Distributed TensorFlow

Stony Brook University
CSES45, Spring 2019



Goals

e Understand TensorFlow as a data workflow system.
o Know the key components of TensorFlow.
o Understand the key concepts of distributed TensorFlow.
e Execute basic distributed tensorflow program.
e Establish a foundation to distribute deep learning models:
e Convolutional Neural Networks
e Recurrent Neural Network (or LSTM, GRU)



TensorFlow

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.



TensorFlow

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

® A multi-dimensional matrix

(i.stack.imgur.com)




TensorFlow

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

A 2-d tensor is just a matrix.
1-d: vector
O-d: a constant / scalar

Note: Linguistic ambiguity:
Dimensions of a Tensor =/=
Dimensions of a Matrix

(i.stack.imgur.com)



TensorFlow

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

¥

Examples > 2-d :
Image definitions in terms of RGB per pixel
Image[row][column][rgb]

Subject, Verb, Object representation of language:
Counts|[verb][subject][object]



TensorFlow

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

¥

Technically, less abstract than RDDs which could hold tensors
as well as many other data structures (dictionaries/HashMaps,
Trees, ...etc...).

Then, why TensorFlow?



TensorFlow

Efficient, high-level built-in linear algebra and machine
learning optimization operations (i.e. transformations).

enables complex models, like deep learning

I

Then, why TensorFlow?



TensorFlow

Efficient, high-level built-in linear algebra and machine
learning operations.

enables complex models, like deep learning

Patterns of Local [Ereiuapis
Contrast T

Output Layer

Hidden Layer 2
Hidden Layer 1

Input Layer (Bakshi, 2016, “What is Deep Learning? Getting Started With Deep Learning”)



TensorFlow

Efficient, high-level built-in linear algebra and machine
learning operations.

import tensorflow as tf

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes
W = tf.Variable (tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd wvals
x = tf.placeholder (name="x") # Placeholder for input
relu = tf.nn.relu(tf.matmul (W, x) + b) # Relu (Wx+b)
€ = [wwl # Cost computed as a function
# of Relu
s = tf.Session()
for step in xrange (0, 10):
input = ...construct 100-D input array # Create 100-d wvector for input
result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input

print step, result

(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.)



TensorFlow

Operations on tensors are often conceptualized
as graphs:
import tensorflow as tf
b = tf.Variable(tf.zeros([100])) ( ReLU )
W = tf.Variable (tf.random_uniform([784,100],-1,1))
x = tf.placeholder (name="x")
relu = tf.nn.relu(tf.matmul (W, x) + b)

E & [iwwal

s = tf.Session()

for step in xrange (0, 10):
input = ...construct 100-D input array
result = s.run(C, feed_dict={x: input})
print step, result

(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.)



TensorFlow

Operations on tensors are often conceptualized
as graphs:

A simpler example:
c = tensorflow.matmul(a, b) @



TensorFlow

Operations on tensors are often conceptualized
as graphs:

example:

d=b+c
e=c+2
a=d*e

(Adventures in Machine Learning.
Python TensorFlow Tutorial, 2017)



* technically, operations that work with tensors.

Ingredients of a TensorFlow

tensors™

variables - persistent
mutable tensors

constants - constant

placeholders - from data

operations

an abstract computation
(e.g. matrix multiply, add)
executed by device kernels

session devices

defines the environment in the specific devices (cpus or
which operations run. gpus) on which to run the
(like a Spark context) session.




* technically, operations that work with tensors.

Ingredients of a TensorFlow

tensors*
variables - persistent @) tf.VariabIe(initial_value, name)

mutable tensors o ftf.constant(value, type, name)
constants - constant o tf.placeholder(type, shape, name)

placeholders - from data




Operations

operations
an abstract computation

(e.g. matrix multiply, add)
executed by device kernels

Category

Examples

Element-wise mathematical operations
Array operations

Matrix operations

Stateful operations

Neural-net building blocks
Checkpointing operations

Queue and synchronization operations
Control flow operations

Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
MatMul, MatrixInverse, MatrixDeterminant, ...
Variable, Assign, AssignAdd, ...

SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Save, Restore

Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Merge, Switch, Enter, Leave, Nextlteration




Sessions
e Places operations on devices
e Stores the values of variables (when not distributed)

e Carries out execution: eval() or run()

session
defines the environment in

which operations run.
(like a Spark context)




* technically, operations that work with tensors.

