yargal. devel-
oped T-spline level sets for image segmentation and meshing
non-uniform sampled and incomplete data [31,32]. Denagl.
introduced the polynomial spline functions over T-meslags,
extension of T-splines such that the splines are piecevabe p
nomials instead of rational functions [4]. Recently, &fi al.
presented an automatic technique to convert polygonal @sesh
to T-splines using periodic global parameterization [22,Pi

Fig. 1. T-splines on polycubes. The polycube serves as tramaric domain €t @l’'s method can be also viewed as manifold splines since
which mimics the geometry of the 3D model. All the cornerssilgulariies  the transition functions of the periodic global parameiaion

which are colored in yellow. are composition of translations and rotations [24].

variant of manifold splines with many new and attrac-

tive properties (outlined above). Taking advantage of they 2 Manifold Construction

low area distortion between the domain manifold and the

smooth spline surface (because polycubes can be built

to approximate the modeled geometry within any userdn essence, manifold construction is to model surfacesgusin
specified accuracy), the polycube splines can be corsharts. The shape (2-manifold) is covered by several charts
structed easily and robustly by using simple and regulafOne builds functions on each chart. Due to certain continu-
charts and isolating all the user-controllable singwarit ity requirement of the transition functions between ovapiag
points. charts, the smoothness properties of the manifold funstion
are automaticallyguaranteed. Therefore, there are no restric-
R . X tions/constraints on the control points. All the controlrs
existing planar spline scheme can be generalized to &re free variables in the entire modeling process. Furtbesm

polycube domain via affm_e structure. Especially, in thISmanifold constructions can generat& smooth surfaces.
paper, we construct T-splines on polycubes and demon-

strate the efficiency of polycube splines to model surface§rimm and Hugues [7] pioneered a generic method to ex@end
with high fidelity, while retaining the attractive proper- splines to surfaces of arbitrary topology, based on theeotraf
ties of partition-of-unity, level-of-detail control, artu- overlapping charts. Cotriret al. proposed &£K construction on
erarchical representation. manifold [2,3]. Ying and Zorin [33] presented a manifoldskd
smooth surface construction method which @&scontinuous
with explicit nonsingular parameterizations only in theimity

of regions of interest.

(iii) Polycube splines offer a general framework in whiclyan

The remainder of this paper is organized as follows. We vevie
the related work on splines and parameterizations in Seétio
We present the detailed algorithms for constructing the/pol
cube map in Section 3. Next, we show the hierarchical surfaceu et al. [10] developed a general theoretical framework of
reconstruction in Section 4. Experimental results withistias ~ manifold splines in which spline surfaces defined over plana
and performance data are also shown in Section 4. Finally, wgomains can be systematically generalized to any manifeid d
conclude our paper in Section 5 with future research dmesti ~ main of arbitrary topology (with or without boundaries). ete
al. further developed modeling techniques for applications of
manifold splines using trianguld-splines [14] and Powell-
2. Related Work and Background Sabin splines [13].

2.1. T-splines 2.3. Global Surface Parameterization

In [25], Sederberget al. pioneered the T-spline, a general- Surface parameterization has been a very active reseazah ar
ization of the non-uniform B-spline surfaces. Unlike tenso in the past decade [5]. Parameterization can be viewed as a
product splines, T-spline control grids are no longer regpi - mapping from a surface in 3D to a 2D canonical domain. Since
to be totally regular. In particular, they permit T-junet® and  isometric mappings only exist in very special cases, many ap
iso-parametric curves of control points need not to travéinie  proaches to surface Euclidean parameterization therefiore
entire column/row of control grids. Therefore, T-splineskle  temptto find a mapping which is either conformal (i.e., nowang



lar distortion) [27,8,21,24,16,19], or equiareal (i.em,area dis- In essence, Riemannian metric determines the length,area,
tortion) [23,28,20]. Hyperbolic parametrization for higbnus  vature and differential operators @ When the Riemannian
number surfaces is presented in [17]. Spherical paramaéitiz =~ metric is conformally deformed, these geometric quarstitiél
for genus zero surfaces are introduced in [6,9]. In sharp corbe changed accordingly. Suppogéds changed tog = e?g.
trast to the above parameterization methods, which bugd thThen the Gaussian curvature will become

map between the surface and one of the three canonical do- ~

mains (sphere, Euclidean disk, or hyperbolic disk), Tagtral. K=e"(-au+K), (1)

