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Canonical Homotopy Class Representative
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Figure: Two homotopic loops γ1 and γ2 are given. The canonical
representative of their homotopy class is computed as the unique
closed geodesic under the uniformization metric, shown as Γ.

W.Zeng et.al. Homotopy Representative



Problem Statement

Definition (Loop)

Let S be a topological space, and let p0 be a point of S. A loop
with base point p0 is a continuous function γ : [0,1] → S, such
that

γ(0) = p0 = γ1.

Definition (Homotopy)

Two loops γ1,γ2 are homotopic equivalent, if there exits a
continuous map h : [0,1]× [0,1]→ S, such that

h(t ,0) = γ0(t),h(t ,1) = γ1(t).

and
h(0, t) = p0 = h(1, t).

h is called a homotopy from γ0 to γ1, and the corresponding
equivalence class is called the homotopy class.
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Problem Statement

Definition (product of loops)

The product γ0 × γ1 of two loops γ0 and γ1 is defined by setting

(γ0 × γ1)(t) :=

{

γ0(2t) 0 ≤ t ≤ 1
2

γ1(2t −1) 1
2 ≤ t ≤ 1

Definition (inverse of a loop)

The inverse of a loop γ is the loop γ−1 defined by

γ−1(t) = γ(1− t).
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Problem Statement

The product of two homotopy classes of loops [γ0] and [γ1] is
then defined as [γ0 × γ1], and this product does not depend on
the choice of representatives.

Definition (Fundamental Group)

With the above product, the set of all homotopy classes of
loops with base point p0 forms the fundamental group of S at
the point p0 and is denoted π1(S,p0). The identity element is
the constant map at the basepoint.

If S is path-connected, fundamental groups with different base
points are isomorphic. Therefore, we can write π(S) instead of
π(S,p0) without ambiguity whenever we care about the
isomorphism class only.
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Problem Statement

Homotopy Class Representative

Given a high genus metric surface S, with genus g > 1 and a
Riemannian metric g, define and compute the unique
representative for each homotopy class.
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Comparison

Comparison to Handle and Tunnel Loops

Geometry-aware handle loop and tunnel loop are the unique
representatives for the corresponding homology classes. our
method is for homotopy class. Each homology class has
infinite number of homotopy classes, therefore our method is
much more refiner.

Figure: γ is homologous to zero, but homotopic nontrivial.
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Solution

Solution to Homotopy Class Representative Problem

1 Compute the canonical uniformization metric g̃, such that
1 g̃ is conformal to the original metric g.
2 g̃ induces −1 constant Gaussian curvature everywhere.

2 Compute the unique geodesic loop Γ, which is homotopic
to the input loop γ .
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Theoretic Foundation - Uniformization

Theorem (Poincar é Uniformization Theorem)

Let (Σ,g) be a compact 2-dimensional Riemannian manifold.
Then there is a metric g̃ = e2λ g conformal to g which has
constant Gauss curvature.

Spherical Euclidean Hyperbolic
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Theoretic Foundation - Geodesic Uniqueness

Theorem (Gauss-Bonnet Theorem)

Let (S,g) be a 2-dimensional Riemannian manifold with
boundaries, then

∫

S
KdA+

∫

∂S
kgds = 2πχ(S),

where K is the Gaussian curvature, kg is the geodesic
curvature χ(S) is the Euler number of S.

Corollary (Uniqueness of Geodesic Loop)

Let (S,g) be a 2-dimensional Riemannian manifold with
negative Gaussian curvature, then each homotopy class has a
unique geodesic.
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Application 1

Problem : Homotopy Detection

Given two loops γ1 and γ2 on a surface, verify if they are
homotopic to each other.

Solution

Compute the unique representative Γ1 of [γ1], Γ2 of [γ2]. If Γ1

coincides with Γ2, then γ1 and γ2 are homotopic.
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Application 2

Problem: Shortest Word

Given a high genus surface S, and the generators of π1(S,p0),
a loop γ . Find the shortest word of [γ] in π1(S,p0).

