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Abstract. We address the problem of detecting deformities on elastic sur-
faces. This is of great importance for shape analysis, with applications such
as detecting abnormalities in biological shapes (e.g., brain structures). We
propose an effective algorithm to detect abnormal deformations by generating
quasi-conformal maps between the original and deformed surfaces. We firstly
flatten the 3D surfaces conformally onto 2D rectangles using the discrete Yam-
abe flow and use them to compute a quasi-conformal map that matches internal
features lying within the surfaces. The deformities on the elastic surface are
formulated as non-conformal deformations, whereas normal deformations that
preserve local geometry are formulated as conformal deformations. We then
detect abnormalities by computing the Beltrami coefficient associated uniquely
with the quasi-conformal map. The Beltrami coefficient is a complex-valued
function defined on the surface. It describes the deviation of the deformation
from conformality at each point. By considering the norm of the Beltrami
coefficient, we can effectively segment the regions of abnormal changes, which
are invariant under normal (non-rigid) deformations that preserve local geom-
etry. Furthermore, by considering the argument of the Beltrami coefficient,
we can capture abnormalities induced by local rotational changes. We tested
the algorithm by detecting abnormalities on synthetic surfaces, 3D human face
data and MRI-derived brain surfaces. Experimental results show that our
algorithm can effectively detect abnormalities and capture local rotational al-
terations. Our method is also more effective than other existing methods, such
as the isometric indicator, for locating abnormalities.
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1. Introduction. Detecting abnormal changes on surfaces is a central problem in
shape analysis, especially in medical research. For example, neuroscientists com-
monly aim to identify abnormal deformations of cortical and subcortical structures
in the brain in order to detect systematic patterns of alterations in brain diseases.
In cardiac imaging and oncology, physicians commonly need to track changes or ab-
normalities in biological organs or tumors, to evaluate the effectiveness of different
treatments, or monitor disease progression. Detecting and examining abnormalities
with the human eye is inefficient and often inaccurate, especially on complicated
surfaces such as the cerebral cortex of the brain. Therefore, it is of great impor-
tance to develop automatic methods to detect abnormalities and track abnormal
geometric changes over time.

In this paper, we propose a framework for detecting abnormal changes on elastic
surfaces using quasi-conformal geometry. Two issues arise in solving this problem.
First, we want to find good registrations between surfaces with enforced landmark-
correspondences. Second, we want to define a robust measure of deformity, which
is invariant under normal (non-rigid) deformations that preserve local geometry,
so that quantitative analysis can be carried out. These goals are related, since
good registrations allow accurate detection of abnormalities, while good measures
of deformity can be used to set criteria for desirable registrations.

We propose to model deformities between elastic shapes as non-conformal defor-
mations, whereas normal deformations that preserve the local geometry are formu-
lated as conformal deformations. This is a generalization of existing work by Lord
et al. and Unal et al. [9] [19], which modeled deformities between shapes as non-
isometric diffeomorphisms. Using the isometric indicator, the authors proposed to
detect abnormalities that are invariant under rigid transformations. Our proposed
method is an extension of their approaches, in that we are trying to detect defor-
mities on elastic surfaces that are invariant under non-rigid normal deformations.
This is a more general and accurate definition in some situations. For example, we
may consider the growth processes of the human body, which is a key area of study
in medical imaging and face recognition. As a person grows, different parts of the
human body grow locally and the growth rate is somewhat uniform locally [17].
The same organs of two healthy individuals tend to have similar shapes, although
they may not be exactly isometric to each other. In other words, local geometry is
well preserved under the normal growth process. Conformal maps are well-known
to preserve local geometry. Therefore, a good registration between two organs of
the same or different individuals should not be far from conformal. This motivates
us to define good registrations as conformal registrations, and measure deformities
as regions of non-conformality.

The key contribution in this paper is the use of Beltrami coefficient to detect
shape abnormalities. Suppose we are given a registration between a normal and a
deformed surface of the same or different subjects. We can compute the Beltrami
coefficient of the registration map, which is a complex-valued function measuring
the non-conformal deformation at each point of the map. In our examples, we show
that the Beltrami coefficient is an effective measure of shape deformities on elastic
surfaces.

To complete our framework for the automatic detection of shape deformities, we
propose the following registration algorithm. We first generate a quasi-conformal
map between the original 3D surface and the surface to be compared with it. The
surfaces are first conformally flattened onto 2D rectangles using a novel Yamabe
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flow method, which computes accurate conformal parameterizations of surfaces.
Then, a quasi-conformal map is computed to match landmark features between
both flattened surfaces. By formulating abnormal changes as non-conformal de-
formations, we detect abnormalities by computing the Beltrami coefficient, which
is uniquely associated with the quasi-conformal map. By considering the norm of
the Beltrami coefficient, we detect regions with abnormal changes, which are in-
variant under conformal deformation. Furthermore, by considering the argument of
the Beltrami coefficient, we can capture abnormalities induced by local rotational
changes. We propose a quantity called the Beltrami index, which allows us to quan-
titatively describe the degree of abnormality in each region. Experiments applying
our algorithm to synthetic surfaces, 3D human face data and real MRI-derived brain
surfaces show that our algorithm can effectively detect abnormalities and capture
local rotational alterations. The algorithm is also robust under added noise, and it
is successful in detecting altered gyrification patterns on cortical surfaces. Quanti-
tative comparisons of the size of abnormality with the Beltrami index show that the
detected sizes of abnormalities correspond positively with the sizes of abnormalities.
A comparison of the Beltrami coefficient with other commonly used measures like
the isometric indicator and gradient show that these measures are not as effective
as Beltrami coefficient and may tend to give misleading results when the compared
surfaces undergo normal changes that preserve the local geometry.

