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Recommendation Systems
Why Big Data?

e Data with many potential features (and sometimes
observations)

e An application of techniques for finding similar items
o locality sensitive hashing
o dimensionality reduction



Recommendation System: Example

= Customer X = CustomerY

= Buys Metallica CD * Does search on Metallica
« Buys Megadeth CD = Recommender system

suggests Megadeth from
data collected about
customer X

J. Leskovec, A. Rajaraman, J. Uliman: Mining of Massive Datasets, http://www.mmds.org



Examples:
amazon.com.

PANDORA

NETELIX

Search Recommendations

movielens
helping you find the right movies

Vv
—— lost:fm Google

|tems Prod uctS ; Web Sites : the social music revolution ews

blogs, news items, ...
Youl) wive

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org -
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Enabled by Web Shopping
e Does Wal-Mart have everything you need?

e Alot of products are only of interest to
a small population (i.e. “long-tail products”). —
e However, most people buy many products
that are from the long-tail.

Head

I Long Tail

Products

e \Web shopping enables more choices (thelongtail.com)

o Harder to search
o Recommendation engines to the rescue


https://www.wired.com/2004/10/tail/

Enabled by Web Shopping
e Does Wal-Mart have everything you need?

e Alot of products are only of interest to
a small population (i.e. “long-tail products”).
e However, most people buy many products
that are fro

Head

larity

Popu

Tail

. Just as lower prices can entice
P Web Shop : consumers down the Long Tail,
- recommendation engines drive

0 Harder i o o them to obscure content they

might not find otherwise
o Recom

Amazon sales rank


https://www.wired.com/2004/10/tail/

A Model for Recommendation Systems

Given: users, items, utility matrix
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A Model for Recommendation Systems

Given:

users, items, utility matrix

\

Game of Fargo Brooklyn Silicon Walking
user | Thrones Nine-Nine Valley Dead
A 4 5 3 3
B 5 4 2
C ? ? 5 2 ?




Recommendation Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews
(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)
(problem: hard to learn low ratings)

3. Evaluation
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Utility Matrix:
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movies

f1, 2, 13, 4, ...
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rows;
N observations

|

columns:
p features
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Problem: Given Incomplete Matrix
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Complete Matrix using Latent Factors

A

o1
02
03

oN

f1, 2, 13, 4, ...
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Dimensionality reduction

Try to best represent but with on p’ columns.




Latent Factors
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Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

— T
X[nxp] - U[nxr] D[rxr] V[pxr]

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”
Projection (dimensionality reduced space) in 3 dimensions:

-
(U [Nx3] D[3x3] V[px3] )

To reduce features in new dataset:
XneWV =X

new_small



Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via S
— T
X[nxp] B U[nxr] I:)[rxr] V[pxr]

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”
/—Bﬁ ﬁpﬁ

E !




Dimensionality Reduction - PCA - Example

— T
[nxp] U [nxr] D[rxr] V[pxr]

T 1110 0| [0.13 002 -001
e |33 3 0 0] [041 007 -0.03

4 440 0] 055 0.09 -0.04 1240 0
V|5 5 50 0|7|oes 011 -005] x |0 950 X
T 020 4 4| [0.15 -0.59 0.65 0 0 1.3
rormncd 0 00 5 5] 10.07 -0.73 -0.67
o1 o2 2] [007-029 032

0.56 0.59 0.56 0.09 0.09
Users to movies matrix 0.12 -0.02 0.12 -0.69 -0.69

0.40 -0.80 0.40 0.09 0.09

J. Leskovec, A. Rajaraman, J. Uliman: Mining of Massive Datasets, http://www.mmds.org



Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via S
— T
X[nxp] B U[nxr] I:)[rxr] V[pxr]

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”
/—Bﬁ ﬁpﬁ

E !




Goal: Minimize the sum
of reconstruction errors: S.

N D

2
ZZ”’CU — zj]|
i=1 j=1

)& original ma = where x;; are the “old” and z;; are the ||ar vectors”,
D: “singular new” coordinates _ular vectors”

\ J 7 J

To check how well the original matrix can be reproduced:

Z[nxp] =UD V", How does Z compare to original X?



Dimensionality Reduction - PCA - Example

— T
[nxp] N [nxr] — [rxr] = [pxr]
/ ®

7] \

first right

® singular vector
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Content-based Rec Systems

Based on similarity of items to past items that they have rated.



Content-based Rec Systems

Based on similarity of items to past items that they have rated.

Item profiles
‘ likes

\? = @ A

\

build
recommend

. . match Red

== Circles

. . Triangles

User profile

J. Leskovec, A. Rajaraman, J. Uliman: Mining of Massive Datasets, http://www.mmds.org
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people: friends, posts
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Content-based Rec Systems

Based on similarity of items to past items that they have rated.

1.

