Stony Brook University CSE545, Spring 2019

Goals

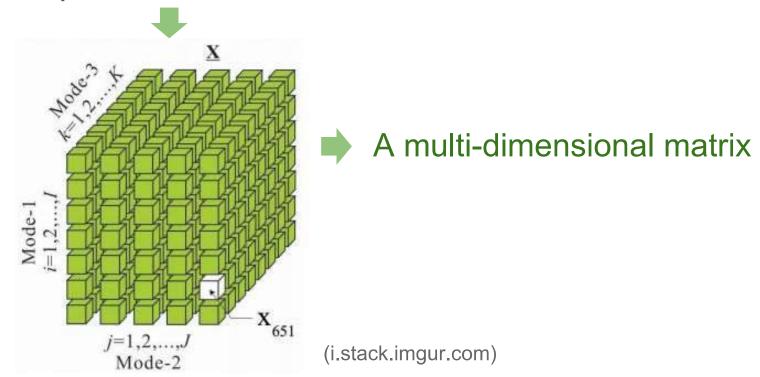
- Understand TensorFlow as a data workflow system.
 - Know the key components of TensorFlow.
 - Understand the key concepts of distributed TensorFlow.
- Execute basic distributed tensorflow program.
- Establish a foundation to distribute deep learning models:
 - Convolutional Neural Networks
 - Recurrent Neural Network (or LSTM, GRU)

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

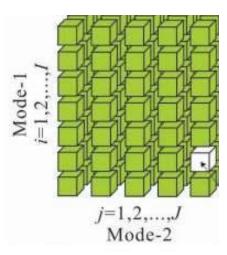
A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.



A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.



A 2-d tensor is just a matrix.

1-d: vector

0-d: a constant / scalar

Note: Linguistic ambiguity: Dimensions of a Tensor =/= Dimensions of a Matrix

(i.stack.imgur.com)

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

Examples > 2-d:

Image definitions in terms of RGB per pixel Image[row][column][rgb]

Subject, Verb, Object representation of language: Counts[verb][subject][object]

A workflow system catered to numerical computation.

One view: Like Spark, but uses tensors instead of RDDs.

Technically, less abstract than *RDDs* which could hold tensors as well as many other data structures (dictionaries/HashMaps, Trees, ...etc...).

Then, why TensorFlow?

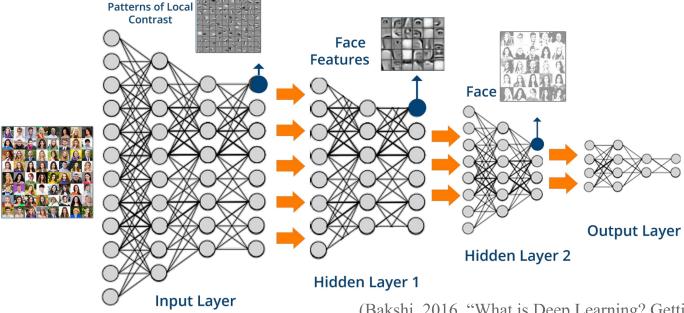
Efficient, high-level built-in **linear algebra** and **machine learning optimization** *operations* (i.e. transformations).

enables complex models, like deep learning

Then, why TensorFlow?

Efficient, high-level built-in linear algebra and machine learning operations.

enables complex models, like deep learning



(Bakshi, 2016, "What is Deep Learning? Getting Started With Deep Learning")

import tensorflow as tf

Efficient, high-level built-in **linear algebra** and **machine learning** *operations*.

```
b = tf.Variable(tf.zeros([100]))
                                                   # 100-d vector, init to zeroes
W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder(name="x")
                                                   # Placeholder for input
relu = tf.nn.relu(tf.matmul(W, x) + b)
                                                   # Relu(Wx+b)
C = [\ldots]
                                                   # Cost computed as a function
                                                   # of Relu
s = tf.Session()
for step in xrange(0, 10):
  input = ...construct 100-D input array ...
                                                   # Create 100-d vector for input
  result = s.run(C, feed_dict={x: input})
                                                   # Fetch cost, feeding x=input
 print step, result
```

(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. *arXiv* preprint arXiv:1603.04467.)

Operations on tensors are often conceptualized as **graphs**:

```
import tensorflow as tf

b = tf.Variable(tf.zeros([100]))
W = tf.Variable(tf.random_uniform([784,100],-1,1))
x = tf.placeholder(name="x")
relu = tf.nn.relu(tf.matmul(W, x) + b)
C = [...]

s = tf.Session()
for step in xrange(0, 10):
   input = ...construct 100-D input array ...
   result = s.run(C, feed_dict={x: input})
   print step, result
```

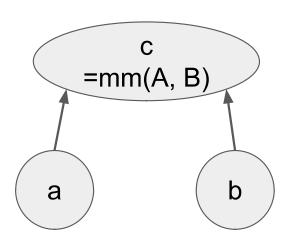


(Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. *arXiv preprint arXiv:1603.04467*.)