Our paper is organized as follows: prior work on related topics is presented in
section 2. The basic mathematical theory is discussed in section 3. In Section 4, the
details of our proposed model are discussed. In Section 5, our computer algorithm is
summarized. Experimental results are discussed in Section 6, and some conclusions
and future work are discussed in section 7.

2. Previous work. Many different approaches have been proposed to detect
changes in shapes. Most of them take into account properties that depend on
the embedding of the shape in space. Tosun et al. [18] proposed the use of three
different shape measures – the shape index, curvedness, and L2 norm of mean
curvature – to quantify cortical gyrification and complexity. While the curvature
measure is an important geometric measure of surface properties, it is also affected
by healthy changes like normal growth, which increases surface size and decreases
curvature. Moreover, since the curvature is a second order geometric measure, it
is more sensitive to noise in data, especially in triangular meshes. Extra prepro-
cessing is required to guarantee the robustness of the measure. In contrast, the
Beltrami coefficient we use in this paper is a first order geometric measure. This
leads to less perturbation due to noise. By computing surface Jacobian and ap-
plying statistical inference via random field theory on cortical surfaces processed
by diffusion smoothing, Chung et al. [2] studied changes in cortical surface area,
thickness, and curvature, as well as the change of the total gray matter volume over
time. While surface Jacobian can detect area changes caused by abnormalities, it
can also be affected by healthy deformations like normal growth, which also causes
area changes of surface registrations. By looking at the Beltrami coefficients, we
are able to minimize the effects caused by such changes. We are also able to detect
rotational distortions caused by abnormalities. Shi et al. [15] suggested the use
of Hamilton-Jacobi skeletons on cortical surfaces to study gyrification patterns in
Williams syndrome. In this approach, the degree of gyrification is measured by the
number of branches in the Hamilton-Jacobi skeleton. While this method is easily
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computable and gives a fast measure of complexity of the cortical surface, subtle
changes could occur within a branch of the cortical surface, which require a finer
measure to detect. To overcome this problem, our approach provides an local and
intrinsic measure of surface distortion to detect such changes.

Registration is broadly used in medical imaging and face recognition. It aims to
produce a desirable registration for obtaining good correspondences or performing
further analysis. Grenander et al. [4] surveyed existing methods of computational
anatomy and proposed a framework to compute deformation maps and empirical
probability laws for disease testing. Early work such as Gaser et al. [3] compute
an initial correspondence field between surfaces to ease the detection of abnormal-
ities. Such applications often involve models of the human face or organs of the
human body. Some existing methods model deformities between shapes in terms
of nonrigid or non-isometric diffeomorphisms [9] [19]. This may make their algo-
rithms classify normal growth in living organisms as abnormal. This motivates us
to model abnormalities as non-conformal diffeomorphisms, and good registrations
as ones that are as conformal as possible. We support our view with the following
points. First, normal changes such as growth in humans tend to preserve local
geometry well, and hence are conformal. Second, by modeling good registrations
as those that are conformal, we are still able to get a correct registration when the
proper registration is indeed isometric.

In most methods for detecting shape changes, an accurate registration between
two shapes has to be computed. The area has been extensively studied. Unal et
al. [19] proposed the use of coupled PDEs for joint segmentation and registra-
tion. However, technique does not support the matching of user-defined landmarks.
Pohl et al. [14] proposed an expectation maximization-based method to solve the
problem, which takes into account of image artifacts, anatomical labelmaps, and a
structure-dependent hierarchical mapping from the atlas to the image space. This
allows some controls over the matched areas, but user-defined landmark constraints
may not be matched. Lord et al. [9] [8] proposed to match hippocampal surfaces
by finding maps minimizing the deviation from isometry under the constraints of
piecewise deformation homogeneity, with local asymmetry quantified. The authors
defined asymmetries between paired shapes as non-rigid diffeomorphisms between
shapes. However, under normal conditions, like growth, non-rigid shape changes
naturally occur. In one of our examples, it is shown that the maps of a correctly
matched pair of surfaces can be non-isometric in normal as well as abnormal regions.
Such occasions call for a more flexible definition of shape abnormality.

It has become increasingly popular to study shape changes by computing dif-
feomorphisms with desired properties, as they give one-to-one correspondences of
shapes for local comparisons. Using control theory and large-deformation contin-
uum mechanics, variational metrics have been developed on the space of diffeomor-
phisms [4] [20]. In computing diffeomorphisms, one of the goals is to preserve local
geometry as far as possible while consistently aligning important anatomical features
lying within a surface. Gu et al. [6] proposed to find an optimal Möbius transfor-
mation between two surfaces to minimize a landmark mismatch error. Wang et
al. [21][11] defined a new energy functional based on harmonic energy to optimize
the conformal parameterization of cortical surfaces, while fixing landmark corre-
spondences. The harmonic energy method was applied by Shi et al. [16] to match
implicitly-defined surfaces by solving PDEs on them using level set methods. Using
integral flows of smooth vector fields, Lui et al. [10] further proposed to compute
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a landmark-matching diffeomorphism with shape-based correspondences between
landmark curves.

