
Recommendation Systems
Stony Brook University
CSE545, Spring 2019

● What other item will this user like?
(based on previously liked items)

● How much will user like item X?

Recommendation Systems

?

● What other item will this user like?
(based on previously liked items)

● How much will user like item X?

Recommendation Systems

● What other item will this user like?
(based on previously liked items)

● How much will user like item X?

Recommendation Systems

Recommendation Systems

Past User Ratings

Recommendation Systems

Recommendation Systems

Why Big Data?

● Data with many potential features (and sometimes
observations)

● An application of techniques for finding similar items
○ locality sensitive hashing
○ dimensionality reduction

Recommendation System: Example

Enabled by Web Shopping

● Does Wal-Mart have everything you need?

Enabled by Web Shopping

● Does Wal-Mart have everything you need?

(thelongtail.com)

Enabled by Web Shopping

● Does Wal-Mart have everything you need?

● A lot of products are only of interest to
a small population (i.e. “long-tail products”).

● However, most people buy many products
that are from the long-tail.

● Web shopping enables more choices
○ Harder to search
○ Recommendation engines to the rescue

(thelongtail.com)

https://www.wired.com/2004/10/tail/

Enabled by Web Shopping

● Does Wal-Mart have everything you need?

● A lot of products are only of interest to
a small population (i.e. “long-tail products”).

● However, most people buy many products
that are from the long-tail.

● Web shopping enables more choices
○ Harder to search
○ Recommendation engines to the rescue

(thelongtail.com)

https://www.wired.com/2004/10/tail/

A Model for Recommendation Systems

Given: users, items, utility matrix

A Model for Recommendation Systems

Given: users, items, utility matrix

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 5 3 3

B 5 4 2

C 5 2

A Model for Recommendation Systems

Given: users, items, utility matrix

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 5 3 3

B 5 4 2

C 5 2? ? ?

Recommendation Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Recommendation Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor

Recommendation Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor

Utility Matrix:

f1, f2, f3, f4, … fp

o1
o2
o3
…

oN

columns:
p features

rows:
N observations

us
er

s

movies

Goal: Complete Matrix

f1, f2, f3, f4, … fp

o1
o2
o3
…

oN

us
er

s

movies

Problem: Given Incomplete Matrix

f1, f2, f3, f4, … fp

o1
o2
o3
…

oN

us
er

s

movies

Complete Matrix using Latent Factors

c1, c2, c3, c4, … cp’

o1
o2
o3
…

oN

f1, f2, f3, f4, … fp

o1
o2
o3
…

oN

Try to best represent but with on p’ columns.
Dimensionality reduction

Complete Matrix using Latent Factors

Find latent factors

Reconstruct matrix

Dimensionality Reduction - PCA
Linear approximates of data in dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”

Projection (dimensionality reduced space) in 3 dimensions:
(U[nx3] D[3x3] V[px3]

T)

To reduce features in new dataset:
Xnew V = Xnew_small

Dimensionality Reduction - PCA

Linear approximates of data in dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”

X ≈ nn

p p

Dimensionality Reduction - PCA - Example

X[nxp] = U[nxr] D[rxr] V[pxr]
T

Users to movies matrix

Dimensionality Reduction - PCA

Linear approximates of data in dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”

X ≈ nn

p p

Dimensionality Reduction - PCA

Linear approximates of data in dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”

To check how well the original matrix can be reproduced:
Z[nxp] = U D VT , How does Z compare to original X?

Dimensionality Reduction - PCA - Example

X[nxp] = U[nxr] D[rxr] V[pxr]
T

Recommendation Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor

Recommendation Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor

Content-based Rec Systems

Based on similarity of items to past items that they have rated.

Content-based Rec Systems

Based on similarity of items to past items that they have rated.

Content-based Rec Systems

Based on similarity of items to past items that they have rated.

1. Build profiles of items (set of features); examples:
shows: producer, actors, theme, review
people: friends, posts pick words with tf-idf

Content-based Rec Systems

Based on similarity of items to past items that they have rated.

1. Build profiles of items (set of features); examples:
shows: producer, actors, theme, review
people: friends, posts

2. Construct user profile from item profiles; approach:
average all item profiles
variation: weight by difference from their average

pick words with tf-idf

Content-based Rec Systems

Based on similarity of items to past items that they have rated.

1. Build profiles of items (set of features); examples:
shows: producer, actors, theme, review
people: friends, posts

2. Construct user profile from item profiles; approach:
average all item profiles of items they’ve purchased
variation: weight by difference from their average ratings

3. Predict ratings for new items; approach:

pick words with tf-idf

x

i

Why Content Based?

● Only need users history

● Captures unique tastes

● Can recommend new items

● Can provide explanations

Why Content Based?

● Only need users history

● Captures unique tastes

● Can recommend new items

● Can provide explanations

● Need good features

● New users don’t have history

● Doesn’t venture “outside the box”

(Overspecialized)

Why Content Based?

