Riemann Uniformization using Ricci Flow Method

Xianfeng David Gu¹

¹Computer Science Stony Brook University

July, 2006

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Concepts, theories and algorithms for computing uniformization metrics using Ricci flow method.

Concepts

Riemann Uniformization theorem, uniformization metric, Ricci flow, Fuchsian group

Algorithms to be covered

- Computing Euclidean Ricci Flow.
- Computing Hyperbolic Ricci Flow.
- Computing Fuchsian group.
- Computing Teichüller coordinates.

< 🗇 > < 🖻 >

M.C.Esher's art works: Angels and Devils

Regular division of the plane

Sphere with Angels and Devils

Circle limit IV Heaven and Hell

< /⊒> <

Universal Covering Space

We can cut along some special curves of a surface and spread the surface on the plane or the disk.

Xianfeng David Gu Uniformization Ricci Flow

Uniformization

Theorem (Poincaré Uniformization Theorem)

Let (Σ, \mathbf{g}) be a compact 2-dimensional Riemannian manifold. Then there is a metric $\tilde{\mathbf{g}} = e^{2u}\mathbf{g}$ conformal to \mathbf{g} which has constant Gauss curvature.

Conformal Metric

Definition

Suppose Σ is a surface with a Riemannian metric,

$$\mathbf{g}=\left(egin{array}{cc} g_{11} & g_{12}\ g_{21} & g_{22} \end{array}
ight)$$

Suppose $\lambda : \Sigma \to \mathbb{R}$ is a function defined on the surface, then $e^{2\lambda}\mathbf{g}$ is also a Riemannian metric on Σ and called a conformal metric. $e^{2\lambda}$ is called the conformal factor.

Angles are invariant measured by conformal metrics.

Conformal Metrics

Given a surface Σ with a Riemannian metric **g**, find a function $u : \Sigma \to \mathbb{R}$, such that e^{2u} **g** is one of the followings:

Uniform flat metric

$$ar{k} \equiv 0, orall p \in \Sigma / \partial \Sigma$$
 and $ar{k}_g \equiv const, orall p \in \partial \Sigma$

Oniformization metric

$$ar{K} \equiv \textit{const}, orall p \in \Sigma / \partial \Sigma$$
 and $ar{k}_g \equiv 0, orall p \in \partial \Sigma$

with prescribed curvature

The tool to calculate the above metrics is Ricci flow.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Definition (Surface Ricci Flow)

A closed surface with a Riemannian metric **g**, the Ricci flow on it is defined as

 $\frac{dg_{ij}}{dt}=-Kg_{ij}.$

If the total area of the surface is preserved during the flow, the Ricci flow will converge to a metric such that the Gaussian curvature is constant every where.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Theorem (Hamilton 1982)

For a closed surface of non-positive Euler characteristic, if the total area of the surface is preserved during the flow, the Ricci flow will converge to a metric such that the Gaussian curvature is constant (equals to \bar{K}) every where.

Theorem (Chow)

For a closed surface of positive Euler characteristic, if the total area of the surface is preserved during the flow, the Ricci flow will converge to a metric such that the Gaussian curvature is constant (equals to \bar{K}) every where.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Generic Surface Model - Triangular Mesh

- Surfaces are represented as polyhedron triangular meshes.
- Isometric gluing of triangles in \mathbb{E}^2 .
- Isometric gluing of triangles in $\mathbb{H}^2, \mathbb{S}^2$.

Generic Surface Model - Triangular Mesh

- Surfaces are represented as polyhedron triangular meshes.
- Isometric gluing of triangles in \mathbb{E}^2 .
- Isometric gluing of triangles in $\mathbb{H}^2, \mathbb{S}^2$.

Generic Surface Model - Triangular Mesh

- Surfaces are represented as polyhedron triangular meshes.
- Isometric gluing of triangles in \mathbb{E}^2 .
- Isometric gluing of triangles in $\mathbb{H}^2, \mathbb{S}^2$.

Discrete Metrics

Definition (Discrete Metric)

A Discrete Metric on a triangular mesh is a function defined on the vertices, $I : E = \{all \ edges\} \rightarrow \mathbb{R}^1$, satisfies triangular inequality.

