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Past User Ratings
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Recommendation Systems

Why Big Data?

● Data with many potential features (and sometimes 
observations)

● An application of techniques for finding similar items
○ locality sensitive hashing
○ dimensionality reduction



Recommendation System: Example
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Utility Matrix:
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Complete Matrix using Latent Factors
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Try to best represent but with on p’ columns.
Dimensionality reduction



Complete Matrix using Latent Factors

Find latent factors

Reconstruct matrix



Dimensionality Reduction - PCA
Linear approximates of data in  dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”, 
D: “singular values” (diagonal), V: “right singular vectors”

Projection (dimensionality reduced space) in 3 dimensions:
(U[nx3] D[3x3] V[px3]

T)

To reduce features in new dataset: 
Xnew V = Xnew_small 
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Dimensionality Reduction - PCA

Linear approximates of data in  dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”, 
D: “singular values” (diagonal), V: “right singular vectors”

To check how well the original matrix can be reproduced:
Z[nxp] = U D VT , How does Z compare to original X?
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T
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Content-based Rec Systems

Based on similarity of items to past items that they have rated. 

1. Build profiles of items (set of features); examples:
shows: producer, actors, theme, review
people: friends, posts

2. Construct user profile from item profiles; approach:
average all item profiles of items they’ve purchased
variation: weight by difference from their average ratings

3. Predict ratings for new items; approach:

pick words with tf-idf

x

i
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General Idea:

1) Find similar users = “neighborhood”

2) Infer rating based on how similar users rated
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Given: user, x;  item, i;  utility matrix, u
0. Update u: mean center, missing to 0
1. Find neighborhood, N # set of k items most similar to 

 i also rated by x
-- sim(i, other) = cosine_sim(u[i], u[other])
-- threshold to top k (e.g. k = 30)

2. Predict utility (rating) by x based on N
-- average, weighted by sim

“User-User collaborative filtering”

Item-Item: 
Flip rows/columns of utility matrix and use same methods. 
(i.e. estimate rating of item i, by finding similar items, j)
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      but Mary may still have same rock preferences as Bob



Item-Item v User-User

Item-item often works better than user-user. Why? 

Users tend to be more different from each other than items are from 
other items. 

e.g. Mary likes jazz + rock, Bob likes classical + rock,
      but Mary may still have same rock preferences as Bob

In other words, users span genres but items usually do not.
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Item-Item: Example

Same as
cosine sim 
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the mean
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Item-Item: Example

utility(1, 5) = (0.41*2 + 0.59*3) / (0.41+0.59)



Recommendation Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor



Options for Parallelizing
1. Approximate solutions to PCA (very large speedups with little drawback!): 

a. Stochastic Sampling (also sometimes called "randomized" which is ambiguous): 
Only using a sample rows (i.e. users for recommendation systems)

b. Truncated SVD: Only optimizing for minimizing reconstruction error based on up 
to r dimensions (full SVD solves for up to min(n, p) dimensions and then you just 
truncate the result for the lower rank version). One you do this, by the way, using a 
smaller sample becomes much less of a problem. 

c. Limiting power iterations to a few iterations: Power iterations from pagerank 
solves for the first principle component. This can be extended to multiple 
components. 
(more here.)

2. Distribute the matrix operations. Complex; not as flexible (usually done across 
processors within node)

3. Data Parallelism: As in other instances stochastic or mini-batch gradient 
descent. 

https://epubs.siam.org/doi/pdf/10.1137/090771806?casa_token=dTZRkY3T7YMAAAAA:c0XpknEiHduJes9DXxEjuNuEv8h6hMhtu1Ez1Fd69TIT_oqjU1bDAbyJgIpCF9KCU-BNcOSP26I