Recently, conformal geometry has been used for 3D non-rigid surface matching
and registration. Harmonic maps have been used to track non-rigid motions of
3D surfaces, which requires tracking of boundary correspondences. This challenge
was addressed in [23][25], where different conformal mappings induced by different
holomorphic differentials were combined to achieve accurate and robust matching
results. Even so, holomorphic differentials cannot handle surfaces with complicated
topology; the Ricci flow method is much more flexible and general. The surface-
based Ricci flow was introduced in [7]. The theory of discrete surface Ricci flow
was introduced in [1]. Euclidean Ricci flow has been applied to 3D shape analysis
in [5], where all the Gaussian curvatures of the surface are concentrated on several
singularities. To remove these singularities, the discrete hyperbolic Ricci flow was
introduced in [22], which improves the accuracy and robustness of the matching
and registration. In practice, the Ricci flow method imposes constraints on the
triangulation of the discrete surface, whereas the discrete Yamabe flow can handle
much more general triangulations. Furthermore, the Yamabe flow can achieve a
higher level of conformality than the Ricci flow. The theory of discrete Yamabe flow
is established in [12], where the existence, uniqueness and stability of the solution
is rigorously proven.

3. Mathematical background. In this section, we describe some basic mathe-
matical concepts relevant to describing our algorithm.

A surface S with a conformal structure is called a Riemann surface. Given
two Riemann surfaces M and N , a map f : M → N is conformal if it preserves
the surface metric, up to a multiplicative factor called the conformal factor. An
immediate consequence is that every conformal map preserves angles. With the
angle-preserving property, a conformal map effectively preserves the local geometry
of the surface structure.

A generalization of conformal map is called the quasi-conformal map which is
an orientation-preserving homeomorphism between Riemann surfaces with bounded
conformality distortion, in the sense that the first order approximation of the quasi-
conformal homeomorphism takes small circles to small ellipses of bounded eccentric-
ity. Thus, a conformal homeomorphism that maps a small circle to a small circle can
also be regarded as quasi-conformal. Mathematically, f is quasi-conformal provided
that it satisfies the Beltrami’s equation:

(1)
∂f

∂z
= µ(z)

∂f

∂z

for some complex-valued Lebesgue-measurable µ satisfying |µ|∞ < 1. In terms of
the metric tensor, consider the effect of the pullback under f of the usual Euclidean
metric ds2

E ; the resulting metric is given by:

(2) f∗(ds2
E) = |

∂f

∂z
|2|dz + µ(z)dz)|2

which, relative to the background Euclidean metric dz and dz, has eigenvalues
(1+ |µ|)2 ∂f

∂z
and (1−|µ|)2 ∂f

∂z
. µ is called the Beltrami coefficient, which is a measure

of conformality. In particular, the map f is conformal around a small neighborhood
of p when µ(p) = 0. Also, the gradient and the Beltrami coefficient of the map are
closely related. Suppose f = (f1, f2) under the conformal parameter domains. The
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Figure 1. Illustration of how Beltrami coefficient µ measures the
distortion by a quasi-conformal mapping that maps a small circle
to an ellipse with dilation K.

Jacobian matrix J of f can be written as (∇f1,∇f2) which is a 2 × 2 matrix. The
Jacobian is closely related to |µf |. Mathematically,

det(J) = (1 − |µf |
2)(|∇f1|

2 + |∇f2|
2 + det(J))/4

While | det(J)| gives us information about the area distortion under the map f ,
|µf | gives us information about the conformality distortion. In other words, |µf |
measures the regions of deformations that do not preserve local geometry.

Infinitesimally, around a point p, f may be expressed with respect to its local
parameter as follows:

f(z) = f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z)
(3)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter
domain, f may be considered as a map composed of a translation of f(p) together
with a stretch map S(z) = z + µ(p)z, which is postcomposed by a multiplication
of fz(p) which is conformal. All the conformal distortion of S(z) is caused by µ(p).
S(z) is the map that causes f to map a small circle to a small ellipse. From µ(p), we
can determine the angles of the directions of maximal magnification as well as the
amount of maximal magnification and maximal shrinking. Specifically, the angle
of maximal magnification is argµ(p)/2 with magnifying factor 1 + |µ(p)|; the angle
of maximal shrinking is the orthogonal angle (argµ(p)− π)/2 with shrinking factor
1 − |µ(p)|. The distortion or dilation is given by:

(4) K =
1 + |µ(p)|

1 − |µ(p)|

Thus, the Beltrami coefficient µ gives us all the information about the conformaity
of the map (See Figure 1). This motivates its use as a measure of abnormal defor-
mation, as abnormalities tend to cause significant distortions in the conformality of
the deformation map.

