Greedy Routing with Guaranteed Delivery Using Ricci Flow

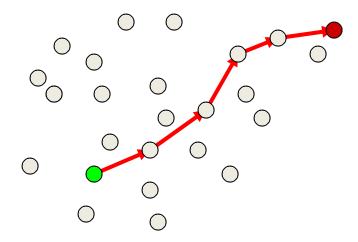
Jie Gao

Stony Brook University

Joint work with
Rik Sarkar, Xiaotian Yin, Wei Zeng,
Feng Luo, Xianfeng David Gu

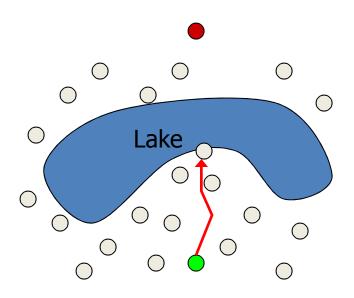
Greedy Routing

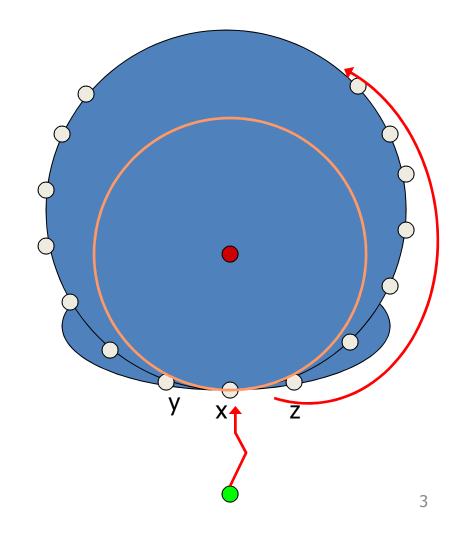
- Assign coordinates to nodes
- Message moves to neighbor closest to destination
- Simple, compact, scalable



Problem I: Greedy routing may get stuck

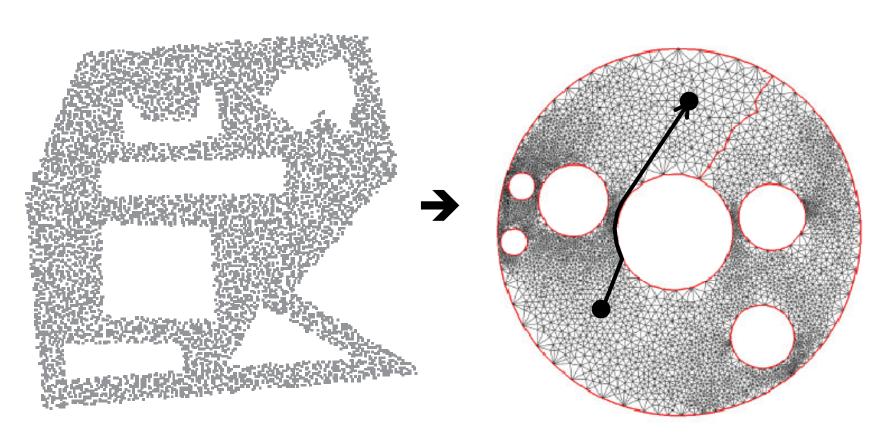
Can get stuck





Solution: Use Ricci flow to make all holes circular

Greedy routing does not get stuck at holes.



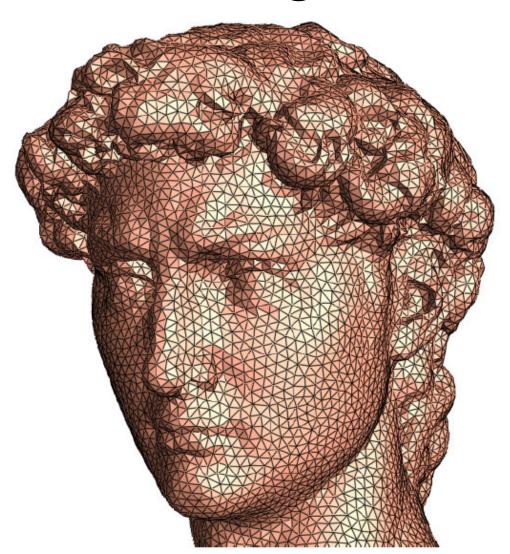
Talk Overview

1. Theory on Ricci flow -- smoothing out surface curvature

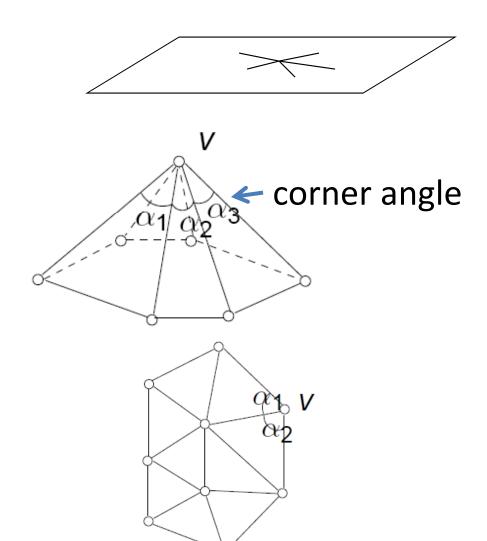
2. Distributed algorithm on sensor network