pioneered the concept of polycube maps, which has the samgheren is the Laplacian-Beltrami operator under the original
topology of the input mesh and also mimics its rough geometrymetricg_ The geodesic curvature will become
Thus, polycube can induce the map which minimizes both the

angular distortion and area distortion [29]. Tarial. demon- k= e Y(dhu+k), (2)

strated that polycube maps naturally lead to a seamlessgéext

mapping method that is simple enough to be implemented itheren is the tangent vector orthogonal to the boundary. Ac-
currently available graphics hardware [29] cording to Gauss-Bonnet theorem, the total curvature is

/ KdA+ [ kds= /_ KdA+ [ kds=2mx(S), (3)
S S S S

3. Construction of Polycube Maps wherex(S) is the Euler characteristic number 8fand dS is
the boundary of.

In this section, we explain in details our algorithm for const-  Riemann uniformization theorem [18] states that for anyesier
ing affine atlas using polycube maps for surfaces of arlyitrar S, there exists a unique conformal metric, such that it induce
topology. The key difference between the techniques engploy constant Gaussian curvatufeand zero geodesic curvatuke

in [29] and ours in this paper is that Tariet al's technique

is trying to find the one-to-one mapping of the 3D shape and +1 x(S) >0

polycube extrinsically, which typically requires the projion K=o -0 4)

of points from one shape to the other. As a result, their neéetho - XS =
is usually quite difficult to handle cases where the two skape -1, x(§ <0

differ too much and the point projection does not establigh t

one-to-one correspondence. In contrast, our method aims guch kind of metric is called the uniformization metric®f

compute such a mapping in an intrinsic way. We first confor-We compute the uniformization metric with heat flow method
mally map the 3D shape and the polycube to the same cano

. . L r1[5] for genus zero surfaces, holomorphic 1-form method 8,1

cal domains (e.g., sphere, Euclidean plane, or hyperprslln),d . for genus one surfaces, and hyperbolic Ricci flow method [17]
then we construct a map between these two domains, Wh'CfE)r surfaces with genus areater than one
induces a one-to-one map between the 3D shape and the poly 9 9 '
cube. Since our method avoids the direct projection of the 30n the followings, we use notatiordd andP to denote the 3D

shape to the polycube, the polycube can be constructed indghodel and its polycube approximation (serving as the patrame
pendent of the actual geometry of 3D shape, allowing differe ric domain), respectively.

complexity and resolution for the polycube.

The overall flow of our algorithm for establishing the one-to
one mapping can be summarized as follows:

3.1. Riemannian Uniformization Metric (i) Given a 3D modeM from data acquisition, construct a
polycubeP which roughly resembles the geometryh\df

. . , ) . and is of the same topology ™.
Constructing the polycube map is equivalent to seekingeshij

tive map between the 3D model and the polycube. Our method(ii) Compute the uniformization metric dfl and embedv
for establishing such a mapping varies according to differe in the canonical domai®y, which is a domain ir?,
topologies of surfaces:genus zero surfaces, genus orseegff [E? or H?, i.e., v : M — Dy.

and surfaces of high genus. . . . .
(iif) Compute the uniformization metric & and embedP in

Suppose a surfac®is embedded iR, then it has a Rieman- the canonical domaibp, i.e., @ : P — Dp.
nian metric, which is represented by its first fundamentahfo
induced from the Euclidean metric &°, denoted byg. Sup-
poseu: S— R is a scalar function defined @) then it can be i it _ o1

verified thate?!g is another Riemannian metric & denoted V) gil\r/]:!{,héhgegﬁgjpgzllg?:ﬂ(g\gﬂnﬁap ;?deot:f) F“,";SD PS(;O(”\VAVI’]
by g. It can be proven that angl_es measuredgtare equal to in equation (5).

those measured hy. Thereforeg is conformal tog and now

e’ is called the conformal factor.

(iv) Construct the magb,,—pp : Dm — Dp.



M Pap, P We then construa, for three positions o in a similar way.