It is often convenient to conformally map 3D surfaces to planar domains, to
simplify subsequent computations. Yamabe flow offers a rigorous and efficient way
to do this. Suppose S is a surface embedded in the 3D Euclidean space R

3, then it
has the induced Euclidean metric denoted by g = (gij). Let u : S → R be a function
on S, then ḡ = e2ug is another Riemannian metric of S, which is conformal to g.
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If the Gaussian curvatures induced by g and ḡ are K and K̄, then they are related
by the following Yamabe equation

(5) K̄ = e2u(−∆gu + K),

where ∆g is the Laplace-Beltrami operator under the original metric g.
It is fundamentally important to design a Riemannian metric ḡ with a prescribed

curvature K̄, which is equivalent to solving the Yamabe equation. The surface Yam-
abe flow (or equivalently the Ricci flow) is a powerful tool for solving it. Intuitively,
the surface Yamabe flow deforms the metric in proportion to the Gaussian curva-
ture, such that the Gaussian curvature evolves according to a heat diffusion process.

(6)
dgij

dt
= (K̄ − K)gij .

It has been proven [12] that if K̄ ≡ 0 everywhere and the total area is preserved
during the flow, the Yamabe flow converges and leads to a metric with constant
Gaussian curvature. Note that, for higher-dimensional Riemannian manifolds, the
Ricci flow and Yamabe flow are different. On discrete surfaces, the discrete Yamabe
flow produces better conformality than the discrete Ricci flow.

4. Our proposed model. In our method, we propose to use the Beltrami coef-
ficient to detect abnormalities on surfaces. This is done by formulating abnormal
changes as non-conformal deformations. Conversely, a conformal deformation is
considered as normal. This definition is based on the fact that the local geometries
of shape are well-preserved under normal changes, such as biological shape defor-
mations. Conformal maps are well known to preserve local geometry and thus it is
plausible to use them to characterize normal deformation. When shapes undergo
abnormal changes, significant local distortions in conformality are often observed.
This motivates us to consider the Beltrami coefficient, which measures the degree
of conformality distortion, for abnormality detection. Our proposed algorithm has
three main steps. First, the original 3D surface and the deformed surface are con-
formally parameterized onto 2D rectangles using the Yamabe flow method. This
simplifies the problem by transforming the 3D surface problem into a 2D problem.
Second, a quasi-conformal map is obtained between the two surfaces by computing
a harmonic map between their conformal parameter domains, which also accom-
modates constraints to match internal landmarks based on their shapes. This gives
a one-to-one correspondence (registration) between the two surfaces. Finally, the
Beltrami coefficient associated with the quasi-conformal map is computed as an
index of abnormal changes. We describe each step in detail next.

4.1. Conformal parameterization using the Yamabe Flow. To detect regions
with abnormalities, the first step is to find a one-to-one correspondence (registra-
tion) between the original and deformed surfaces. With this registration, we can
detect the distortion in conformality of the deformation at each point by computing
the associated Beltrami coefficient. Computing the surface registration directly on
surfaces is difficult, especially on complicated surfaces such as the cortical surface
of the brain. Therefore, it is advantageous for us to first parameterize the sur-
faces conformally onto the 2D parameter domain. This simplifies the process by
transforming the surface problem into a 2D problem. Under the conformal param-
eterizations, determining conformality distortion between surfaces is equivalent to
determining it between their conformal parameter domains. Of course, the com-
putation of conformal parameterizations has to be accurate in order to effectively
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detect changes in conformality. The Yamabe flow (6) provides us with an efficient
and accurate way to compute these conformal maps.

In practice, all surfaces are approximated by piecewise linear triangular meshes
M(V, E, F ), where V , E and F represent the vertex, edge and face set of the
mesh. We use vi to denote the i-th vertex, [vi, vj ] the edge connecting vi and
vj , [vi, vj , vk] the face connecting vi, vj , vk. The discrete metric is the edge length
function ℓ : E → R

+ satisfying triangle inequality. The vertex discrete curvature is
defined as angle deficiency,

Ki =

{

2π −
∑

[vi,vj ,vk]∈F θjk
i vi 6∈ ∂M

π −
∑

[vi,vj ,vk]∈F θjk
i vi ∈ ∂M

where θjk
i is the corner angle at vi in the face [vi, vj , vk], ∂M is the boundary of

M . Let u : V → R be the discrete conformal factor. The edge length of [vi, vj ] is
defined as

ℓij := exp(ui) exp(uj)ℓ
0
ij ,

where ℓ0
ij is the original edge length in R

3. The discrete Yamabe flow is defined as

dui

dt
= K̄i − Ki,

with the constraint
∑

i ui = 0. The discrete Yamabe flow converges, and the final
discrete metric induces the prescribed curvature; a detailed proof can be found in
[12]. The discrete Yamabe flow is the negative gradient flow of the following Yamabe

energy,

E(u) =

∫

u

u0

∑

i

(K̄i − Ki)dui,

where u0 = (0, 0, · · · , 0). This energy is convex and has a unique global minimum,
which corresponds to the desired metric. Using Newton’s method, the Yamabe
energy can be optimized very efficiently. The Hessian matrix H = (hij) of the
Yamabe energy has an explicit form. If [vi, vj ] is an edge on the mesh, [vi, vj , vk]

and [vj , vi, vl] are the two faces adjacent to [vi, vj ], then hij = cot θij
k + cot θij

l , θij
k

is the corner angle at vk in the face [vi, vj , vk]. The diagonal element hii equals to
∑

j 6=i hij .
To compute a conformal mapping of a simply connected surface S, we set the

target curvature to be zeros for all interior vertices, and the total curvature of
boundary vertices to be 2π. For example, in order to map a human face surface to
a rectangle, we select four corner vertices, and set their target curvatures to be π

2 .
The target curvatures for all other vertices are zeros. Using the Yamabe flow, we can
obtain the desired metric. Then we flatten the mesh isometrically face by face using
the resulting metric. Figure 2 shows two examples of conformal surface mappings
using Yamabe flow method. The conformality is demonstrated using checkerboard
texture mapping.