3. Addressing other issues in routing

Part I: Ricci Flow, Discrete Curvature in 2D Triangulated Surface



Discrete Curvature in 2D Triangulated Surface



For an interior vertex Deviation from the plane

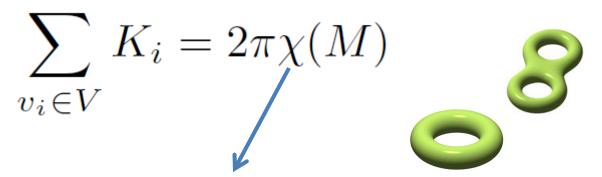
$$\kappa(v) = 2\pi - \sum_{i} \alpha_{i}$$

For a vertex on the boundary Deviation from straight line

$$\kappa(v) = \pi - \sum_{i} \alpha_{i}$$

Total Discrete Curvature

 Gauss Bonnet Theorem: total curvature of a surface M is a topological invariant:



Euler Characteristic: 2 - 2(# handles) - (# holes)

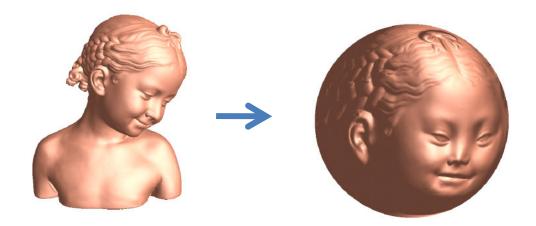
Ricci flow: diffuse uneven curvatures to be uniform

What they look like

Negative Curvature

Positive Curvature

Ricci Flow: diffuse curvature



- Riemannian metric g on M: curve length
- We modify g by curvature $\frac{dg_{ij}(t)}{dt} = -2K(t)g_{ij}(t)$
- Curvature evolves:

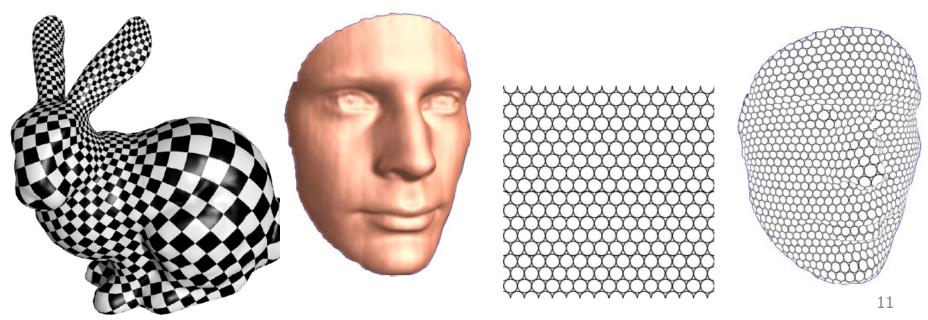
$$\frac{dK(t)}{dt} = -\Delta_{\mathbf{g}(t)}K(t)$$

Same equation as heat diffusion

Δ: Laplace operator

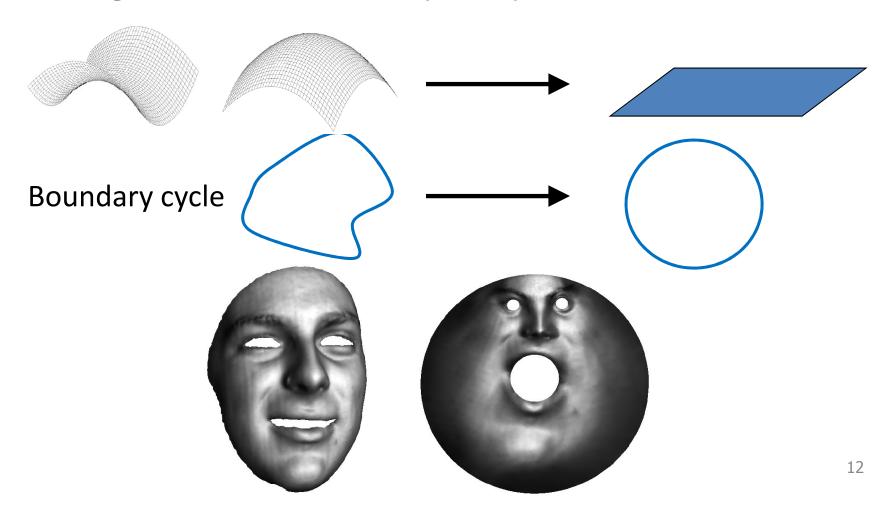
Ricci Flow: diffuse curvature

- "Ricci energy" is strictly convex → unique surface with the same surface area s.t. there is constant curvature everywhere.
- Conformal map: angle preserving