A mesh has infinite metrics.

Discrete Metrics

Metric

- Discrete Metric: *I* : *E* = {*all edges*} → ℝ¹, satisfies triangular inequality.
- Metrics determine curvatures by cosine law.

$$\cos \theta_i = \frac{l_j^2 + l_k^2 - l_i^2}{2l_j l_k}, l \neq j \neq k \neq i$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Theorem (Derivative Cosine Law)

Consider an Euclidean triangle $\theta_i = \theta_i(l_1, l_2, l_3), i \neq j \neq k \neq i$, then

$$\frac{1}{\sin \theta_i} \frac{\partial \theta_i}{\partial I_j} = \frac{1}{\sin \theta_j} \frac{\partial \theta_j}{\partial I_i}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Metric Space

The space of all Euclidean metric on a triangle

$$E(2) = \{(l_1, l_2, l_3) | l_i + l_j > l_k\}$$

Energy on metric space

Suppose we have a differential one-form

$$\omega = \sum \log \tan \frac{\theta_i}{2} dl_i,$$

then $d\omega = 0, \omega$ is a closed one-form,therefore

$$F(l_1, l_2, l_3) = \int_{(1,1,1)}^{(l_1, l_2, l_3)} \omega$$

is a well defined energy on metrics.

< 🗇 > <

프 > 프

Convexity of the energy

The derivative is

$$\frac{\partial F}{\partial I_i} = \ln \tan \frac{\theta_i}{2}$$

the Hessian is

$$\frac{\partial^2 F}{\partial I_i \partial I_j} = \left[\frac{1}{\sin \theta_i} \frac{\partial \theta_i}{\partial \theta_j}\right]_{3 \times 3}$$

semi-positive definite. The energy is convex.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

э

For a triangular mesh (Σ , T, I), where T is the triangulation, I is the metric (edge length), define its energy E(I), the sum of energy of its triangles

$$\boldsymbol{E}(\mathbf{I}) = \sum_{[i,j,k]\in T} \boldsymbol{F}(I_i, I_j, I_k)$$

then

۲

$$\frac{\partial E}{\partial I_i} = \ln \tan \frac{\alpha}{2} \tan \frac{\beta}{2}$$

 α, β are opposite to edge e_i .

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Metric Energy on Mesh

Let $\psi : \{ all edges \} \rightarrow \mathbb{R},$

$$\psi(e) = an rac{lpha}{2} an eta 2$$

called edge invariants. Then

$$\nabla E = (In\psi(e_1), In\psi(e_2), \cdots, In\psi(e_n)).$$

Theorem

Suppose $\phi : \Omega \to \mathbb{R}$ is strictly convex, then $x \to \nabla \phi$ is a one to one map.

Theorem (Edge invariants)

A triangular mesh is determined upto isometry and scaling by its edge invariant, $\psi : \{all edges\} \rightarrow \mathbb{R}$.

・ ロ と く 雪 と く 雪 と ・

ъ

Discrete Curvature

Definition (Discrete Curvature)

Discrete curvature: $K : V = \{vertices\} \rightarrow \mathbb{R}^1$.

$$K(\mathbf{v}) = 2\pi - \sum_{i} \alpha_{i}, \mathbf{v} \notin \partial M; K(\mathbf{v}) = \pi - \sum_{i} \alpha_{i}, \mathbf{v} \in \partial M$$

Theorem (Discrete Gauss-Bonnet theorem)

$$\sum_{\mathbf{v}\notin\partial M} \mathbf{K}(\mathbf{v}) + \sum_{\mathbf{v}\in\partial M} \mathbf{K}(\mathbf{v}) = 2\pi\chi(\mathbf{M}).$$

Metrics vs. Curvatures

- All metrics for a mesh $L(\Sigma)$ form a convex polytope.
- All admissible curvature configurations for a mesh K(Σ) also form a convex polytope.
- The mapping from the metrics to the curvatures

$$\Phi: \boldsymbol{\mathsf{L}}(\Sigma) \to \boldsymbol{\mathsf{K}}(\Sigma),$$

is not one to one.