4.2. Quasi-conformal map between Surfaces. After parameterizing the sur-
faces conformally, the next step is to determine a quasi-conformal registration be-
tween the conformal parameter domains. There may be important curves on the
surfaces representing landmark features[24], so we look for the optimized harmonic
diffeomorphism that exactly matches landmark features via a variational approach.
However, minimizing the energy functional over the search space of landmark-
matching surface diffeomorphisms is difficult. Following [10], we formulate our
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Figure 2. Conformal mappings of a real human face and a real
brain cortical surface, using Yamabe flow method. Four corners
are picked, whose target curvatures are set to be π

2 , and the target
curvatures are set to be zeros everywhere.

problem as a variational energy defined on a search space of smooth vector fields
−→
V . The diffeomorphism may then be generated through the integral flow of

−→
V .

−→
V

are restricted only to those that do not flow across the landmark curves (to enforce
exact landmark correspondence). Our energy has 2 terms: (1) a harmonic energy
term to optimize the harmonicity of the parametrization maps; (2) a smoothness
energy term to ensure the smoothness of the vector field.

Denote the conformal parameter domains of S1 and S2 by D1 and D2 respectively.
We look for harmonic diffeomorphisms f̃1 : D1 → Ω and f̃2 : D2 → Ω that match
landmark curves to a consistent location C. The composition map f̃−1

2 ◦ f̃1 is
a landmark-matching harmonic diffeomorphism from D1 to D2. To start with,
we compute any arbitrary maps f01 : D1 → Ω and f02 : D2 → Ω. We then

iteratively look for the smooth vector field ~Xi on Ω such that the composition

map f̃i = Φ
~Xi ◦ f0i : Di → Ω is the landmark matching harmonic diffeomorphism

(i = 1, 2). Here, Φ
~Xi : Ω → Ω is the time-1 integral flow of the vector field

~Yi = PC
~Xi satisfying the integral flow equation:

∂Φ

∂t

~Xi

(x, t) = ~Xi(Φ
~Xi(x, t)),

Φ
~Xi(x, 0) = x.

~Y is the projection of the vector field ~Xi such that it is tangential to C. This ensures
the exact landmark matching property of f̃i.
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Figure 3. How quasi-conformal registration is constructed be-
tween two surfaces.

The vector fields ~Xi = ai
∂
∂x

+ bi
∂
∂y

minimizes the following energy functional:

J [ai, bi] =

∫

Ω

|∇f̃1|
2 + |∇f̃2|

2 dx + λ

∫

C

(

κ1(f̃1) − κ2(f̃2)
)2

dsD(7)

+β

∫

Ω

|∇ ~X1|
2 + |∇ ~X2|

2 dx

The variational problem is then formulated to be defined over the space of C1

smooth vector fields on Ω. The last integral in the energy is the smoothness term

for the vector fields ~Xi. The first two integrals are the harmonic terms, which aim to
preserve the harmonicity of the parameterization as much as possible. The second
term is a symmetric shape term defined as an arc length integral, where the shape
measure is defined according to the curvature. The proposed energy functional can
be minimized by modifying the vector field iteratively according to the following
Euler-Lagrange equation:

dai

dt
=

∫

1

0

Bi(φ
~Yi
s ) Ψi(φ

~Yi
s , 1) Ψ−1

i (φ
~Yi
s , s) PC~e1 |Dφ

~Yi
s | ds − β∆ai(8)

dbi

dt
=

∫

1

0

Bi(φ
~Yi
s ) Ψi(φ

~Yi
s , 1) Ψ−1

i (φ
~Yi
s , s) PC~e2 |Dφ

~Yi
s | ds − β∆bi,(9)

where:
Bi := −∆f̃i Df0,i + λχA

(

(−1)i−1
(

κ1(f̃1)− κ2(f̃2)
)

∇κi −∇ ·Ci

)

Df0,i |∇H(φ)|;
Ψi is the orthogonal fundamental matrix for the homogeneous system of

∂

∂t
Pi(x, t) = ηPC~e1 (Φ

~Yi(x, t)) + D~Yi(Φ
~Yi(x, t)) Pi(x, t),

Pi(x, 0) = 0.