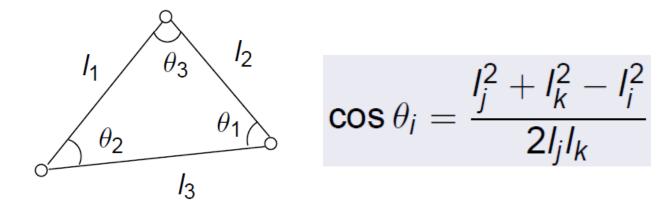
Ricci Flow in our case

Target: a metric with pre-specified curvature



Discrete Ricci Flow

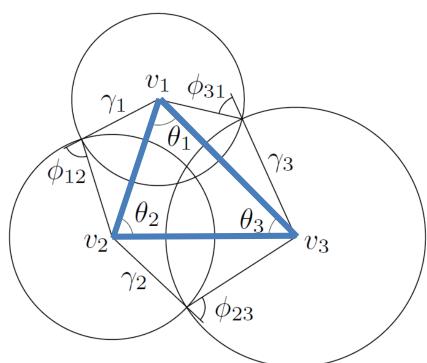
- Metric: edge length of the triangulation
 - Satisfies triangle inequality
- Metric determines the curvature



- Discrete Ricci flow: conformal map.
- What do we mean by "angles"?

Discrete Flow: Use Circle Packing Metric

 Circle packing metric: circle of radius γ_i at each vertex & intersection angle ϕ_{ii} .



With γ , ϕ one can calculate the edge length I and corner angle θ , by cosine law

Discrete Ricci flow modifies γ, preserves φ

Remark: no need of an embedding (vertex location) 14

Discrete Flow: Use Circle Packing Metric

- Circle packing metric: circle of radius γ_i at each vertex & intersection angle φ_{ii} .
- Take $u_i = \log \gamma_i$
- Discrete Ricci flow:

$$\frac{du_i(t)}{dt} = (\bar{K}_i - K_i)$$

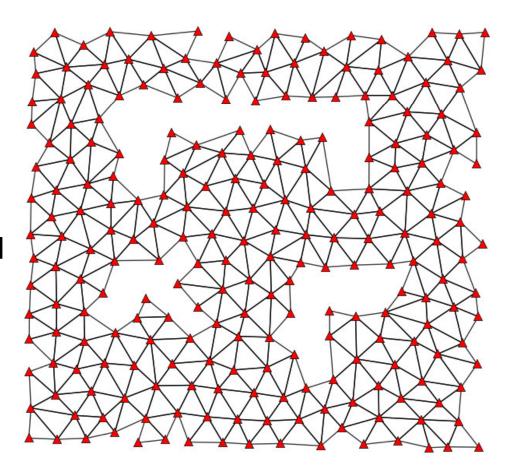
Target curvature Current curvature

Background

- [Hamilton 82, Chow 91]: Smooth curvature flow flattens the metric
- [Thurston 85, Sullivan and Rodin 87]: Circle packing – discrete conformal maps
- [He and Schramm 93, 96]: Discrete flow with non-uniform triangulations
- [Chow and Luo 03]: Discrete flow, existence of solutions, criteria, fast convergence

Part II: Ricci Flow in Sensor Networks

- Build a triangulation from network graph
 - Requirement: triangulation of a 2D manifold
- With node location: patch together the "local" Delaunay triangulations
- Without locations: use landmark-based combinatorial Delaunay graph



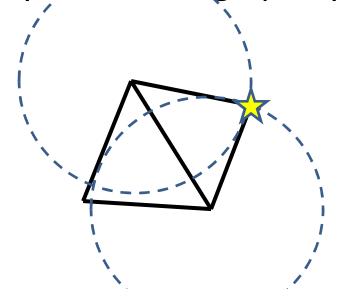
Ricci Flow in Sensor Networks

- All edge length = 1 initially
 - Introduces curvature in the surface
- Use Ricci flow to reach target curvature κ'
 - Take tangent circle packing metric: $\gamma=1/2$, $\varphi=0$ initially
 - Interior nodes: target curvature = 0
 - Nodes on boundary C: target curvature = $-2\pi/|C|$
 - Modify $u_i = log \gamma_i$ by δ (κ'-κ)
 - Until the curvature difference $< \epsilon$