< 同 > < 回 > < 回 > -

Theorem

Given a prescribed curvature function K, $\phi^{-1}(K)$ is a |E| - |V| dimensional manifold.

Theorem (Prescribed Curvature)

The mapping from a conformal class of metrics to the curvatures is a homeomorphism.

▲撮 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

э

Conformal metric deformation

Conformal maps Properties

- transform infinitesimal circles to infinitesimal circles.
- preserve the intersection angles among circles.

Idea - Approximate conformal metric deformation

Replace infinitesimal circles by circles with finite radii.

Xianfeng David Gu Uniformization Ricci Flow

イロト 不得 トイヨト イヨト

Circle Packing Metric

CP Metric

We associate each vertex v_i with a circle with radius γ_i . On edge e_{ij} , the two circles intersect at the angle of Φ_{ij} . The edge lengths are

$$I_{ij}^2 = \gamma_i^2 + \gamma_j^2 + 2\gamma_i\gamma_j\cos\Phi_{ij}$$

CP Metric (Σ, Γ, Φ) , Σ triangulation,

$$\boldsymbol{\mathsf{\Gamma}} = \{\gamma_i | \forall \mathbf{v}_i\}, \boldsymbol{\Phi} = \{\phi_{ij} | \forall \mathbf{e}_{ij}\}$$

イロト イ得ト イヨト イヨト

э

Definition (Conformal Circle Packing Metrics)

Two circle packing metrics $\{\Sigma, \Phi_1, \Gamma_1\}$ and $\{\Sigma, \Phi_2, \Gamma_2\}$ are conformal equivalent, if

- The radii of circles are different, $\Gamma_1 \neq \Gamma_2$.
- The intersection angles are same, $\Phi_1 \equiv \Phi_2$.

In practice, the circle radii and intersection angles are optimized to approximate the induced Euclidean metric of the mesh as close as possible.

イロト 不得 とくほ とくほ とう

Definition (Discrete Ricci flow)

A mesh Σ with a circle packing metric $\{\Sigma, \Gamma, \Phi\}$, where $\Gamma = \{\gamma_i, v_i \in V\}$ are the vertex radii, $\Phi = \{\Phi_{ij}, e_{ij} \in E\}$ are the angles associated with each edge, the discrete Ricci flow on Σ is defined as

$$\frac{d\gamma_i}{dt} = (\bar{K}_i - K_i)\gamma_i,$$

where \bar{K}_i are the target curvatures on vertices. If $\bar{K}_i \equiv 0$, the flow with normalized total area leads to a metric with constant Gaussian curvature.

Idea

Metric deformation is driven by curvature.

▲ 同 ▶ ▲ 国 ▶ .

Theorem (Chow and Luo 2002)

A discrete Euclidean Ricci flow $\{\Sigma, \Gamma, \Phi\} \rightarrow \{M, \overline{\Gamma}, \Phi\}$ converges.

$$|K_i(t) - \bar{K}_i| < c_1 e^{-c_2 t},$$

and

$$|\gamma_i(t) - \bar{\gamma}_i| < c_1 e^{-c_2 t},$$

where c_1, c_2 are positive numbers.

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

Definition

Let $u_i = ln\gamma_i$, the Ricci energy is defined as

$$f(\mathbf{u}) = \int_{\mathbf{u}_0}^{\mathbf{u}} \sum_{i=1}^{n} (K_i - \bar{K}_i) du_i,$$

where $\mathbf{u} = (u_1, u_2, \cdots, u_n)$, $\mathbf{u}_0 = (0, 0, \cdots, 0)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Theorem (Ricci Energy)

Euclidean Ricci energy is Well defined and convex, namely, there exists a unique global minimum.

Proof.

In an Euclidean triangle, with angles $(\theta_1, \theta_2, \theta_3)$ and radius $(\gamma_1, \gamma_2, \gamma_3)$, let $u_i = ln\gamma_i$, according to Euclidean cosine law,

$$\frac{\partial \theta_i}{\partial u_j} = \frac{\partial \theta_j}{\partial u_i}.$$

Therefore $\omega = \sum \theta_i du_i$ is a closed 1-form. The Euclidean Ricci energy is well defined. Direct computation verifies that Hessian matrix is positive definite.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Theorem (Ricci Energy)

Euclidean Ricci energy is Well defined and convex, namely, there exists a unique global minimum.

