
Transformer Models

CSE545 - Spring 2019

Review:
Feed Forward Network
(full-connected)

(skymind, AI Wiki)

Z

Review:
Convolutional NN

(Barter, 2018)

Review:
Recurrent Neural Network

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

 FFN CNN RNN

Can model computation (e.g. matrix operations for a single input) be parallelized?

 FFN CNN RNN

Can model computation (e.g. matrix operations for a single input) be parallelized?

 FFN CNN RNN

Can model computation (e.g. matrix operations for a single input) be parallelized?

 FFN CNN RNN

Can model computation (e.g. matrix operations for a single input) be parallelized?

Ultimately limits how complex the model can
be (i.e. it’s total number of
paramers/weights) as compared to a CNN.

The Transformer: “Attention-only” models

Can handle sequences and long-distance dependencies,
but….

● Don’t want complexity of LSTM/GRU cells

● Constant num edges between input steps

● Enables “interactions” (i.e. adaptations) between words

● Easy to parallelize -- don’t need sequential processing.

The Transformer: “Attention-only” models

Challenge:

● Long distance dependency when translating:

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Kayla kicked the ball.

The ball was kicked by kayla.

The Transformer: “Attention-only” models

Challenge:

● Long distance dependency when translating:

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Kayla kicked the ball.

The ball was kicked by kayla.

Attention

chi

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4

z1 z2 z3 z4

values

Attention

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4
Score function:

W

z1 z2 z3 z4

values

query

Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4
Score function:

W

z1 z2 z3 z4

values
keys

query

The Transformer: “Attention-only” models

Challenge:

● Long distance dependency when translating:

Attention came about for encoder decoder models.

Then self-attention was introduced:

Attention

s1 s2 s3 s4

chi hi𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4
Score function:

W

z1 z2 z3 z4

values

query

keys

Self-Attention

s1 s2 si s4

ci 𝜓

αhi->s

1
αhi->s

2

αhi->s

3
αhi->s

4
Score function:

W

z1 z2 zi z4

values

keys

qu
ery

The Transformer: “Attention-only” models

(Eisenstein, 2018)

Attention as weighting a value
based on a query and key:

The Transformer: “Attention-only” models

(Eisenstein, 2018)

Output

α

𝜓

h
hi-1 hi hi+1

x

Output

α

𝜓

h

The Transformer: “Attention-only” models

(Eisenstein, 2018)

hi-1 hi hi+1

self attention hi

hi-1 hi-1

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

 FFN

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2 ….

yi-1 yi yi+1 yi+2

...

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

Attend to all hidden states
in your “neighborhood”.

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

ktq

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

scaling
parameter

(ktq) σ(k,q)

The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

Linear layer:
WTX

One set of weights for
each of for K, Q, and V

ktq(k,q) (ktq) σ

The Transformer

Limitation (thus far): Can’t capture multiple types of dependencies between words.

The Transformer

Solution: Multi-head attention

Multi-head Attention

Transformer for
Encoder-Decoder

Transformer for
Encoder-Decoder

sequence index (t)

Transformer for
Encoder-Decoder

Transformer for
Encoder-Decoder

Residualized
Connections

Transformer for
Encoder-Decoder

Residualized
Connections

residuals enable
positional
information to be
passed along

Transformer for
Encoder-Decoder

Transformer for
Encoder-Decoder

essentially, a language
model

Transformer for
Encoder-Decoder

essentially, a language
model

Decoder blocks out
future inputs

Transformer for
Encoder-Decoder

essentially, a language
model

Add conditioning of the LM
based on the encoder

Transformer for
Encoder-Decoder

Transformer (as of 2017)

“WMT-2014” Data Set. BLEU scores:

Transformer

● Utilize Self-Attention

● Simple att scoring function (dot product, scaled)

● Added linear layers for Q, K, and V

● Multi-head attention

● Added positional encoding

● Added residual connection

● Simulate decoding by masking

https://4.bp.blogspot.com/-OlrV-PAtEkQ/W3RkOJCBkaI/AAAAAAAADOg/gNZXo_eK3tMNOmIfsuvPzrRfNb3qFQwJwCLcB

GAs/s640/image1.gif

https://4.bp.blogspot.com/-OlrV-PAtEkQ/W3RkOJCBkaI/AAAAAAAADOg/gNZXo_eK3tMNOmIfsuvPzrRfNb3qFQwJwCLcBGAs/s640/image1.gif
https://4.bp.blogspot.com/-OlrV-PAtEkQ/W3RkOJCBkaI/AAAAAAAADOg/gNZXo_eK3tMNOmIfsuvPzrRfNb3qFQwJwCLcBGAs/s640/image1.gif

Transformer
Why?
● Don’t need complexity of LSTM/GRU cells
● Constant num edges between words (or input

steps)
● Enables “interactions” (i.e. adaptations)

between words
● Easy to parallelize -- don’t need sequential

processing.

Drawbacks:
● Only unidirectional by default
● Only a “single-hop” relationship per layer

(multiple layers to capture multiple)

Why?
● Don’t need complexity of LSTM/GRU cells
● Constant num edges between words (or input

steps)
● Enables “interactions” (i.e. adaptations)

between words
● Easy to parallelize -- don’t need sequential

processing.

Drawbacks of Vanilla Transformers:
● Only unidirectional by default
● Only a “single-hop” relationship per layer

(multiple layers to capture multiple)

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

Why?
● Don’t need complexity of LSTM/GRU cells
● Constant num edges between words (or input

steps)
● Enables “interactions” (i.e. adaptations)

between words
● Easy to parallelize -- don’t need sequential

processing.

Drawbacks of Vanilla Transformers:
● Only unidirectional by default
● Only a “single-hop” relationship per layer

(multiple layers to capture multiple)

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

● Bidirectional context by “masking” in the middle
● A lot of layers, hidden states, attention heads.

BERT

Differences from previous state of the art:

● Bidirectional transformer (through masking)
● Directions jointly trained at once.
● Capture sentence-level relations

(Devlin et al., 2019)

tokenize into “word pieces”

Bert: Attention by Layers
https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

(Vig, 2019)

https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

BERT Performance: e.g. Question Answering

https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/

BERT: Pre-training; Fine-tuning

12 or 24 layers

BERT: Pre-training; Fine-tuning

12 or 24 layers

BERT: Pre-training; Fine-tuning

12 or 24 layers

Novel classifier
(e.g. sentiment classifier; stance detector...etc..)

The Transformer: “Attention-only” models

Can handle sequences and long-distance dependencies,
but….

● Don’t want complexity of LSTM/GRU cells

● Constant num edges between input steps

● Enables “interactions” (i.e. adaptations) between words

● Easy to parallelize -- don’t need sequential processing.