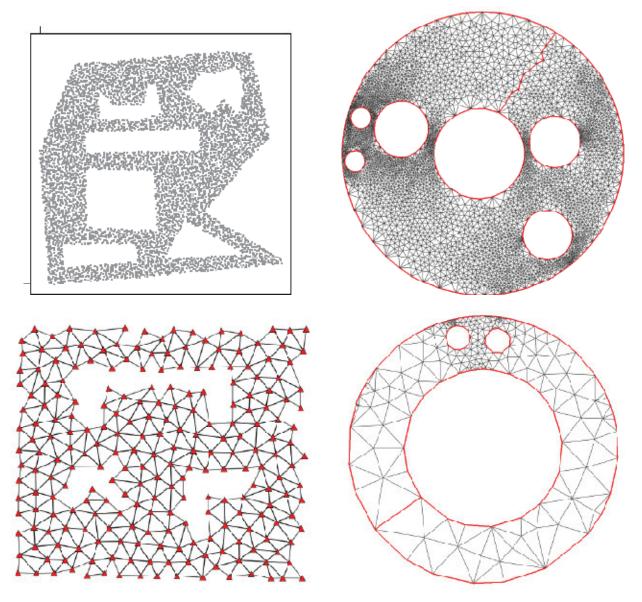
|C|: Length of the boundary cycle

Ricci Flow in Sensor Networks

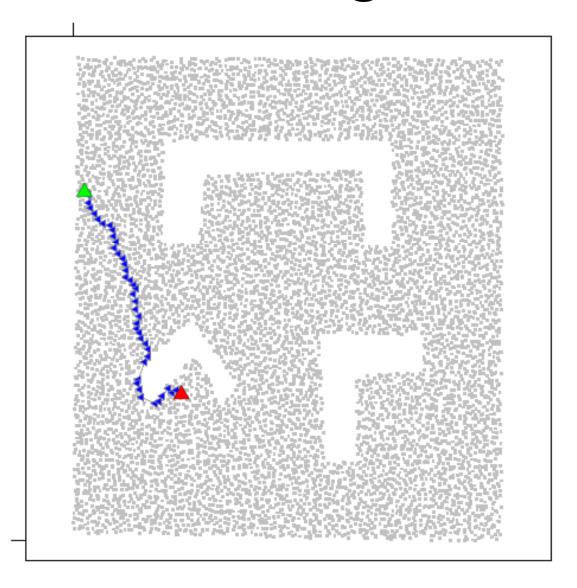
- Ricci flow is a distributed algorithm
 - Each node modifies its own circle radius.
- Compute virtual coordinates
 - Start from an arbitrary "seed" triangle
 - Iteratively flatten the graph by triangulation.



Examples



Routing

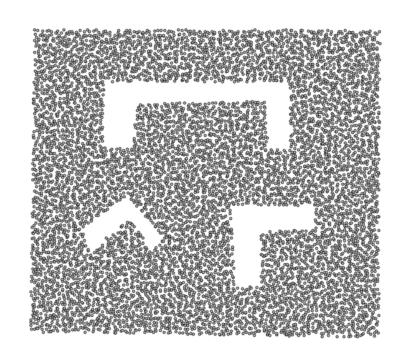


Experiments and Comparison

 NoGeo: Fix locations of boundary, replace edges by tight rubber bands: Produces convex holes

[Rao, Papadimitriou, Shenker, Stoica – Mobicom 03]

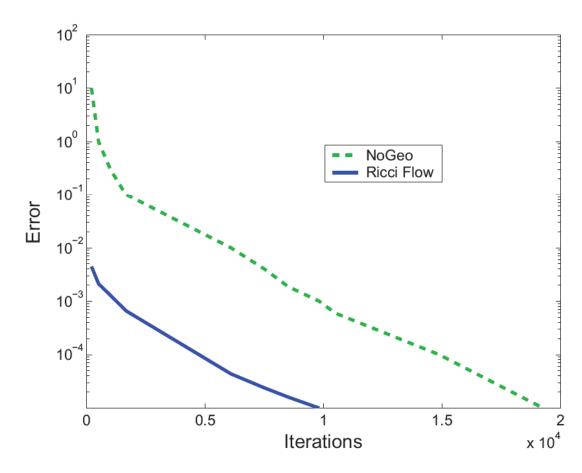
 Does not guarantee delivery: cannot handle concave holes well



Method	Delivery	Avg Path Stretch	Max Path Stretch
Ricci Flow	100%	1.59	3.21
NoGeo	83.66%	1.17	1.54

Convergence rate

- Curvature error bound ε
- Step size δ
- # steps = $O(\log(1/\epsilon)/\delta)$



Iterations Vs error

Theoretical guarantee of delivery

Theoretically,

- Ricci flow is a numerical algorithm.
- Triangles can be skinny.

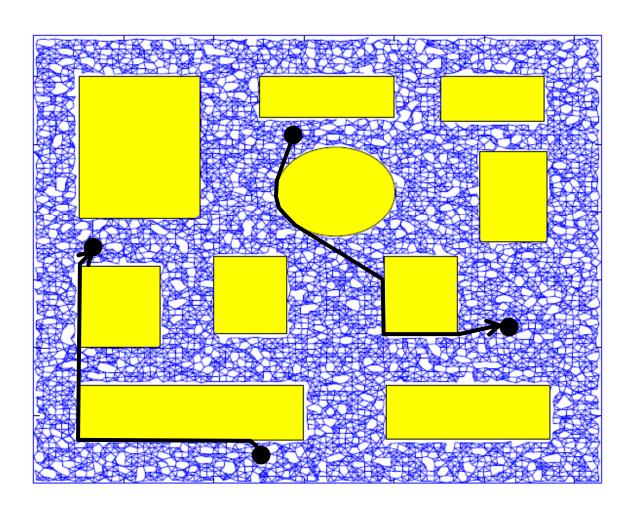
Solution: route on edges/triangles.