Proof.

In an Euclidean triangle, with angles $(\theta_1, \theta_2, \theta_3)$ and radius $(\gamma_1, \gamma_2, \gamma_3)$, let $u_i = ln\gamma_i$, according to Euclidean cosine law,

$$\frac{\partial \theta_i}{\partial u_j} = \frac{\partial \theta_j}{\partial u_i}.$$

Therefore $\omega = \sum \theta_i du_i$ is a closed 1-form. The Euclidean Ricci energy is well defined. Direct computation verifies that Hessian matrix is positive definite.

▲ 同 ▶ ▲ 国 ▶

Gradient descent Method

Ricci flow is the gradient descent method for minimizing Ricci energy,

$$\nabla f = (K_1 - \bar{K}_1, K_2 - \bar{K}_2, \cdots, K_n - \bar{K}_n).$$

Newton's method

The Hessian matrix of Ricci energy is

$$\frac{\partial^2 f}{\partial u_i \partial u_j} = \frac{\partial K_i}{\partial u_j}.$$

Newton's method can be applied directly.

▲ @ ▶ ▲ 三 ▶ ▲

Ricci Flow for Uniform Flat Metric

Suppose Σ is a closed genus one mesh,

- **Or a compute the circle packing metric** (Γ, Φ) .
- Set the target curvature to be zero for each vertex

$$ar{K}_i \equiv 0, \forall v_i \in V$$

- Minimize the Euclidean Ricci energy using Newton's method to get the target radii r.
- Ompute the target flat metric.

Algorithm : uniform flat metric for open surfaces

Given a surface Σ with genus g and b boundaries, then it Euler number is

$$\chi(\Sigma)=2-2g-b.$$

Suppose the boundary of Σ is a set of closed curves

$$\partial \Sigma = C_1 \cup C_2 \cup C_3 \cdots C_b.$$

The total curvature for each C_i is denoted as $2m_i\pi, m_i \in \mathbb{Z}$, and $\sum_{i=1}^{b} m_i = \chi(\Sigma)$. The target curvature for interior vertices are zeros

Euclidean Ricci flow for open surfaces

- Use Newton's method to minimize the Ricci energy to update the metric.
- Adjust the boundary vertex curvature to be proportional to the ratio between the current lengths of the adjacent edges and the current total length of the boundary component.
- Repeat until the process converges.

・ 「「「」、 (「」、 (

Embedding

- Determine the planar shape of each triangle using 3 edge lengths.
- Glue all triangles on the plane along their common edges by rigid motions. Because the metric is flat, the gluing process is coherent and results in a planar embedding.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ →

original surface genus 1, 3 boundaries

universal cover embedded in \mathbb{R}^2

texture mapping

<ロ> (四) (四) (三) (三) (三) (三)

Different boundaries are mapped to straight lines.

A B > A B >

original surface

fundamental domain

universal cover

ъ

Poincaré disk

A unit disk |z| < 1 with the Riemannian metric

$$ds^2 = \frac{4dzd\bar{z}}{(1-\bar{z}z)^2}.$$

<ロト < 同ト < 回ト < 回ト = 三

LENA REPAIRSON -----

Poincaré disk

The rigid motion is the Möbius transformation

$$e^{i\theta}\frac{z-z_0}{1-\bar{z}_0z}.$$

<ロト < 同ト < 回ト < 回ト = 三

LENGINGSTON

Poincaré disk

The hyperbolic line through two point z_0, z_1 is the circular arc through z_0, z_1 and perpendicular to the boundary circle |z| = 1.

/□ ▶ 《 ⊇ ▶

LENARSSING CALMER-

Poincaré disk

A hyperbolic circle (c, γ) on Poincare disk is also an Euclidean circle (C, R) on the plane, such that $\mathbf{C} = \frac{2-2\mu^2}{1-\mu^2|\mathbf{c}|^2}$, $R^2 = |\mathbf{C}|^2 - \frac{|\mathbf{c}|^2 - \mu^2}{1-\mu^2|\mathbf{c}|^2}$, $\mu = \frac{e^r - 1}{e^r + 1}$.