Build profiles of items (set of features); examples:
shows: pr(')ducer, actors, theme, rev1ew\
people: friends, posts ~  pick words with tf-idf
Construct user profile from item profiles; approach:
average all item profiles of items they’ve purchased
variation: weight by difference from their average ratings
Predict ratings for new items; approach:

€T -1

[2[[ - {2 /)

utility(user,i) = cos(x,1) =



Why Content Based?

e Only need users history
e (Captures unique tastes
e (Can recommend new items

e Can provide explanations
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e (Captures unique tastes e New users don’t have history
e (Can recommend new items e Doesn’t venture “outside the box”

e Can provide explanations (Overspecialized)



Why Content Based?

e Only need users history
e (Captures unique tastes
e (Can recommend new items

e Can provide explanations

e Need good features
e New users don’t have history
e Doesn’t venture “outside the box”

(Overspecialized)

(not exploiting other users judgments)



Collaborative Filtering Rec Systems

exploit  other users judgments



Common Approaches

Recommendation Systems

1. Content-based
Problems to tackle: 2. Collaborative

3. Latent Factor

1. Gathering ratings

2. (Extrapolate unknown ratings )
a. Explicit: based on user ratings and reviews
(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)
(problem: hard to learn low ratings)
- J
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Collaborative Filtering Rec Systems

prefer

S|m|Iar

\ p‘ e&e‘
recommendation

-- heighborhood
recommended
items f search

database

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Collaborative Filtering Rec Systems

1) Find cimilar ucers = “neighborhood”

Game of Fargo Brooklyn Silicon Walking
user | Thrones Nine-Nine Valley Dead
A 4 5 2 3
B 5 4 2
C 5 2
General Idea:

2) Infer rating based on how similar users rated
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Collaborative Filtering Rec Systems

Game of Fargo Brooklyn Silicon Walking
user | Thrones Nine-Nine Valley Dead
A 4=> 05 5=>15]2=>-15 =>0 3=>-0.5
B 5 4 2
C 5 2

-Given: ugcer, x; item, 1;  utility matrix, u
1. Find neighborhood, N # set of k users most similar to
X who have also rated 1

Two Challenges: (1) user bias, (2) missing values
Solution: add zeros for missing



Collaborative Filtering Rec Systems
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0. Update u: mean center, missing to ©
1. Find neighborhood, N # set of kR users most similar to
: x who have also rated i
-- sim(x, other) = cosine sim(u[x], u[other])
-- threshold to top k (e.g. k = 30)
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Collaborative Filtering Rec Systems

Game of Fargo Brooklyn Silicon Walking
user | Thrones Nine-Nine Valley Dead
A 4=> 05 5=>15]2=>-15 =>0 3=>-0.5
B 5 4 2
C 5 2

fGiven: ucer, X; item, 1; at:’//‘z‘y malrix, U
-0. Update u: mean center, missing to ©
1. Find neighborhood, N # set of k users most similar to
' X who have also rated 1
-- sim(x, other) = cosine sim(u[x], u[other])
-- threshold to top k (e.g. k = 30) :
2 Predict utility (rating) of 1 based on N Z E\,Snn(r y) - -ll,f-i['if~«l/(y,-gjf)f
-~ average, weighted by sim utility(z, i) = S '

...........................................................

voim(x,y)



Collaborative Filtering Rec Systems

“User-User collaborative filtering”

‘Given: ucer, X; item, 1; utility matrix, u
-0. Update u: mean center, missing to ©
1. Find neighborhood, N # set of k users most similar to
] X who have also rated 1
-- sim(x, other) = cosine sim(u[x], u[other])
-- threshold to top k (e.g. k = 30) [
2 Predict utility (rating) of i based on N 3 . Sim(x, -'J).ut-jl»l'f;/(y’-i)g
-~ average, weighted by sim utility(z, i) = e '

............................................................................




Collaborative Filtering Rec Systems

“User-User collaborative filtering”

ltem-Iltem:
Flip rows/columns of utility matrix and use same methods.
(i.e. estimate rating of item i, by finding similar items, j)

EGiven: ucer, X; item, 1; at:‘//‘fy malrix, U
-0. Update u: mean center, missing to ©
1. Find neighborhood, N # set of k users most similar to
] X who have also rated 1
-- sim(x, other) = cosine sim(u[x], u[other])
-- threshold to top k (e.g. k = 30) [
2 Predict utility (rating) of i based on N > ey Sim(a, «J).uﬁlﬁy(y’i)g
-~ average, weighted by sim utility(z, i) = e '

voim(x,y)



Collaborative Filtering Rec Systems

“User-User collaborative filtering”

ltem-Iltem:
Flip rows/columns of utility matrix and use same methods.
(i.e. estimate rating of item i, by finding similar items, j)

EGiven: ucer, X; item, 1; alff/f?fy malrix, U
-0. Update u: mean center, missing to ©
-1. Find neighborhood, N # set of k items most similar to
! 1 also rated by x
-- sim(1, other) = cosine sim(uf[i], u[other])
-- threshold to top k (e.g. k = 30) [
2 Predict utility (rating) by x based on N ZjeN Sim(i, 7) -utility(:r,j)f
-- average, weighted by sim utility (z,7) = S Sim(i, )




ltem-ltem v User-User

Item-item often works better than user-user. Why?