Then w{lo > maps the feature points on the second surface
@ (5) intothose on the first one. Finally, the conformal miap —.p, :
S? — S? is defined as

oY)

Dwm m Dp Poy—Dp = 1o wglo YroT. (12)
Note that, our construction method varies depending oediff 1 )
ent types of surfaces. Genus zero surfaces are mapped to tHat€ that the polycube mapu—p = ¢~ © ¢by—Dp © G iS
unit sphereS? with positive curvaturék = 1. Genus one sur- conformal since each sub-map is conformal.
faces are mapped to Euclidean pldire with zero curvature
K = 0. Surfaces of high genus are mapped to hyperbolic disk
H? with negative curvatur& = —1.

3.2. Genus-zero Polycube Map

Genus zero surfaces are topologically equivalent to sphere
Thus, we use sphere as the canonical domain for bb#nd

P. We use the heat flow method to construct conformal maps
between a closed genus zero surface and the unit sSpRgg

The idea is that, for genus zero closed surfaces, conformpém
are equivalent to harmonic maps.

Let ¢ : M — S? denote the spherical mapping. The harmonic
energy is defined as
Fig. 2. Conformal mapping of a genus zero surface to the upliter®
E((p) = /M < Ue,Up > dA (6) induces the genus zero conformal polycube map. Both thénatigneshM
and the polycube® are conformally mapped to the canonical domains, i.e.,

where <, > is the inner product irR®. The critical point of  s2, E2 or H2. Denote these maps by : M — Dy and @ : P — Dp. By
the harmonic energy is the harmonic map. Define the normdinding the optimal map betweeBy and Dp, we get the polycube map

component of the Laplacian as QP = @5 © Py —Dp © M-
(Bg)* =<A@,no@>n, (7)

wheren is the normal ofp(M). If @ is the harmonic map, then
the tangent component of Laplace-Beltrami operator vasish
ie.,

Dp = (Dg)*. (8)
Therefore, we can diffus@ to harmonic map by the heat flow
method: q
2~ —(bp—(89)"). ©)

. . 2 . 2
After COI‘ﬂ_pUtIhg the mapgy : |2\/| _’§ an_d @ P _’_S » We Fig. 3. Holomorphic 1-formew on genus one surface is well defined every-
need to find a magm,,—pp : S© — S which can align their \nere.

major features. For example, we want to align the eyes and

nose of the Isidore Horse model (see Figure 2) to be at certain

positions on the polycube. To do so, we conformally map the8.3. Genus-one Polycube Map
sphere to the plane using stereographic projection

T:(XY,2) — (ﬂ, ﬂ), (X,Y,2) € S2. (10) SupposeM is a genus one closed surfacejs a holomorphic
1-z1-z 1-form. Then,w is well-defined everywhere, i.e., there are no
We then use a special conformal map from the plane to itself, @ero points as shown in Figure 3.

Mobius transformation, to move three arbitrary featureso

into any new desired positions. Suppose for the first surfacéay integr_atingw, M can be periodically mapped to the plang,
the three feature points azg, z; andz,. We first construct the each period is called a fundamental polygon. Each canonical

Mobius transformation which takes them into 0, 1, and fundamental polygon of genus one surface is a parallelogram

= (2—20)(z1 — 2) (11) 1 strictly speaking, the mags : P — S2 is conformal everywhere except at
o (Z— 22)(21 — ZO) ’ the corners of the polycube.
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Fig. 4. Euclidean structure induces the genus-one polyocudye. The genus one Rockerarm mobklin (a) is conformally mapped to the Euclidean plane in
(b). The fundamental domain is a rectangle region enclogetthéd green boundary in (b). Then, a polycubén (c) is also parameterized over the rectangular
region in the same way in (d). By matching the two fundamerggions in (b) and (d) via an affine map, the conformal polgcatap for the Rockerarm
model is established.

Given two arbitrary parallelograms, there exists a unidtieea ~ Given the circle packing metric, the lendih associated with
map to map one to the other, such that corners are mapped tioe edges;; is computed using the hyperbolic cosine law.
comers, sides are mapped to sides. cosHizj = coshy; coshy; + sinhy sinhy; cosg;, (14)
The fundamental polygons & andP, Dv andDp, are par-  whereg; is the intersection angle between two circles associ-

allelograms. Denote the unique affine map petween them aged aty; andv; with radiusy andy; respectively.
@ou—Dp, then the polycube magy—p : M — P is formulated ) ) S )
as The discrete Gaussian curvatifeat an interior vertex; with