Figure 3 shows a schematic diagram of our quasi-conformal map construction.
Figure 4 shows how the constraint vector field can be used to obtain the desired
registration with exact landmark matching based on the shape information. Fig-
ure Figure 5 illustrates the matching results for cortical surfaces with several sulcal
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Figure 4. (A) shows the vector field defined on the domain. The
vector field on the landmark is tangential to the curve. (B) shows
the grid lines on the domain. Several points are labeled on the
landmark to visualize its displacement under the integral flow. (C)
shows the result of the integral flow of the vector field. A diffeo-
morphism with exact landmark matching is obtained. Note that
points slide along the landmark curve, instead of flowing across the
curve.

landmarks labeled. Figure 5(A) shows brain surface 1 with several landmarks la-
beled. It is mapped to brain surface 2 under the conformal parameterization as
shown in Figure 5(B). The sulcal landmarks on Brain 1 are only mapped approx-
imately to the sulcal regions on Brain 2. Figure 5(C) shows the matching result
under the parameterization we proposed. The corresponding landmarks are mapped
exactly. Also, the correspondence between the landmark curves follows the shape
information (corners to corners; see the black dot).
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Figure 5. Illustration of the result of matching the cortical sur-
faces with several sulcal landmarks. (A) shows brain surface 1. It
is mapped to brain surface 2 under the conformal parameteriza-
tion as shown in (B). (C) shows the result of matching under our
proposed parameterization.

Using harmonic maps for registration is beneficial as they tend to preserve con-
formality as much as possible. They effectively capture the region of conformal
deformation and help to identify regions of non-conformal deformation. By com-
puting the Beltrami coefficient µ of the registration, we can detect abnormalities. In
cases where the deformed surface does not undergo any abnormal (non-conformal)
deformations, the harmonic map obtained will be close to conformal and µ will
approximately be zero.

4.3. Computing the Beltrami coefficient. Given the conformal parameteriza-
tions together with the registration between the conformal parameter domains, we
can detect the abnormal region by computing the Beltrami coefficient. The Beltrami
coefficient measures the change in conformality. Suppose the conformal parameter-
izations of So and Sd are φo : So → D1, φd : Sd → D2 respectively. Denote the
registration between the parameter domains by F : D1 → D2. The composition
map F̃ = φ−1

d ◦ F ◦ φo : So → Sd will give a landmark matching harmonic reg-
istration between the original and deformed surface. By computing the Beltrami
coefficient µF̃ of F̃ , we can detect which point on the surface undergoes abnormal
(non-conformal) deformation. The Beltrami coefficient is invariant under conformal
maps. In other words, |µf◦g| = |µg| and |µg◦f | = |µf | if g is conformal. Since φo

and φd are both conformal diffeomorphisms, we have:

(10) |µF̃ | = |µφ
−1
d

◦F◦φo
| = |µF |

Thus, to compute µF̃ , it suffices to compute µF . Since F is a map defined on the
2D complex plane, we can compute its Beltrami coefficient easily by:

(11) µF =
Fz

Fz

=

∂F
∂x

+ i∂F
∂y

∂F
∂x

− i∂F
∂y

The Beltrami coefficient is a complex-valued function. When the deformation near
a point p is conformal, then µF̃ (p) = 0. At the point where abnormal deformation
happens around its immediate neighborhood, µF̃ will be non-zero. We can easily
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detect regions of abnormality by computing the norm of the Beltrami coefficient
|µF̃ |.

To measure the degree of abnormality quantitatively, we introduce a measure
called Beltrami Index (BI) which measures the average of the Beltrami coefficient
over a certain region. Mathematically, it is defined as:

(12) BI(D) =

∫

D

|µ(z)|dz/

∫

D

|dz|

The Beltrami Index can effectively measure the degree of abnormalities in different
regions on the surface (see Figure 17).

Also, as described in section 3, the argument of µF̃ measures the angle of complex
dilation. This can be used to describe any local rotational change of the abnormal

shape. By representing µF̃ as a vector field ~V = (Re(µF̃ ), Im(µF̃ )) on the param-
eter domain, we can easily visualize the rotational change of the abnormal shape
(see Figure 9).

5. Computer algorithm. The computer algorithm can be summarized as follows:

1 Compute the conformal parameterizations of the original surface So and de-
formed surface Sd: φo : So → D1 and φd : Sd → D2;

2 Compute the landmark-matching harmonic registration between the confor-
mal domains: F̃ : D1 → D2;

3 Compute the Beltrami coefficient µF̃ of F̃ . Compute |µF̃ | to detect regions of
abnormality. The rotational change of the abnormal shape can be visualized

by the vector field ~V = (Re(µF̃ ), Im(µF̃ )) on the parameter domain.

6. Experimental results. We tested our proposed algorithm on synthetic sur-
faces, 3D human face data and MRI-derived models of human brain cortical sur-
faces, to detect abnormalities.

In Figure 6, we tested our proposed algorithm using synthetic data. Figure
6(A) shows the original surface. Figure 6(B) shows the deformed surface with
both conformal and non-conformal deformations. Figure 6(C) shows the plot of
|µ|. It effectively detect the deformity on the surface. Figure 6(D) shows the plot
of the isometric indicator |f∗(ds2

E) − Identity|. It is equal to 0 if f is isometric.
Figure 6(E) shows the gradient norm of the deformation field. Note that both the
isometric indicator and the gradient of the deformation field are not good measures
for detecting deformities. Figure 7 shows another example on synthetic surfaces.
Figure 7(A) shows the original surface. Figure 7(B) shows the deformed surface
with both conformal and non-conformal deformations. Figure 7(C) shows the plot
of |µ|. Figure 7(D) shows the distribution of µ as a complex number. It represents
a vector field on the conformal parameter domain- this can be used to visualize the
rotational change of the abnormal shape. Again, it is observed that µ can be used
effectively as an indicator to segment the abnormal regions on the surface (see the
shaped segmented region on the surface in Figure 7(B)).