● Only need users history

● Captures unique tastes

● Can recommend new items

● Can provide explanations

● Need good features

● New users don’t have history

● Doesn’t venture “outside the box”

(Overspecialized)

(not exploiting other users judgments)

Collaborative Filtering Rec Systems

● Need good features

● New users don’t have history

● Doesn’t venture “outside the box”

(Overspecialized)

(not exploiting other users judgments)

Recommendation Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor

Collaborative Filtering Rec Systems

-- neighborhood

Collaborative Filtering Rec Systems

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 5 2 3

B 5 4 2

C 5 2

Collaborative Filtering Rec Systems

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 5 2 3

B 5 4 2

C 5 2

General Idea:

1) Find similar users = “neighborhood”

2) Infer rating based on how similar users rated

Collaborative Filtering Rec Systems

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 5 2 3

B 5 4 2

C 5 2

Given: user, x; item, i; utility matrix, u
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i

Collaborative Filtering Rec Systems

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 5 2 3

B 5 4 2

C 5 2

Given: user, x; item, i; utility matrix, u
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i
Two Challenges: (1) user bias, (2) missing values

Collaborative Filtering Rec Systems

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 => 0.5 5 => 1.5 2 => -1.5 => 0 3 => -0.5

B 5 4 2

C 5 2

Given: user, x; item, i; utility matrix, u
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i
Two Challenges: (1) user bias, (2) missing values
 Solution: subtract user’s mean, add zeros for missing

Collaborative Filtering Rec Systems

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 => 0.5 5 => 1.5 2 => -1.5 => 0 3 => -0.5

B 5 4 2

C 5 2

Given: user, x; item, i; utility matrix, u
0. Update u: mean center, missing to 0
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i
-- sim(x, other) = cosine_sim(u[x], u[other])
-- threshold to top k (e.g. k = 30)

Collaborative Filtering Rec Systems

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 => 0.5 5 => 1.5 2 => -1.5 => 0 3 => -0.5

B 5 4 2

C 5 2

Given: user, x; item, i; utility matrix, u
0. Update u: mean center, missing to 0
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i
-- sim(x, other) = cosine_sim(u[x], u[other])
-- threshold to top k (e.g. k = 30)

2. Predict utility (rating) of i based on N

Collaborative Filtering Rec Systems

user
Game of
Thrones

Fargo Brooklyn
Nine-Nine

Silicon
Valley

Walking
Dead

A 4 => 0.5 5 => 1.5 2 => -1.5 => 0 3 => -0.5

B 5 4 2

C 5 2

Given: user, x; item, i; utility matrix, u
0. Update u: mean center, missing to 0
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i
-- sim(x, other) = cosine_sim(u[x], u[other])
-- threshold to top k (e.g. k = 30)

2. Predict utility (rating) of i based on N
-- average, weighted by sim

Collaborative Filtering Rec Systems

Given: user, x; item, i; utility matrix, u
0. Update u: mean center, missing to 0
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i
-- sim(x, other) = cosine_sim(u[x], u[other])
-- threshold to top k (e.g. k = 30)

2. Predict utility (rating) of i based on N
-- average, weighted by sim

“User-User collaborative filtering”

Collaborative Filtering Rec Systems

Given: user, x; item, i; utility matrix, u
0. Update u: mean center, missing to 0
1. Find neighborhood, N # set of k users most similar to

 x who have also rated i
-- sim(x, other) = cosine_sim(u[x], u[other])
-- threshold to top k (e.g. k = 30)

2. Predict utility (rating) of i based on N
-- average, weighted by sim

“User-User collaborative filtering”

Item-Item:
Flip rows/columns of utility matrix and use same methods.
(i.e. estimate rating of item i, by finding similar items, j)

Collaborative Filtering Rec Systems

Given: user, x; item, i; utility matrix, u
0. Update u: mean center, missing to 0
1. Find neighborhood, N # set of k items most similar to

 i also rated by x
-- sim(i, other) = cosine_sim(u[i], u[other])
-- threshold to top k (e.g. k = 30)

2. Predict utility (rating) by x based on N
-- average, weighted by sim

“User-User collaborative filtering”

Item-Item:
Flip rows/columns of utility matrix and use same methods.
(i.e. estimate rating of item i, by finding similar items, j)

Item-Item v User-User

Item-item often works better than user-user. Why?

Users tend to be more different from each other than items are from
other items.

e.g. Mary likes jazz + rock, Bob likes classical + rock,
 but Mary may still have same rock preferences as Bob

Item-Item v User-User

Item-item often works better than user-user. Why?

Users tend to be more different from each other than items are from
other items.

e.g. Mary likes jazz + rock, Bob likes classical + rock,
 but Mary may still have same rock preferences as Bob

In other words, users span genres but items usually do not.

Item-Item: Example

Item-Item: Example

Item-Item: Example

Same as
cosine sim
when
subtracting
the mean

Item-Item: Example

Item-Item: Example

utility(1, 5) = (0.41*2 + 0.59*3) / (0.41+0.59)

Recommendation Systems

Problems to tackle:

1. Gathering ratings

2. Extrapolate unknown ratings
a. Explicit: based on user ratings and reviews

(problem: only a few users engage in such tasks)
b. Implicit: Learn from actions (e.g. purchases, clicks)

(problem: hard to learn low ratings)

3. Evaluation

Common Approaches

1. Content-based
2. Collaborative
3. Latent Factor

Options for Parallelizing
1. Approximate solutions to PCA (very large speedups with little drawback!):

a. Stochastic Sampling (also sometimes called "randomized" which is ambiguous):
Only using a sample rows (i.e. users for recommendation systems)

b. Truncated SVD: Only optimizing for minimizing reconstruction error based on up
to r dimensions (full SVD solves for up to min(n, p) dimensions and then you just
truncate the result for the lower rank version). One you do this, by the way, using a
smaller sample becomes much less of a problem.

c. Limiting power iterations to a few iterations: Power iterations from pagerank
solves for the first principle component. This can be extended to multiple
components.
(more here.)

2. Distribute the matrix operations. Complex; not as flexible (usually done across
processors within node)

3. Data Parallelism: As in other instances stochastic or mini-batch gradient
descent.

https://epubs.siam.org/doi/pdf/10.1137/090771806?casa_token=dTZRkY3T7YMAAAAA:c0XpknEiHduJes9DXxEjuNuEv8h6hMhtu1Ez1Fd69TIT_oqjU1bDAbyJgIpCF9KCU-BNcOSP26I