LENGINGSON ----

Definition (Discrete Hyperbolic Ricci Flow)

Let

$$u_i = ln \tanh \frac{\gamma_i}{2},$$

Discrete hyperbolic Ricci flow for a mesh Σ is

$$\frac{du_i}{dt}=\bar{K}_i-K_i,\bar{K}_i\equiv 0,$$

the Euler number of Σ is negative, $\chi(\Sigma) < 0$.

э

Theorem (Discrete Hyperbolic Ricci flow, Chow and Luo 2002)

A hyperbolic discrete Ricci flow $(M, \Gamma, \Phi) \rightarrow (M, \overline{\Gamma}, \Phi)$ converges,

$$|K_i(t) - \bar{K}_i| < c_1 e^{-c_2 t},$$

and

$$|\gamma_i(t) - \bar{\gamma}_i| < c_1 e^{-c_2 t},$$

where c_1, c_2 are positive numbers.

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

Definition (Discrete Hyperbolic Ricci Energy)

The discrete Hyperbolic Ricci energy is defined as

$$f(\mathbf{u}) = \int_{\mathbf{u}_0}^{\mathbf{u}} \sum_{i=1}^{n} (\bar{K}_i - K_i) du_i.$$

Discrete hyperbolic Ricci flow is the gradient descendent method to minimize the discrete hyperbolic ricci energy.

▲ @ ▶ ▲ 三 ▶ ▲

Theorem (Hyperbolic Discrete Ricci Energy)

Discrete hyperbolic Ricci energy is well defined and convex, namely, there exists a unique global minimum.

Proof.

In a hyperbolic triangle, with angles $(\theta_1, \theta_2, \theta_3)$ and radius $(\gamma_1, \gamma_2, \gamma_3)$, $u_i = ln \tanh \frac{\gamma_i}{2}$, according to hyperbolic cosine law,

$$\frac{\partial \theta_i}{\partial u_j} = \frac{\partial \theta_j}{\partial u_i}.$$

Therefore $\omega = \sum \theta_i du_i$ is a closed 1-form. The hyperbolic Ricci energy is convex. Direct computation verifies the Hessian matrix is positive definite.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Theorem (Hyperbolic Discrete Ricci Energy)

Discrete hyperbolic Ricci energy is well defined and convex, namely, there exists a unique global minimum.

Proof.

In a hyperbolic triangle, with angles $(\theta_1, \theta_2, \theta_3)$ and radius $(\gamma_1, \gamma_2, \gamma_3)$, $u_i = ln \tanh \frac{\gamma_i}{2}$, according to hyperbolic cosine law,

$$\frac{\partial \theta_i}{\partial u_j} = \frac{\partial \theta_j}{\partial u_i}.$$

Therefore $\omega = \sum \theta_i du_i$ is a closed 1-form. The hyperbolic Ricci energy is convex. Direct computation verifies the Hessian matrix is positive definite.

イロト 不得 トイヨト イヨト

Algorithm: Computing Hyperbolic uniformization metric

Hyperbolic Ricci Energy Optimization

- Set target curvature $K(v_i) \equiv 0$.
- Optimize the hyperbolic Ricci energy using Newton's method, with the constraint the total area is preserved.

Flattening Mesh in Hyperbolic Space

- Determine the shape of each triangle.
- Glue the hyperbolic triangles coherently by Möbius transformation.

Key: all computations use hyperbolic geometry.

・ロン ・ 四 と ・ ヨ と ・ ヨ と …

Algorithm: Computing Hyperbolic uniformization metric

Hyperbolic Ricci Energy Optimization

- Set target curvature $K(v_i) \equiv 0$.
- Optimize the hyperbolic Ricci energy using Newton's method, with the constraint the total area is preserved.

Flattening Mesh in Hyperbolic Space

- Determine the shape of each triangle.
- Glue the hyperbolic triangles coherently by Möbius transformation.

Key: all computations use hyperbolic geometry.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Genus 0 surface with 3 boundaries. The double covered surface is of genus 2. The boundaries are mapped to hyperbolic lines.