Ingredients of a TensorFlow

tensors™

variables - persistent
mutable tensors

constants - constant

placeholders - from data

operations

an abstract computation
(e.g. matrix multiply, add)
executed by device kernels

session devices

defines the environment in the specific devices (cpus or
which operations run. gpus) on which to run the
(like a Spark context) session.




Distributed TensorFlow

10000
1000
g -9 Scalar
3! —4  Sparse 1GB
"% 100 —4  Sparse 16GB
2 —I— Dense 100M
o ~ Dense 1GB
10
1 | | | | | |

1 2 5 10 25 50 100

Number of workers

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow:
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).



Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors



Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors

Parallelisms:

e Data Parallelism: All nodes doing same thing on different subsets of data
e Graph/Model Parallelism: Different portions of model on different devices



Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors

Parallelisms:

e Data Parallelism: All nodes doing same thing on different subsets of data
e Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

e Asynchronous Parameter Server
e Synchronous AllReduce (doesn’t work with Model Parallelism)



Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors



Local Distribution

Multiple devices on single machine

Program 1 Program 2




Local Distribution

Multiple devices on single machine

= = = e e e e e e e e e e e e e = = = e = = = === -

with tf.device(“/cpu:1”)
beta=tf.Variable(...)

with tf.device(“/gpu:0”)
y pred=tf.matmul(beta,X)

_-— e o e e e e e . . _-—a . - O - O O O O O O O e e e e mm owd




Cluster Distribution

Multiple devices on multiple machines

= = = e e e e e e e e e e e e e = = = e = = = === -

iwith tf.device(“/cpu:1”)
! beta=tf.Variable(...)

- O O O O O O O O O O O O O O EE i O O S O e e e e e e o omd

= = = e e e e e e e e e e e e e = = = e = = = === -

with tf.device(“/gpu:0”)
y pred=tf.matmul(beta,X)

_-— e o e e e e e . . _-—a . - O - O O O O O O O e e e e mm owd

Machine A




Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors

Parallelisms:

e Data Parallelism: All nodes doing same thing on different subsets of data
e Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

e Asynchronous Parameter Server
e Synchronous AllReduce (doesn’t work with Model Parallelism)



Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors

Parallelisms:

e Data Parallelism: All nodes doing same thing on different subsets of data
e Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

e Asynchronous Parameter Server
e Synchronous AllReduce (doesn’t work with Model Parallelism)



Cluster Distribution Model Parallelism

Multiple devices on multiple machines
iwith tf.device(“/cpu:1”) iwith tf.device(“/gpu:0”)
! beta=tf.Variable(...) ! y pred=tf.matmul(beta,X)

- O O O O O O O O O O O O O O EE i O O S O e e e e e e o omd _-— e o e e e e e . . _-—a . - O - O O O O O O O e e e e mm owd

lr”’ﬂﬁanﬂbrTenQEE“‘\~

Machine A




Cluster Distribution | Data Parallelism

beta=tf.Variable(...)
pred=tf.matmul (beta, X)

beta=tf.Variable(...)
pred=tf.matmul (beta,X)

s RECCCEEEDECRE

_______.II

beta=tf.Variable(...)
pred=tf.matmul (beta, X)




Distributed TensorFlow

Distributed:

e Locally: Across processors (cpus, gpus, tpus)
e Across a Cluster: Multiple machine with multiple processors

Parallelisms:

e Data Parallelism: All nodes doing same thing on different subsets of data
e Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

e Asynchronous Parameter Server
e Synchronous AllReduce (doesn’t work with Model Parallelism)



Distributed TensorFlow

Model Updates:

e Asynchronous Parameter Server
e Synchronous AllReduce (doesn’t work with Model Parallelism)



Asynchronous Parameter Server

“pS” “Worker”
" task0 " task 0 task 1
TF Server TF Server TF Server

//’Maﬁer/// //’Maﬂer/// Master

Worker

(Geron, 2017: HOML: p.324) - Machine B



Asynchronous Parameter Server

HpS”
task O

“‘worker”
|

KI'F Server

/ Master /




Synchronous AllReduce
“Worker” Worker Worker Worker

/7 ™ ] Workers do computation, send parameter A
TF Server TF { updates to other workers, and store parameter

/ Master / updates from other workers. Requires low
. latency communication.