Solution

Compute the unique representative Γ of [γ], lift Γ in the
universal covering space of S isometrically embedded in the
hyperbolic space with the uniformization metric. Compute the
word in the hyperbolic space.
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How to compute the metric? Ricci flow!
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Uniformization Metric - Surface Ricci Flow

Definition (Hamilton’s Surface Ricci Flow)

A closed surface with a Riemannian metric g, the Ricci flow on
it is defined as

dgij

dt
= −Kgij .

If the total area of the surface is preserved during the flow, the
Ricci flow will converge to a metric such that the Gaussian
curvature is constant every where.
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Ricci Flow

Theorem (Hamilton 1982)

For a closed surface of non-positive Euler characteristic, if the
total area of the surface is preserved during the flow, the Ricci
flow will converge to a metric such that the Gaussian curvature
is constant (equals to K̄ ) every where.

Theorem (Bennett Chow)

For a closed surface of positive Euler characteristic, if the total
area of the surface is preserved during the flow, the Ricci flow
will converge to a metric such that the Gaussian curvature is
constant (equals to K̄ ) every where.

W.Zeng et.al. Homotopy Representative



Generic Surface Model - Triangular Mesh

Surfaces are represented as polyhedron triangular
meshes.

Isometric gluing of triangles in H
2.

W.Zeng et.al. Homotopy Representative



Discrete Metrics

Definition (Discrete Metric)

A Discrete Metric on a triangular mesh is a function defined on
the vertices, l : E = {all edges}→ R

+, satisfies triangular
inequality.

A mesh has infinite metrics.
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Discrete Curvature

Definition (Discrete Curvature)

Discrete curvature: K : V = {vertices} → R
1.

K (v) = 2π −∑
i

αi ,v 6∈ ∂M;K (v) = π −∑
i

αi ,v ∈ ∂M

Theorem (Discrete Gauss-Bonnet theorem)

∑
v 6∈∂M

K (v)+ ∑
v∈∂M

K (v) = 2πχ(M).

α1 α2
α3

v α1
α2

v
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Discrete Metrics Determines the Curvatures

vi vj

vk

li
lj

lk

θi

θk

θj

vi vj

vk

vi vj

vk

lili

lk
lk

ljlj

θi θi

θk θk

θjθj

R2 H2
S2

cosine laws

cos li =
cosθi +cosθj cosθk

sinθj sinθk
(1)

cosh li =
coshθi +coshθj coshθk

sinhθj sinhθk
(2)

1 =
cosθi +cosθj cosθk

sinθj sinθk
(3)
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Discrete Conformal Factor for Yamabe Flow

l1

l2
l3

u1

u2

u3

y1

y2y3

θ1

θ2

θ3

conformal factor

The following formula is given in [25] Bobenko, Springborn and
Pinkall ”Discrete conformal equivalence and ideal hyperbolic
polyhedra”.

sinh yk
2 = eui sinh lk

2 euj

Properties: ∂Ki
∂uj

=
∂Kj
∂ui

and dK = ∆du.
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Discrete Curvature Flow

Analogy

Curvature flow
du
dt

= K̄ −K ,

Energy

E(u) =

∫

∑
i

(K̄i −Ki)dui ,

Hessian of E denoted as ∆,

dK = ∆du.
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Discrete Curvature Flow

Theorem ( 25 Bobenko, Springborn, Pinkall)

The discrete hyperbic Yamabe energy is convex.

1 If solution exits, it is unique.
2 No theoretic proof for the existence yet.
3 The u-domain is not convex, the step length need to be

carefully controlled during the optimization.

W.Zeng et.al. Homotopy Representative



How to compute the geodesic? Axis of the
Möbius transformation!
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Universal Covering Space

Definition

Universal Cover A covering space of S is a space S̃ together
with a continuous surjective map h : S̃ → S, such that for every
p ∈ S there exists an open neighborhood U of p such that
h−1(U) is a disjoint union of open sets in S̃ each of which is
mapped homeomorphically onto U by h. The map h is called
the covering map. A simply connected covering space is a
universal cover.