Users tend to be more different from each other than items are from

other items.

e.9. Mary likes jazz + rock, Bob likes clacsical + rock,

but Mary may ctill have came rock preferences ac Bob



ltem-ltem v User-User

Item-item often works better than user-user. Why?

Users tend to be more different from each other than items are from

other items.

e.9. Mary likes jazz + rock, Bob likes clacsical + rock,

but Mary may ctill have came rock preferences ac Bob

In other words, users span genres but items usually do not.



ltem-ltem: Example

movies

3 |4 |5 |6 g |'¥ |11l |12

3 S 3 -+

5 |4 2 1 3
1|2 4 (3 |5

- 3 -+ 2

4 |3 |4 |2 2 |9

3 3 2 -

- unknown rating

- rating between 1to 5

J. Leskoveg, A. Rajaraman, J. Uliman: Mining of Massive Datasets, http://www.mmds.org




ltem-ltem: Example

112 |3 |4 |5 |6 |7 |8 |9 [10]11 |12
1 |1 3 5 5 4
2 5 |4 4 2[4 3

$ 3 [ 1 |2 3 4 |3 |5

g4 2 |4 5 4 2
5 4 |3 |4 (2 2 |5
6 |1 3 3 2 4

. - estimate rating of movie 1 by user §

J. Leskoveg, A. Rajaraman, J. Uliman: Mining of Massive Datasets, http://www.mmds.org



Item-ltem: Example

1 (2 13 |4 (9 |6 |T [8 |9 |10(11 |12 _
sim(1,m)
1 [1 3 5 5 4 1.00
2 5 |4 4 .
£ 3 (2 |4 1 3 N 0.41
=
4 2 |4 5] 4 2 -0.10
5 4 (3[4 |2 2 |5 -0.31
6 |1 3 2 4

Neighbor selection:
|dentify movies similar to my = (1+3+5+5+4)/5 = 3.6

0.59/

Here we use Pearson correlation as similarity:
1) Subtract mean rating m; from each movie i

Same as
cosine sim
when
subtracting
the mean

’ 2) Compute cosine similarities between rows

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

30



ltem-ltem: Example

1 |2 |3 ]a|5 |6 |7 |8 |9 [10]11]12
sim(1,m)
1[4 3 5 5 4 1,00
2 5 |4 4 B ..
$ 3|24 1 3 4 |3 [5 —_—
= @ 2 |4 5 4 2 0.10
5 4 [3 [4 |2 e
6 |1 3 2 4 0.59

Compute similarity weights:
$,5=0.41, s, ,=0.59

J. Leskoveg, A. Rajaraman, J. Uliman: Mining of Massive Datasets, http://www.mmds.org



Item-ltem: Example

1 1213|415 |6 |7 |8 |9 |10]11 _
sim(1,m)
1 |1 3 5 5 4 1,00
2 5 |4 4 -
% 3 Pl 1 3 4 [3 |5 -
E 4 2 |4 5 4 2 0.10
5 A4 [3 [a [2 e
6 |1 3 2 4 0.50

utility(1, 5) = (0.41*2 + 0.59*3) / (0.41+0.59)

EjeN Szm(z, ])




Common Approaches

Recommendation Systems

1. Content-based
Problems to tackle: 2. Collaborative

3. Latent Factor

1. Gathering ratings

2. (Extrapolate unknown ratings )
a. Explicit: based on user ratings and reviews
(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)
(problem: hard to learn low ratings)
- J

3. Evaluation




Options for Parallelizing

1. Approximate solutions to PCA (very large speedups with little drawback!):

a. Stochastic Sampling (also sometimes called "randomized" which is ambiguous):
Only using a sample rows (i.e. users for recommendation systems)

b. Truncated SVD: Only optimizing for minimizing reconstruction error based on up
to r dimensions (full SVD solves for up to min(n, p) dimensions and then you just
truncate the result for the lower rank version). One you do this, by the way, using a
smaller sample becomes much less of a problem.

c. Limiting power iterations to a few iterations: Power iterations from pagerank
solves for the first principle component. This can be extended to multiple
components.

(more here.)

2. Distribute the matrix operations. Complex; not as flexible (usually done across
processors within node)

3. Data Parallelism: As in other instances stochastic or mini-batch gradient
descent.


https://epubs.siam.org/doi/pdf/10.1137/090771806?casa_token=dTZRkY3T7YMAAAAA:c0XpknEiHduJes9DXxEjuNuEv8h6hMhtu1Ez1Fd69TIT_oqjU1bDAbyJgIpCF9KCU-BNcOSP26I