Outline

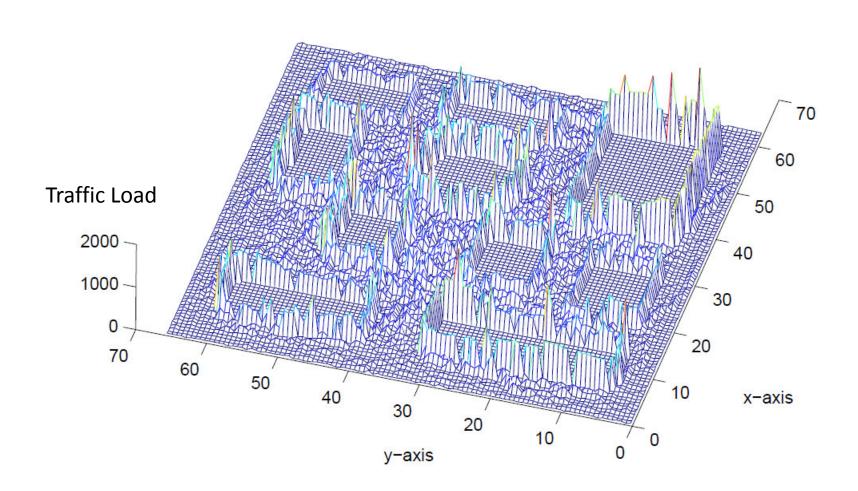
Greedy routing

- 1. Guaranteed delivery
- 2. Load balancing
- 3. Resilient to failures

Problem II: Boundary nodes get overloaded

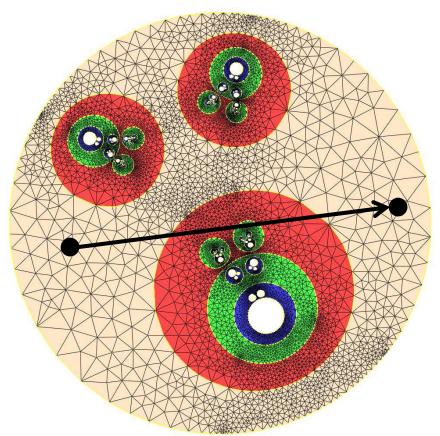


Boundary nodes get overloaded

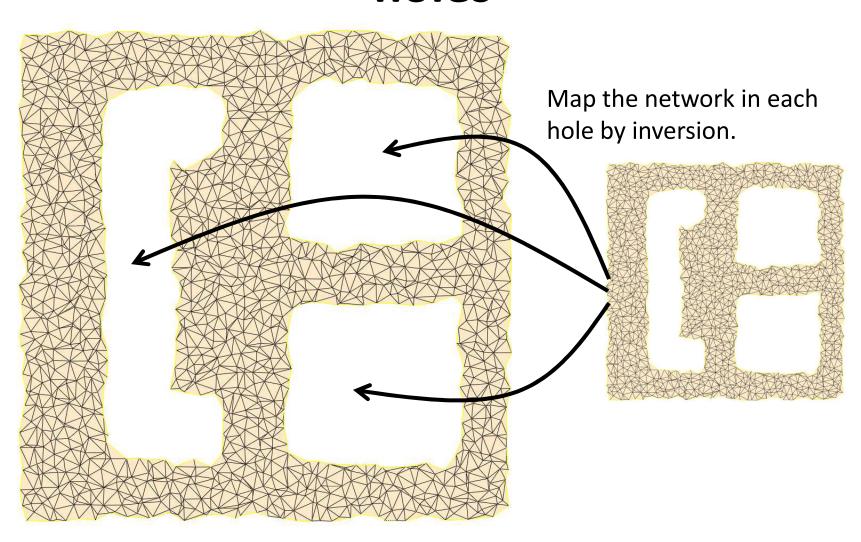


Solution II: Use covering space, tile up the domain

 Greedy routes cut through the holes and do not overload boundary.



Idea: Reflect the network to fill up the holes

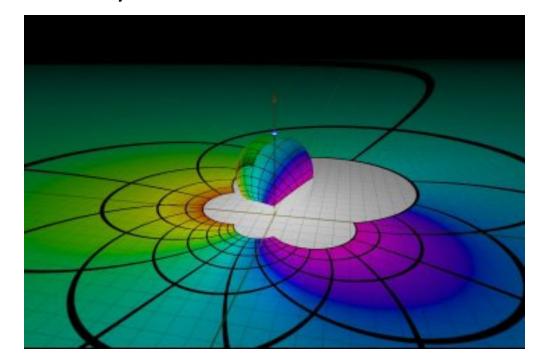


Möbius Transform

- Möbius transform
 - Conformal: maps circles to circles
 - Four basic elements: translation, dilation, rotation, inversions (reflection).