In Figure 8, we illustrate our idea on a human face. Figure 8(A) shows the
original human face without abnormality. Figure 8(B) shows the deformed human
face with abnormal swollen area. Figure 8(C) shows the the plot of |µ| versus the
conformal parameter domain. Figure 8(D) shows the distribution of |µ| by color.
Observe that µ can effectively reflect the swollen area on the human face.
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Figure 6. (A) shows the original surface. (B) shows the deformed
surface with both conformal and non-conformal deformations. (C)
shows the plot of |µ|. (D) shows the plot of the isometric indicator
|f∗(ds2

E) − Identity|. It is equal to 0 if f is isometric. (E) shows
the gradient norm of the deformation field. Note that both the
isometric indicator and the gradient of the deformation field are
not good measures for detecting deformities.

Figure 9 shows how the complex-valued Beltrami coefficient µ can be used to
detect rotational change of abnormal shape. It is done by visualizing µ as a vec-

tor field ~V = (Re(µF̃ ), Im(µF̃ )) on the parameter domain. Figure 9(A) shows a
human face with an abnormally swollen area. In Figure 9(B), the swollen area is
rotated. Figure 9(C) plots the complex-valued Beltrami coefficients µ on the pa-
rameter domain. Figure 9(D) shows the same area zoomed in. The green and red
colors represent the Beltrami coefficients for (A) and (B), respectively. Observe
that the Beltrami coefficients effectively reflect the rotational change of the swollen
area. The abnormal shape is generally rotated by 90 degrees.

In Figure 10, we test our proposed algorithm on noisy data. Figure 10(A) shows
the original clean human face. Figure 10(B) shows the deformed human face with
noise. Figure 10(C) shows the original human face with noise. (D) shows the plot
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Figure 7. (A) shows the original surface. (B) shows the deformed
surface with both conformal and non-conformal deformations. (C)
shows the plot of |µ|. (D) shows the distribution of µ as a complex
number. It represents a vector field on the conformal parameter
domain. Observe that µ can be used effectively as an indicator to
segment the abnormal regions on the surface.

Figure 8. (A) shows the original human face and (B) shows a
deformed version of the human face with an abnormally swollen
area. (C) shows the plot of |µ| versus the parameter domain. (D)
shows the distribution of |µ| by color.
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Figure 9. (A) shows a human face with an abnormal swollen area.
In (B), the swollen area is rotated. (C) plots the Beltrami coeffi-
cients µ on the parameter domain. (D) shows a zoomed-in region.
The green and red colors represent the Beltrami coefficients for
(A) and (B) respectively. Observe that the Beltrami coefficients
effectively reflects the rotational change of the swollen area.

of µ computed under noise. Note that our method is stable under noise and can
effectively detect deformities on noisy surface data.

In Figure 12, 13 and 14, we illustrate our proposed algorithm on a human brain
cortical surface. Figure 12 shows the original brain surface (Brain 1) and the de-
formed brain surface (Brain 2) with abnormal gyral thickening. The gyral thickening
can be observed inside the circled region. Figure 13 shows a zoom-in of the abnor-
mal region. Gyral thickening is clearly observed. Figure 13(A) shows the plot of |µ|
versus the parameter domain. Figure 13(B) shows the distribution of |µ| in color.
Again, the Beltrami coefficient µ can effectively detect the gyral thickening region.

Figure 15 shows another example of detecting abnormalities on brain surfaces.
Figure 15(A) shows the original brain surface. Figure 15(B) shows the deformed
brain surface with gyral thickening in the circled regions. Figure 15(C) shows the
distribution of |µ|. The Beltrami coefficient µ again clearly reflects the region of
abnormal changes on the human brain cortical surface.
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Figure 10. (A) shows the original clean human face. (B) shows
the deformed human face with noise. (C) shows the original human
face with noise. (D) shows the plot of µ computed under noise.

Figure 11. (A) shows the original human face. (B) shows the
deformed human face. The deformed face is fatter and abnormality
is observed. The local geometry is well preserved (except for the
abnormal region), although the face has become fatter. (C) shows
the plot of the isometric indicator. (D) shows the plot of |µ|.
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Figure 12. The figure shows the original brain surface (Brain 1)
and the deformed brain surface (Brain 2) with an abnormal thick-
ening of the gyri, which can be observed inside the circled region.

Figure 13. The figure shows a zoomed-in version of the abnormal
region. Gyral thickening can be clearly observed.

Figure 16 illustrates how we can use Beltrami coefficient to capture the gyri-
fication pattern on the human brain surface. Figure 16(A) shows a real human
brain cortical surface. Figure 16(B) shows the deformed cortical surface. The brain
has undergone different degrees of gyrification at different regions. Figure 16(C)
shows the colormap of the brain determined by the Beltrami coefficient. Red color
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Figure 14. (A) shows the plot of |µ| versus the parameter domain
of the brain surfaces. (B) shows the distribution of |µ| by color.