Genus 0 surface with 3 boundaries. The double covered surface is of genus 2. The boundaries are mapped to hyperbolic lines.

Genus 0 surface with 3 boundaries. The double covered surface is of genus 2. The boundaries are mapped to hyperbolic lines.

Embedding in the upper half plane hyperbolic space model. Different period embedded in the hyperbolic space. The boundaries are mapped to hyperbolic lines.

A 🖓 🕨 🔺

Universal Covering Space and Deck Transformation

Universal Cover

A pair $(\bar{\Sigma}, \pi)$ is a universal cover of a surface Σ , if

- Surface Σ
 is simply connected.
- Projection π : Σ̄ → Σ is a local homeomorphism.

Deck Transformation

A transformation $\phi: \overline{\Sigma} \to \overline{\Sigma}$ is a deck transformation, if

 $\pi = \pi \circ \phi.$

A deck transformation maps one period to another.

Definition (Funchsian Group)

Suppose Σ is a surface, **g** is its uniformization metric, $(\bar{\Sigma}, \pi)$ is the universal cover of Σ . **g** is also the uniformization metric of $\bar{\Sigma}$. A deck transformation of $(\bar{\Sigma}, \mathbf{g})$ is a Möbius transformation. All deck transformations form the Fuchsian group of Σ .

Fuchsian group indicates the intrinsic symmetry of the surface.

Fuchsian Group

The Fuchsian group is isomorphic to the fundamental group

	e ^{iθ}	Z ₀
<i>a</i> 1	-0.631374 + <i>i</i> 0.775478	+0.730593 + <i>i</i> 0.574094
b_1	+0.035487 - <i>i</i> 0.999370	+0.185274 - <i>i</i> 0.945890
a_2	-0.473156 + <i>i</i> 0.880978	-0.798610 - <i>i</i> 0.411091
<i>b</i> ₂	-0.044416 - <i>i</i> 0.999013	+0.035502 + <i>i</i> 0.964858

・ロン ・ 四 と ・ ヨ と ・ ヨ と …

Ξ.

Klein Model

Another Hyperbolic space model is Klein Model, suppose **s**, **t** are two points on the unit disk, the distance is

$$d(\mathbf{s},t) = arccosh rac{1-\mathbf{s}\cdot\mathbf{t}}{\sqrt{(1-\mathbf{s}\cdot\mathbf{s})(1-\mathbf{t}\cdot\mathbf{t})}}$$

Poincaré vs. Klein Model

From Poincaré model to Klien model is straight froward

$$\beta(z)=\frac{2z}{1+\bar{z}z},\beta^{-1}(z)=\frac{1-\sqrt{1-\bar{z}z}}{\bar{z}z},$$

Assume ϕ is a Möbius transformation, then transition maps $\beta \circ \phi \circ \beta^{-1}$ are real projective.

▲ □ ▶ ▲ □ ▶ ▲

프 🖌 🛛 프

Real projective structure

The embedding of the universal cover in the Poincaré disk is converted to the embedding in the Klein model, which induces a real projective atlas of the surface.

▲ @ ▶ ▲ ⊇ ▶

Surface

Hyperbolic Structure Pro

Projective Structure

ъ

< /⊒ > <

Surface, courtesy of Cindy Grimm

Hyperbolic Structure

Projective Structure

< 🗇 🕨 <

э

Surface

Hyperbolic Structure

Projective Structure

ъ

< 🗇 > <

æ

・ロン ・聞 と ・ ヨ と ・ ヨ と

Challenges

- Intrinsically nonlinear method.
- Intrinsically the conformal factor may be exponential.
- Determine the optimal initial circle packing metric.
- Embed universal cover in the Poincaré disk.

< /⊒ > <

Future Directions

Future Works

- Design spline schemes based on real projective geometry.
- Hirearchical approach for Ricci energy optimization.
- Surface classification using Fuchsian group.
- Generalize planar geometric algorithms to surface domains using geometric structures.
- Ricci flow on 3-manifolds.

For more information, please email to gu@cs.sunysb.edu.

Thank you!

▲ 伊 ▶ ▲ 田 ▶ .