$$f(z) = \frac{az+b}{cz+d}$$

a, b, c, d are 4 complex numbers, ad ≠ bc

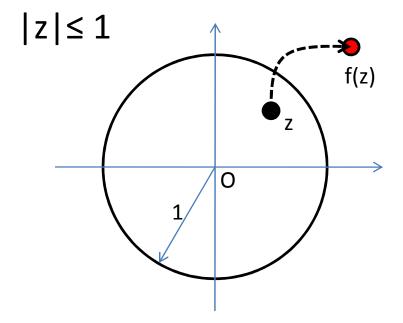


Reflections using Möbius Transform

Map inside out

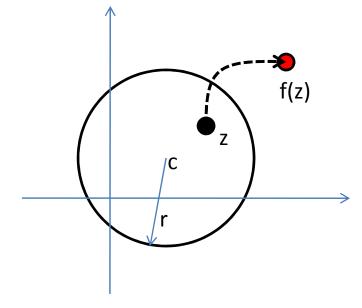
Unit circle at origin

$$f(z) = \frac{1}{z}$$

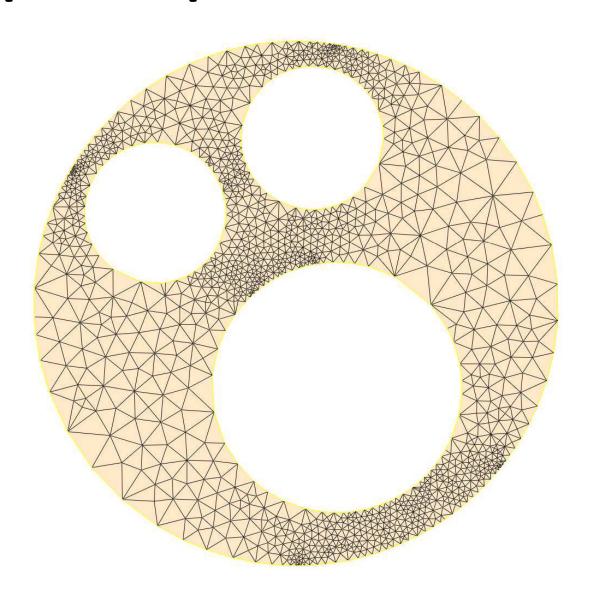


A circle at c with radius r

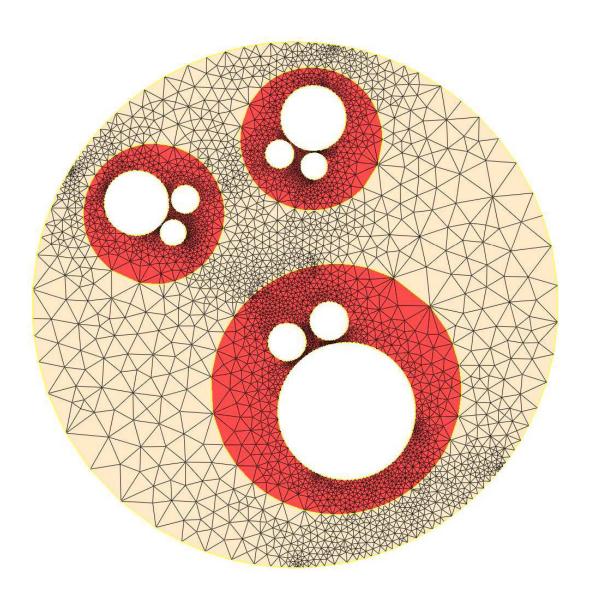
$$f(z) - c = \frac{r^2}{z - \overline{c}}$$