Figure 15. The figure shows another example of detecting abnor-
malities on brain surfaces. (A) shows the original brain surface.
(B) shows the deformed brain surface with gyral thickening inside
the circled regions. (C) shows the distribution of |µ|.
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Figure 16. (A) shows a real human brain cortical surface. (B)
shows the deformed cortical surface. The brain has undergone dif-
ferent degrees of gyrification in different regions. (C) shows the
colormap of the brain determined by the Beltrami coefficient. Red
color indicates a high value of the Beltrami coefficient, whereas
blue colors mean low values of Beltrami coefficient. (C) shows the
colormap on the conformal parameter domain.

Figure 17. The top shows a series of brain surfaces undergoing
more and more gyri thickening. The bottom shows how the Bel-
trami Index (BI) can effectively measure the gyrification.

Inverse Problems and Imaging Volume 4, No. 2 (2010), 1–xx



Detection of Shape Deformities 21

means high value of Beltrami coefficient whereas blue color means low value of Bel-
trami coefficient. Figure 16(C) shows the colormap on the conformal parameter
domain. Observe that the colormap of the Beltrami coefficient effectively captures
the gyrification pattern on the brain surface.

Figure 17 shows how we can qualitatively measure the degree of abnormalities
using the Beltrami Index (BI). The top shows a series of brain surfaces which are
undergoing more and more gyral thickening. The bottom shows the plot of the
Beltrami Index (BI) of each deformed brain surfaces. Observe that the value of
the Beltrami Index becomes bigger as the gyral thickening becomes more severe.
It shows that the Beltrami Index (BI) can effectively measure the degree of the
abnormal changes.

7. Conclusion and future work. In conclusion, we developed an effective algo-
rithm to detect abnormalities on surfaces using quasi-conformal geometry. To do
this, we computed a landmark-matching harmonic registration between the orig-
inal and deformed 3D surfaces, together with its associated Beltrami coefficient,
µ. Experimental results show that the Beltrami coefficient can effectively detect
regions with abnormalities, which are invariant under normal (conformal) deforma-
tion. By visualizing µ as a vector field defined on the parameter domain, we can
capture the rotational change of the abnormal shape. In future, we will apply our
algorithm to study human brain diseases such as Williams syndrome, which results
from genetically-mediated developmental abnormalities in cortical folding. We will
also develop more efficient numerical schemes to speed up the computation.

Appendix.

Numerical implementation of the quasi-conformal registration algorithm.

We describe how the quasi-conformal registration algorithm can be implemented.
In practice, all surfaces are represented by meshes which consists of vertices, edges
and triangular faces. The functions and their partial derivatives in the iterative
scheme are defined on each vertex and linearly interpolated to define the value on
each triangular face. They can be computed as follows:

• Laplacian of a function F can be computed as: ∆F =
∑

[u,v]∈Nv
kuv(F (v) −

F (u)), where: Nv is a set of triangles around v that forms a neighborhood of
v; kuv = (cotα + cotβ)/2, where α and β are the opposite angles of the edge
[u, v]. For detail, please see [13].

• Gradient ∇κi can be computed as: ∇κi =
∑

[u,v,w]∈Nv

∇[u,v,w]κi

n
, where

∇[u,v,w]κi is the gradient of κi on the triangle [u, v, w]. The value of κi on
[u, v, w] is linearly interpolated. n is the number of faces in Nv.

• Df0,i is defined as Df0,i = (∇f1
0,i,∇f2

0,i) which is a 2 × 2 matrix, where

f0,i = (f1
0,i, f

2
0,i). Similarly, DYi := (∇~Y 1

i ,∇~Y 2
i ), where ~Yi = (Y 1

i , Y 2
i )

• The orthogonal fundamental matrix Ψi(~x, s) is defined as:

Ψi(~x, s) := exp(
∫ s

0 D~Yi(Φ
~Yi(~x, t))dt). Suppose the interval [0, 1] is discretized

as: s0 = 0 < s1 < ... < sn = 1. Ψi(~x, s) can be computed as: Ψi(~x, sk) :=

exp(
∑k

j=1 D~Yi(Φ
~Yi(~x, sj))(sj − sj−1)).

• The function δǫ is defined to be a positive function that is compactly supported
in (−ǫ, ǫ) and can be computed mathematically as:

δǫ(x) = 1
a(ǫ)

√
π
exp(− x2

a(ǫ)2 )
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• ηep is a smooth function on Ω such that ηep = 0 at the endpoints of the
open curves Γk ⊂ C, k = 1, 2, ..N . It can be computed mathematically as:

ηep = 1−
∑2N

i=1 δi
ǫ(x), where δi

ǫ(x) = exp(−(x − ai)/ǫ2) and a1, a2, ..., a2N are
the set of end points of the landmark curves.

• The initial map f0i maps the landmark curves Ci to the common curve
Cstandard,i. It can be computed as follows: Given a set of landmark curves
Ci(t) on the parameter domain and a set of corresponding common curves
Cstandard,i(t). Starting from the initial map f0 = Id, we can iteratively flow
the map to get a diffeomorphism which matches Ci(t) to Cstandard,i(t) as fol-

low. We can define a vector fields on fn(Ci(t)) as ~V n(t) = Cstandard,i(t) −
fn(Ci(t)) and smoothly extend to the parameter domain by Gaussian con-

volution G ∗ ~V n(t). The iterative scheme can then be written as: fn+1 =

fn + dt~Vn(fn).
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