W.Zeng et.al. Homotopy Representative



Lift

Definition (Lift)

Suppose γ ⊂ S is a loop through the base point p on S. Let
p̃0 ∈ S̃ be a preimage of the base point p, p̃0 ∈ h−1(p), then
there exists a unique path γ̃ ⊂ S̃ lying over γ (i.e. h(γ̃) = γ) and
γ̃(0) = p̃0. γ̃ is a lift of γ .
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Deck Transformation

Definition (Deck Transformation)

A deck transformation of a cover h : S̃ → S is a homeomorphism
f : S̃ → S̃ such that h ◦ f = h. All deck transformations form a
group, the so-called deck transformation group.

Deck transformation group is isomorphic to the fundamental
group.
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Poincar é disk model

Definition ( Poincar é disk model )

Poincaré disk is to model the hyperbolic space H
2, which is the

unit disk |z| < 1 with the metric ds2 = 4dzdz̄
(1−zz̄)2 .

The rigid motion is the Möbius transformation

z → eiθ z −z0

1− z̄0z
,

where θ and z0 are parameters. The geodesic of Poincaré disk
is a Euclidean circular arc, which is perpendicular to the unit
circle.
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Funchsian Group

Definition (Fuchsian Group)

Suppose S is a high genus closed surface with the hyperbolic
uniformization metric g̃. Its universal covering space (S̃, g̃) can
be isometrically embedded in H

2. Any deck transformation of S̃
is a Möbius transformation, and called a Fuchsian
transformation. The deck transformation group is called the
Fuchsian group of S.
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Axis of a Fuchsian Transformation

Definition ( Poincar é disk model )

Let φ be a Fuchsian transformation, let z ∈ H
2, the attractor and

repulser of φ are limn→∞ φn(z) and limn→∞ φ−n(z) respectively.
The axis of φ is the unique geodesic through its attractor and
repulser.
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Geodesic Representative

Theorem (Geodesic Representative)

Suppose a high genus surface S is with the uniformization
metric. γ is a loop on S, [γ] ∈ π1(S), there exists a unique
Fuchsian transformation φ ∈ Fuchs(S), then the unique
geodesic loop in [γ] is the axis of φ .

Given γ , we can lift it to the universal covering space, this gives
the Fuchsian transformation φ .
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Algorithm
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Algorithm Pipeline - Stage One

a1

b1

a2

b2

(a) Input genus two surface (b) Canonical homotopy group basis
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(c) Fundamental domain (d) Portion of universal covering space
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Algorithm Pipeline - Stage Two

(a) Input loop front view (b) Input loop back view
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Algorithm Pipeline - Stage Two
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Algorithm Pipeline - Stage Two
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Algorithm Pipeline - Stage Two

Γ

γ

γ

Γ

(a) Closed geodesic front view (b) Closed geodesic back view
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Algorithm Pipeline - Stage Two
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Algorithm Pipeline - Stage Two

(i) Final ending (j) Whole lift in H
2
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Experimental Results
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Hyperbolic Fuchsian Group Generators

(a) Fundamental group (b) Universal covering

generators space

Figure: Hyperbolic metric and the Fuchsian group generators for the
Amphora model.
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Hyperbolic Fuchsian Group Generators

(a) Fundamental group (b) Universal covering

generators space

Figure: Hyperbolic metric and the Fuchsian group generators for the
Knotty model.
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Hyperbolic Fuchsian Group Generators

(a) Fundamental group (b) Universal covering

generators space

Figure: Hyperbolic metric and the Fuchsian group generators for the
3-hole model.
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Hyperbolic Fuchsian Group Generators

(a) Fundamental group (b) Universal covering

generators space

Figure: Hyperbolic metric and the Fuchsian group generators for the
3-torus model.
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Hyperbolic Fuchsian Group Generators

(a) Front view (b) Back view

(c) Left view (d) Right view

Figure: Homotopy geodesic on 3-hole torus 1.W.Zeng et.al. Homotopy Representative



Hyperbolic Fuchsian Group Generators

(a) Front view (b) Back view

Figure: Homotopy geodesic on 3-hole torus 2.
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Hyperbolic Fuchsian Group Generators

(a) Front view (b) Back view

Figure: Homotopy geodesic on 3-hole torus 3.
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Thanks

For more information, please email to gu@cs.sunysb.edu.

Thank you!
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