=

¥ W:rker // \/ Vforker /j K WorIker /j
U




Distributed TensorFlow: Full Pipeline

Periodic
checkpoint

Parameters

= o

= O

Read params Apply grads

Training

Shuffle queue

Input

Preprocessing

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow:
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).



Parameters -- derived from gradients

e A

Preprocessing

Periodic
checkpoint

Parameters

DC)DCJD

Read params Apply grads

Training

TensorFlow has built-in ability to derive gradients given a cost function.

tf.gradients(cost, [params])



Parameters -- derived from gradients

J(w) ! __— Gradient

]
]
/
!



Parameters -- derived from gradients.

Linear Regression: Trying to find “betas” that minimize:

N
B = argminﬂ{z:(yi - gz)Q}



Parameters -- derived from gradients.

Linear Regression: Trying to find “betas” that minimize:

N
B = a'rgming{Z(yi - gﬁ)Q}

matrix multiply

N
yi=XiB  Thus: B = m"gmmﬁ{z:(yi - Xi8)*}
1=0



Parameters -- derived from gradients.

Linear Regression: Trying to find “betas” that minimize:

N
B = argming{» (yi — i)’}

matrix multiply

N
ji=Xif Thus: B =argming{) (v — XiB)’}
1=0

In standard linear equation:
¥ S T
let z' =z+[1,1,..., 1]y
then, y = ma’
(if we add a column of 1s, mx + b is just matmul(m, x))

y=mzx+ b



Parameters -- derived from gradients.

Linear Regression: Trying to find “betas” that minimize:

N
B = argminﬂ{Z(yi — )%}

matrix multiply

N
yi=XiB  Thus: B = argminﬁ{Z(yi - Xi8)*}
1=0

Copyright 20014, Lagrd Statistics.



Parameters -- derived from gradients.

Linear Regression: Trying to find “betas” that minimize:
N
B = argming{) (v — 4:)°}

N
yi=XiB  Thus: B = m"gmmﬁ{z:(yi - Xi8)*}
1=0

How to update?  Bnew = Bprev — @ * grad



Parameters -- derived from gradients.

Linear Regression: Trying to find “betas” that minimize:

N
B = argminﬂ{Z(yi — )%}

N
yi = Xif  Thus: B = argming{) (y; — XiB)*}
1=0

Initial

How to update? Brew = Bprev — @ * grad------——-- 4 _______ " _

(for gradient descent) “‘learning rate”




Parameters -- derived from gradients.

Ridge Regression (L2 Penalized linear regression, /\| lB‘ |§ )

N
gridee — qr gmmg{Z( Z zii3i)° 4+ A Z ’5’2}

i=1 7=1 7=1

1. Matrix Solution:

Bridge _ (XTX + AI)_IXT’y




Demo

Ridge Regression (L2 Penalized linear regression, /\| lB‘ |§ )

r
T

N !
gridge — a:rgmin'g{Z(yg — Z xijﬁj)z + A Z 332}
j=1

i=1 7=1

2. Gradient descent solution
(Mirrors many parameter optimization problems.)

.

1. Matrix Solution:

Bridge _ (XTX + AI)_IXT’y




Gradients

Ridge Regression (L2 Penalized linear regression, /\| |3‘ ‘% )

( h

,éridgﬁ — argmin_gﬂz Z zi; 5; 24\ Z (32

t=1 =1

T

Gradient descent needs to solve.

(Mirrors many parameter optimization problems.
. J

TensorFlow has built-in ability to derive gradients given a|cost functior{.




Gradients

Ridge Regression (L2 Penalized linear regression, /\| lB‘ |§ )

( h

,3""“'9“5 = ar gmin_g{lz Z Ti; B; 24\ Z 6’2“

i=1

‘r

Gradient descent needs to solve.

(Mirrors many parameter optimization problems.
. J

TensorFlow has built-in ability to derive gradients given 4cost functior{.

tf.gradients(cost, [params])



Gradients

—PDQ Queue
J}—=(] )

Preprocessing

Periodic
checkpoint

Parameters

DDDDD

Read params Apply grads

Training

TensorFlow has built-in ability to derive gradients given a cost function.

tf.gradients(cost, [params])



Distributed TensorFlow: Full Pipeline

Periodic
checkpoint

Parameters

= o

= O

Read params Apply grads

Training

Shuffle queue

Input

Preprocessing

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow:
A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).