Operations on tensors are often conceptualized as graphs:

A simpler example:

c = tensorflow.matmul(a, b)



Operations on tensors are often conceptualized

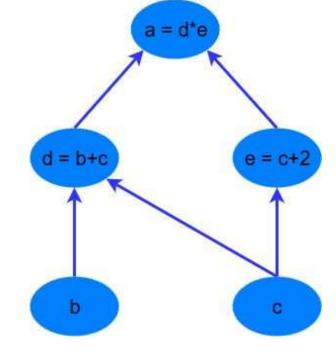
as graphs:

example:

d=b+c

e=c+2

a=d*e



(Adventures in Machine Learning. *Python TensorFlow Tutorial*, 2017)

Ingredients of a TensorFlow

* technically, operations that work with tensors.

tensors*

variables - persistent mutable tensors constants - constant placeholders - from data

operations

an abstract computation (e.g. matrix multiply, add) executed by device *kernels*

graph

session

defines the environment in which operations *run*. (like a Spark context)

devices

the specific devices (cpus or gpus) on which to run the session.

* technically, operations that work with tensors.

Ingredients of a TensorFlow

tensors*

variables - persistent

mutable tensors

constants - constant

placeholders - from data

- tf.Variable(initial_value, name)
- tf.constant(value, type, name)
- tf.placeholder(type, shape, name)

graph

defines the environment in which operations *run*. (like a Spark context)

devices
the specific devices (cpus or gpus) on which to run the session.

Operations

tensors*

variables - persistent

mutable tensors

constants - constant

placeholders - from data

operationsan abstract computation(e.g. matrix multiply, add)executed by device kernels

Category	Examples
Element-wise mathematical operations	Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal,
Array operations	Concat, Slice, Split, Constant, Rank, Shape, Shuffle,
Matrix operations	MatMul, MatrixInverse, MatrixDeterminant,
Stateful operations	Variable, Assign, AssignAdd,
Neural-net building blocks	SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool,
Checkpointing operations	Save, Restore
Queue and synchronization operations	Enqueue, Dequeue, MutexAcquire, MutexRelease,
Control flow operations	Merge, Switch, Enter, Leave, NextIteration

Sessions

Places operations on devices variables - persistent

operations
an abstract computation

- Stores the values of variables (when not distributed)
 constants constant
 executed by device kernels
- Carries out execution: eval() or run()

graph

session
defines the environment in which operations *run*.
(like a Spark context)

devices
the specific devices (cpus or gpus) on which to run the session.

Ingredients of a TensorFlow

* technically, operations that work with tensors.

tensors*

variables - persistent mutable tensors constants - constant placeholders - from data

operations

an abstract computation (e.g. matrix multiply, add) executed by device *kernels*

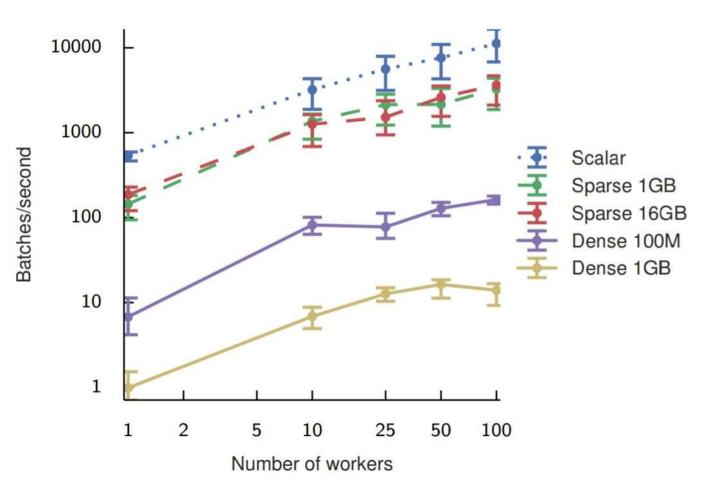
graph

session

defines the environment in which operations *run*. (like a Spark context)

devices

the specific devices (cpus or gpus) on which to run the session.



Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow: A System for Large-Scale Machine Learning. In *OSDI* (Vol. 16, pp. 265-283).

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn't work with Model Parallelism)

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

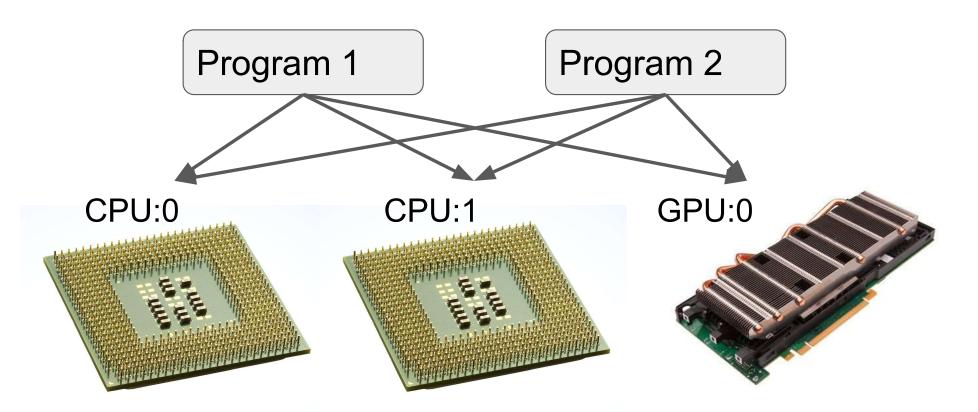
- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn't work with Model Parallelism)