Bp = q;lo @y —Dp © M. (13) surrounding facejj is defined as

ik
Figure 4 demonstrates the above mapping method for comstruc Ki=2m— 5 6%  vigom, (15)
ing a polycube map of the Rockerarm model. The polycube fij €F

mesh is manually built. Then both the Rockerarm mesh anq,heregiik is the corner angle ofijx atvi. While the discrete

the polycube model are parameterized using the holomorphigayssian curvature for a boundary vertgis defined as
1-form method [8]. Their fundamental polygons are extrdcte

and mapped by an affine map. The affine map further induces a Ki=m— Z eilka Vi € M. (16)
bijective map between the Rockerarm model and the polycube. fijeF

Then the hyperbolic Ricci flow is defined as

o . ‘

3.4. High Genus Polycube Map ot —sinhyK; a7

It can be proven that discrete Ricci Flow is convergent to the
Given a high genus surface with simple geometry like the 3uniformization metric and the convergence rate is exponen-
hole torus model shown in Figure 1, the polycube map can b#al [1][17].
constructed using the techniques in [29]. However, forasie$
with complicated geometries like the model in Figure 5, the d . .
rect projection techniques ®® hardly generate bijective maps. 3.4.2. Hyperbolic Embedding
To avoid these difficulties, we use hyperbolic parametéora  With the uniformization metricM with g > 1 can be peri-
method instead. odically mapped onto the hyperbolic spag. We use the

Poincaré hyperbolic disk model to represent the hypecboli

spaceH?. The Poincaré disk is a two-dimensional space de-
3.4.1. Hyperbolic Ricci Flow fined in the unit disk{ze C: |z| < 1} on the complex plan€

. o . . . with hyperbolic metric. The hyperbolic metric is defined as
Hyperbolic Ricci flow is introduced in [17]. A circle packing Az

on a mesh associates a circle with each vertex, circleseter ds = —. (18)
each other. A mesh with circle packing is denotedMsl”, ®), (1-22

whereM represents the triangulation (connectivity) with vertex The geodesic (hyperbolic lines) in the Poincaré disk are Eu
set V, edge set E and face sef R {y,vi € V} are the vertex clidean circular arcs perpendicular to the boundary: 1. The
radii and® = {@j,e; € E} are the angles associated with eachrigid motions in the hyperbolic plane are the Mobius transf
edge. A circle packing metric is define @d, ®,I"). A discrete  mationsz— w, z € C with the form

conformal mapping : (M,I',®) — (M,I,®) solely changes i9Z— 2o

the vertex radil”, but preserves the intersection angles w=e 1-7' (19)




(d)

Fig. 5. Hyperbolic structures induce the high genus polgcoiap. The canonical homology basis of the genus-3 sculptadel are colored in blue in (a).
(b) shows the isometric embedding of its universal covespgce on the Poincaré hyperbolic disk. We compute the hgperuniformization metric of the

polycube in (c) using a similar approach. The canonical Hogybasis of the polycube are drawn in blue in (c), (d) showe isometric embedding of its
universal covering space on the Poincaré hyperbolic ddskestablishing the correspondence between the fundamgmtaains, we construct the polycube
map (shown in (e) and (f)) between (a) and (c).

wherez is an arbitrary point inside the unit disk. 3.4.3. Constructing the Polycube Map

To embedM into Poincaré disk, we need to compute theln order to find the map betweevi and P, we compute their
canonical homology basis, which is a set of 2urves hyperbolic parameterizations by solving the discrete Rypléec

ai,by,ap,by,...,a4,by} satisfying the following criteria: Ricci flow in (17). Then, similar to the genus zero case, a har-
ag, 0g
monic mapgb,,—pp iS constructed such that maps the funda-
(i) All the curves meet at a single base pomt, mental polygon oM to the fundamental polygon & Finally,

the polycube map is constructed as
(i) Each pair of curveqa;,bi} algebraically intersect each

other exactly once. M—P =@ 0 @y —Dp © O (20)

(iif) No curve in another paifa;,b;} algebraically intersects
either ofa;, by. Figure 5 demonstrates the example of polycube map for a
genus-3 surface and highlight our construction pipeline.
We slice the mesM along{aj,bi}?:1 to form the fundamental
domainD whose boundargD is