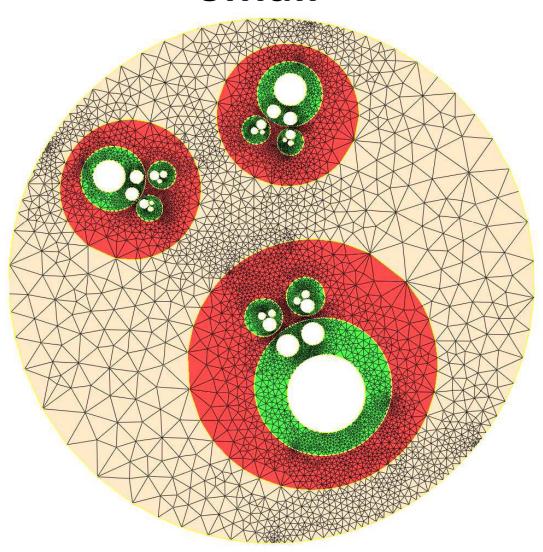
Step 1: Map All Holes Circular



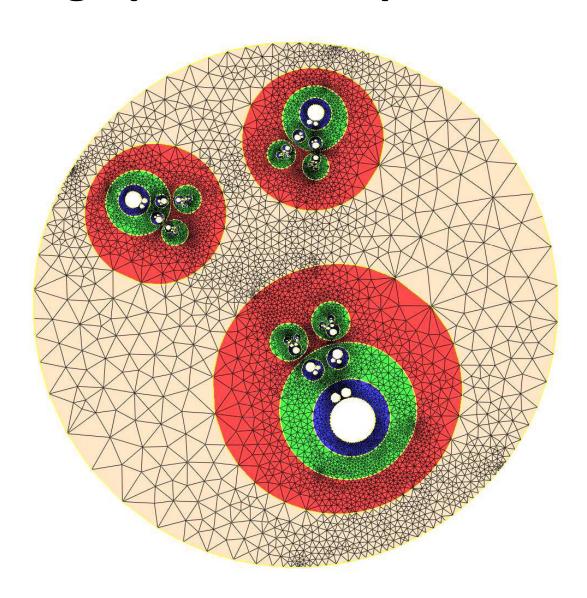
Step 2: Reflect Network for Each Hole



Step 3: Continue until all Holes are Small

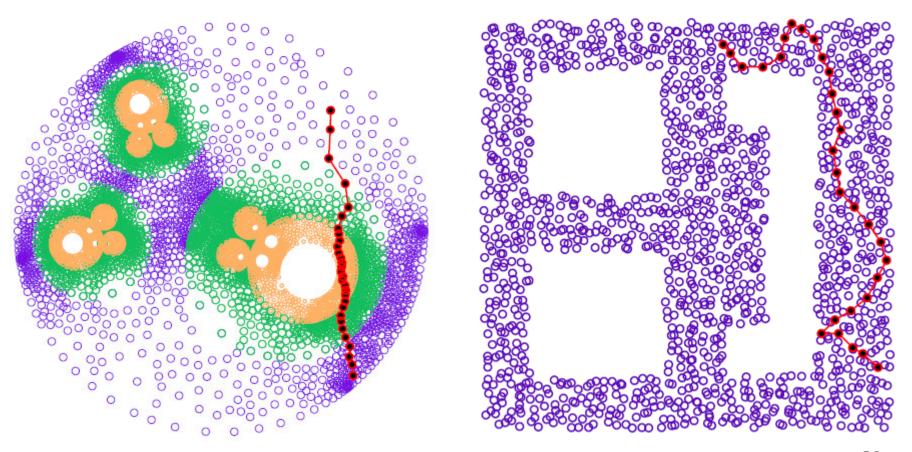


Covering Space: Tile up the domain



Routing in the covering space

Equivalently, reflect on the hole boundary



Reflections

• Theorem:

- Total area of the holes shrinks exponentially fast.
- After O(log 1/ε) reflections, size of holes $\sim ε$.

In practice

- ≤ 5 levels of reflections
- Reflections are computed on demand.

Max traffic load with greedy routing

1 or 2 reflections seem to be optimal.

Scheme	Avg. load	Max load	Avg. length	Max length
GPSR	33.6840	620.0	24.1915	92
1-ref	24.0682	319.0	17.571	42
2-ref	35.4960	190.0	25.439	117
3-ref	39.1742	241.0	27.9715	159
4-ref	43.9143	199.0	31.235	196
5-ref	46.3129	216.0	32.8865	228

Outline

Greedy routing

- 1. Guaranteed delivery
- 2. Load balancing
- 3. Resilient to failures

Problem III: Network Dynamics and Failures

- Wireless links are unreliable
 - Interferences
 - Jamming
 - Nodes run out of battery, or are damaged
- Select multiple paths that are "sufficiently different". → Paths of different homotopy types
- 2. Quickly switch to a different path upon link failure. → Use multiple routing metrics

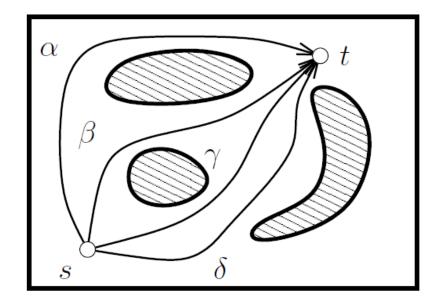
Paths and Homotopy Types

 Two paths are homotopy equivalent if they can be "locally deformed" to one another.

Different homotopy types: bypass holes in

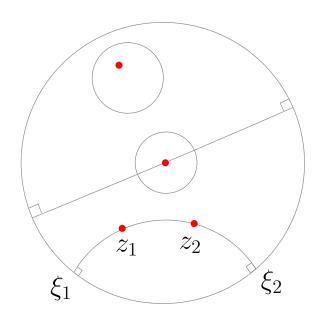
different ways.

Goal: find a path of a given homotopy type using greedy routing.



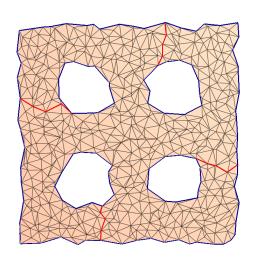
Hyperbolic Space: Poincare Disk Model

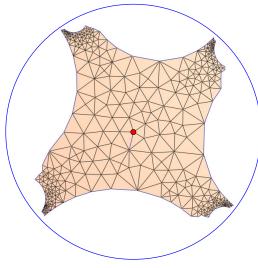
- Unit disk: entire hyperbolic space
- Hyperbolic line: circular arc (geodesic)
- Hyperbolic isometry up to Mobius transformation



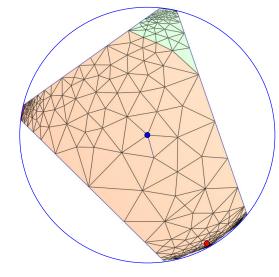
Hyperbolic Embedding by Ricci Flow

- Cut the holes open a simply connected domain.
- Hyperbolic uniformization metric
 - Curvature: -1 on interior points, 0 on boundary points
- Use Ricci flow, embed to a convex piece → greedy routing guaranteed delivery.