0D = aybya; byt agbgaglbgl. 3.5. The Affine Atlas via Polycube Map

Then the canonical homology basis are mapped to geodesics on

the _Pomcare disk. Flgur_e 6 |Ilustrates th_e canonlcgl “0930 . We construct an affine atlas from the polycube map. Each face
basis and the hyperbolic embedding with the uniformization, 4 eqge on the polycube are associated with its own loce cha
metric for a genus 2 model. Each face chart covers only interior points of correspogdin
face and leaves off all the edges of the face. Each edge chart
covers interior points of the edge but leaves off cornerieest
Furthermore, there are overlaps between face charts ared edg
charts. The transition functions between overlapped edgde a
face charts are simply translations and rotations of 90esegyr
Note that there iSNO vertex chart for the corner vertex, i.e.,
the corners are singular points. Therefore, by removinthall
corners, polycube map naturally induces the affine stractur
Figure 7 highlights face and edge charts of a polycube. The
extraordinary points are colored in yellow.

ai

Fig. 6. A genus two surface with a set of canonical fundanegtaup In [10], they have pointed out that any planar spline schemes
generatorga;, by, a;, b} is shown on the left. A finite portion of its universal  which satisfy the parametric affine invariant property can b

covering space is shown on the right. Different fundamendinains are generalized to manifold domain via affine structure. By remo

drawn in different colors. The boundary of each fundamedtahain is the ing all the corner points a polycube domain is just an affine

preimage obybya; *b; tasbra, tb, . The points{ po, p1, p2} are the primages . . T

of p on the surface. manifold preserving the affine structure. Therefore, wedan
fine spline surfaces on polycube directly.



definition and level-of-detail control are attractive i@&s in
practice.

Recall that for every control point in the T-mesh, the cavegri
region of its basis function is a rectangle, whose side lengt
(knot vectors) are determined by the connectivity of thedsm

In polycube T-splines, we follow the rules defined in [25,26]
We further require that on each chart, the basis functions va
ishes outside the boundary of the chart. Thus, the faceshart
are totally separate from each other. Each edge chart ctsnnec
two face charts (one face chart if it is a boundary edge and not
shared by two faces). Therefore, given an arbitrary paramet
u e P\C, it may be covered by a single face chart, or a single
edge chart, or by one face chart and one edge chart.

G\

(a) Face charts  (b) Edge charts (c) Singularities

(d) Close-up view of one face chart and its

associated edge charts and singularities On each (edge and face) ch@it, @), the spline patch is defined

as a point-based spline whose control points form a T-mesh:

Fi(u) = ciBj(@(u)),u U, (21)
]
wherec;j € R? are the control points.
Given an arbitrary parametere P\ C, the spline evaluation
can be carried out as follows:
(i) Find the set of charts which cover this point This set

V contains one face chart, or one edge chart, or one face

(e) Face chart (f) Transition function chart and one edge chart

Fig. 7. Polycube map induces affine structure. The polycsbeovered by

face and edge charts. Each face chart (drawn in blue) coveysimterior (i) The function value is the partition of unity of the spdin
points of corresponding face and leaves off all the edges@fface. Each patches in the above chart(s), i.e.,

edge chart (drawn in red) covers interior points of the edgésleaves off

corner vertices. The corners (drawn in yellow) are singfigarwhich are NOT F( - Yiev 21 Cj Bj ((ﬂ (U))

covered by any charts. We highlight one face chart and itecited edge
charts and singularities in (d). By flattening the edge chave get the planar
domain shown in (e). Note that the transition functions leetwv overlapped
edge and face charts are simply translations and rotatibhsrefore, by
removing all the comers, the open polycu&C has the affine structure. ~ 4.2. Least-Square Fitting and Hierarchical Refinement

)= 53 Bilaw)

4. Hierarchical Surface Reconstruction Using Polycube ) o o
T-Splines We now discuss the problem of finding a good approximation

of a given polygonal mesB with vertices{p; }{"; by a mani-
fold T-spline. We assume that the polygonal m&das been
After constructing the domain manifold and affine atlas @ th normalized to be inside the unit cube centered at the orAgin.
original model by computing the polycube maps (section 3)commonly-used technology is to minimize a linear combina-
we are now ready to generalize T-spline from planar domain§on of interpolation and fairness functionals, i.e.,
to manlf_old domains via aff!ne structure. This will enat_)lg_th MINE = Egit+ AErair. (22)
automatic reverse engineering from polygonal modelsalthyti
acquired to a more compact spline representation with higfThe first part is
accuracy.

m
Edise = 3 [IF(u)—pil%,
is i; i i

4.1. T-splines Via Polycube Maps whereu; € M is the parameter fop;, i =1,...,m.
The second paH;yg in (22) is a smoothing term. A frequently-

used example is the thin-plate energy,
The key advantage for defining T-spline over polycube maps

is that each face chart of the polycube is nothing more than Efair = // (F2,+ 2F2,+F2)dudv

a union of rectangles, conventional tensor-product splare M

special cases of T-splines, and they are all naturally défineNote that both parts are quadratic functions of the unknown
over rectangular regions. More importantly, the hierazahi control points, leading to a linear system.

(o)
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Fig. 8. Hierarchical surface reconstruction of Polycubsplines.N. and Li, are the number of control points and maximal fitting error terationi. N, is
the number vertices in the input polygonal meshrhe input data is normalized to a unit cube.

We solve Equation (22) for unknown control points using Con-4.3. Handling the Extraordinary Points
jugate Gradient method. The value and gradient of the inter-

polation functional and fairness functional can be comgute . ]
straightforwardly. In [10], Gu et al. proved that manifold splineMUST have

singularities if the domain manifold is closed and not a $oru

The number of extraordinary points of the domain manifold vi

conformal structures and polycube maps are different. iGive
In our method, we control the quality of the manifold T- the surfacevi with genusg andb boundaries, the number of
spline spline by specifying the maximal fitting tolerance=  zero points of the holomorphic 1-form is fixed, i.62g— 2+
max|[F(ui) —pil|, i = 1,...,m. If the current surface does not p| Using polycube maps, the number of extraordinary points

satisfy this criterion, we employ adaptive refinement todnt  depends on the geometry of the polycube, i.e., each coraer is
duce new degrees of freedom into the surface representati@fhgularity.

to improve the fitting quality. Because of the natural and el- ) . . . .

egant hierarchial structure of T-splines, this step can dreed Although the singularities are just points on the domain +man
easily. Suppose a domain rectanghéolates the criterion and  ifold, in practice, we have to remove these points and their 1
denotel!, the L., error on rectanglé. If the L, > 2¢, splitthe ~ ing or 2-ring neighbors. As a result, the holes are unavida
rectanglel using 1-to-4 scheme; Otherwise, we divitléinto  in the spline surface. Thus, we need to find a blending surface
two rectangles by splitting the longest edge. After adaptiv Patch to fill the holes smoothly. In our implementation, we us

refinement, we then re-calculate the control points ungl th @ cubic triangular spline to fill each hole such that the sigrfa
maximal fitting tolerance is satisfied. is C? inside andG? along the boundaries of the hole. The rea-

son that we choose triangulBrspline [11] is its flexibility in
the domain construction and its potential to match with any
number of sides of holes.
Figure 8 shows the whole procedure of hierarchical fitting _ _ o
of T-splines. For example, the initial spline of the Head Thus, our goalis to solve the following optimization prabte
model(Figure 8) contains only 1218 control points and the 2 2 2
. e | 0°s 0°s ., 05,
maximal errorL., = 5.8%. Through five iterations, we can E(s) :// (5 ——-)"+(55)dudv  (23)
. . : . Q du duov ov
obtain a much more refined spline surface with 6475 control _ _ _ _
points by inserting only necessary control points. The maki ~ Wheresis the triangulaB-spline surface, anq is the paramet-
fitting error reduces to.64%. As shown in the close-up view '€ domain ofs. Our strategy to fill the hole is to finslsolving
(Figure 9), our hierarchical data fitting procedure can poed  the following minimization problem:
high quality polycube T-splines with high-fidelity and wellwi ) ds Js
be able to recover all the surface details. MI{E(s) :slgo = f, 5% ="laa =n}. (24)

)2 +2(



Fig. 10. Handing the extraordinary points of the manifoldpline whose
affine atlas is constructed using polycube maps, where allctirners are
extraordinary points (shown in (a)). (b) shows the domaimifold after
removing all the corners. (c) shows the open manifold Theplsurface
with many holes. For each hole, we construct a cubic triaargBlspline
surface which minimizes the thin-plate energy functiorizd)(and satisfies
the boundary condition. (d) shows the final result after {iitliag (hole areas
are all colored in green).