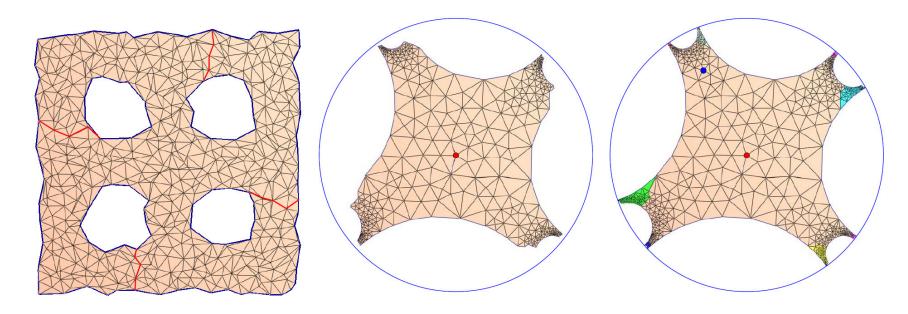
Boundary: geodesics



Klein projective model Lines = Chords

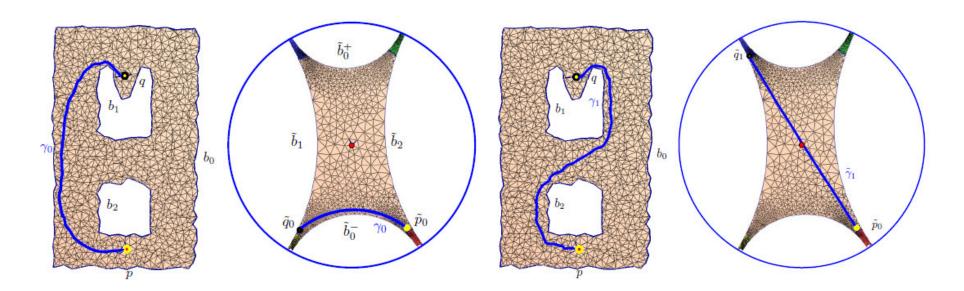
Universal Covering Space

- Embed into multiple such patches glued along boundaries.
- Patchs differ by a Möbius transformation.
- All such patches cover up the Poincare disk.



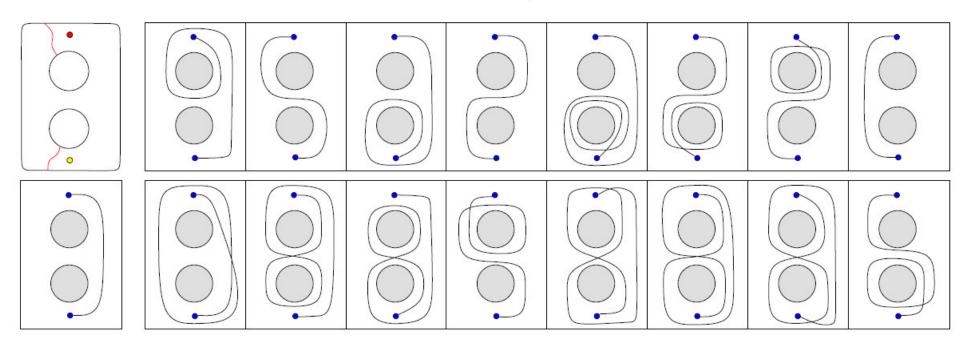
Universal Covering Space

 Greedy routing to the image of destination in different patches give paths of different homotopy types.



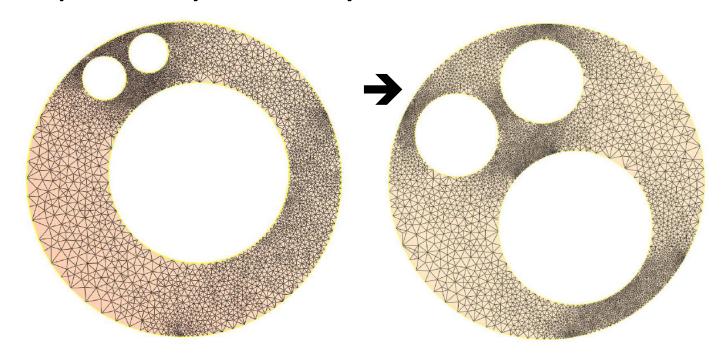
Universal Covering Space

- In practice, we only need a constant # patches
- Paths around a hole too many times are practically not interesting.



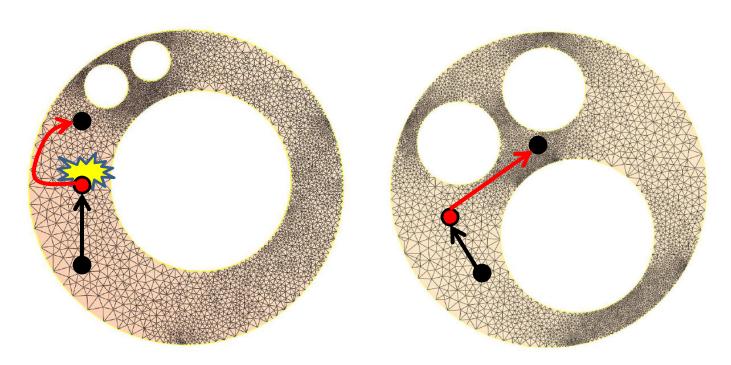
Recovery From Failures

- When a link fails, how to quickly find an alternative path?
- Recall: embedding into a circular domain is not unique, they differ by a Möbius transformation.



Multi-metric Routing

 If a link fails, we compute a Möbius transformation of the embedding & route in an alternative embedding.



Summary

- Deformation of network metric by changing local curvatures.
- Greedy routing with guaranteed delivery, good load balancing, resilience to failures, path diversity.

References

Papers:

- Greedy routing with guaranteed delivery using Ricci flows, IPSN'09.
- Covering space for in-network sensor data storage, IPSN'10.
- Resilient routing for sensor networks using hyperbolic embedding of universal covering space, INFOCOM'10.
- http://www.cs.sunysb.edu/~jgao

Questions?