N -
(g) T-junctions (h) Control points
Fig. 9. Close-up views of the reconstructed details. Ourahahical surface
reconstruction algorithm can faithfully reconstruct thetadls in the original
model. (a) and (e) show the original polygonal model. (b) &ndhow the

T-spline surfaces of? continuity. (c) and (g) highlight the T-junctions on the
spline surfaces. (d) and (h) show the splines overlaid byctrrol points.

Wheref andn are the boundary pOSItlons and normalS. F|g 11. POIyCUbe T-Splines for the Isodore Horse model.

4.4. Discussions
The boundary conditions are represented by several sagnplin

points on the boundary of the spline surface. The boundary po

sition constraints naturally lead to a system of linear éiqua  This subsection compares the T-splines constructed usimg ¢

on the control points. The normal constraints are expreased formal structure [15] and polycube map, respectively. From
the chart-relation’s point of view, these methods diffettiree

s 9s aspects, the number and the locations of singularitiesathe
< %,n >=0, < W,n >=0. gle/area distortion, and the type of transition functioBach

method has its own merits and users may choose one or an-

other depending on their specific application needs. Table 1

Therefore, Equation (24) is a linear least-square problém w g, maries the salient differences between these methods.

linear constraints, which can be solved easily using Laggan

Multiplier method. Figure 10 demonstrates the proceduréConformal structure induces the affine structure with thedix
pipeline to handle the extraordinary points on the Rocken Ar number of extraordinary points, i.§29— 2+ b|. For genus-

model. zero surfaces, we usually intentionally cut two boundaoies

1N



(a) Polycube map (b) T-spline (c) T-junctions

Table 1

Fig. 12. Polycube T-splines for the Chinese Dragon model.

(d) Controims

Comparison of the methods to compute affine structugegienus of the domain manifolsll; b, number of boundaries dfl.

Method # of singularitie#i_ocation of singularitie}s Area distortion  [Angle distortiorﬁ Transition function
Conformal structure [2g—2+b| difficult to control |large on extruding parts no translation
Polycube map many easy to control low low translation and 90 degree rotat]

the model. Note that, we do not modify the geometry of thedures. However, the side-effect to reduce the area distorti

original model, the number of extraordinary points dropeooz

is to introduce more extraordinary points simultaneousbu-

Although conformal structure preserves the angles very, welally, the lesser the area distortion, the more number ofextr

they inevitably introduce large area distortion if the midukes
some long, extruding parts. These large area distortioumesliys
make the spline construction very difficult, since we neeidto
troduce more control points in such areas. The transitios-fu
tions of the affine atlas via conformal structure is simplg th

translations, which facilitates the implementation ofplises
on manifolds. The valence of extraordinary points of T+spdi

via conformal structure is eight, i.e., the hole is sixte#ted.

Fig. 13. Extraordinary point (marked in red) with valence435 and 6.

4.5. Experimental Results

dinary points. The transition functions of the affine atlas v
polycube maps is the composition of translation and 90 degre
rotation. The valence of singularities of T-spline via palpe
map is three, four, five or six, thus, the hole is six, eight,de
twelve-sided (see Figure 13).

Our prototype system is implemented in C++ on Windows plat-
form. We built a complete system for computing the conformal
structures, the polycube maps and T-splines. We testedl-our a
gorithms on various models from genus zero to genus three.
The statistics of the test cases are shown in Table 2. Figure 8
illustrates the hierarchical surface reconstruction. B in
Figure 8 and 9, we can get high-quality spline surfaces bg-gra
ually increasing the number of control points. More compli-
cated models are shown in Figure 11, Figure 12, and Figure 14.
The results demonstrate both the theoretic rigor and féisib

in practice for methodologies and computational techréque

5. Conclusion

We have developed the polycube splines which not only in-
herit all the features of general manifold splines but alaeeh
new and more attractive properties of its own, including-hie
archical representation, level-of-detail control, regudomain,

Polycube maps are ideal to reduce both the area and angle dgartition-of-unity for basis functions, easy chart counstion,
tortion in the affine atlas, as shown in the 3-hole torus modeland easy handling of extraordinary points. The polycubiesgl

in Figure 1. Thus, it facilitates the spline constructioogs-

are naturally built upon the polycube map which serve as its
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root-mean-square error.
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(a) Polycube map (b) T-spline (c) T-junctions (d) Controims

Fig. 14. Construction of manifold T-splines using polycubaps.
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