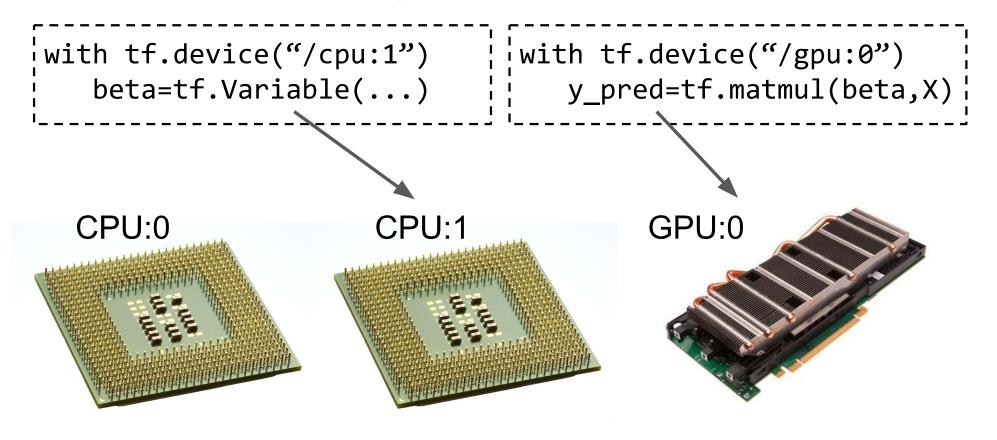
Local Distribution

Multiple devices on single machine



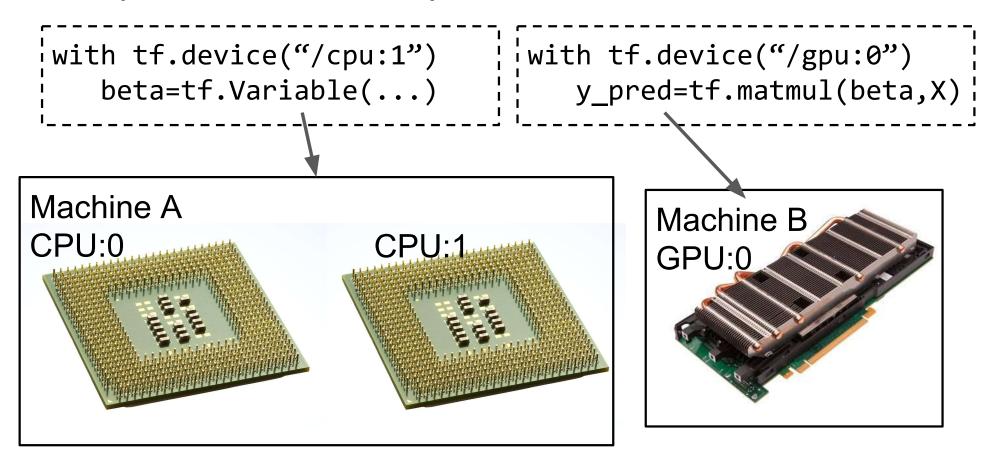
Local Distribution

Multiple devices on single machine



Cluster Distribution

Multiple devices on multiple machines



Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn't work with Model Parallelism)

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn't work with Model Parallelism)

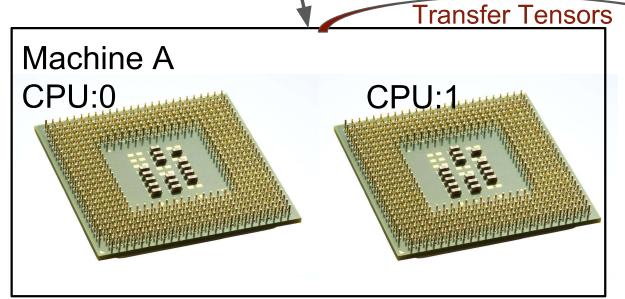
Cluster Distribution

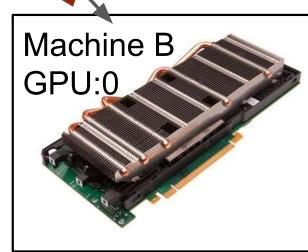
Model Parallelism

Multiple devices on multiple machines

```
with tf.device("/cpu:1")
  beta=tf.Variable(...)
```

with tf.device("/gpu:0")
y_pred=tf.matmul(beta,X)





Cluster Distribution

Data Parallelism

```
beta=tf.Variable(...)
beta=tf.Variable(...)
pred=tf.matmul(beta,X)
                                              pred=tf.matmul(beta,X)
                     beta=tf.Variable(...)
                     pred=tf.matmul(beta,X)
  CPU:0
                                          GPU:0
                       CPU:1
```

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn't work with Model Parallelism)

Distributed:

- Locally: Across processors (cpus, gpus, tpus)
- Across a Cluster: Multiple machine with multiple processors

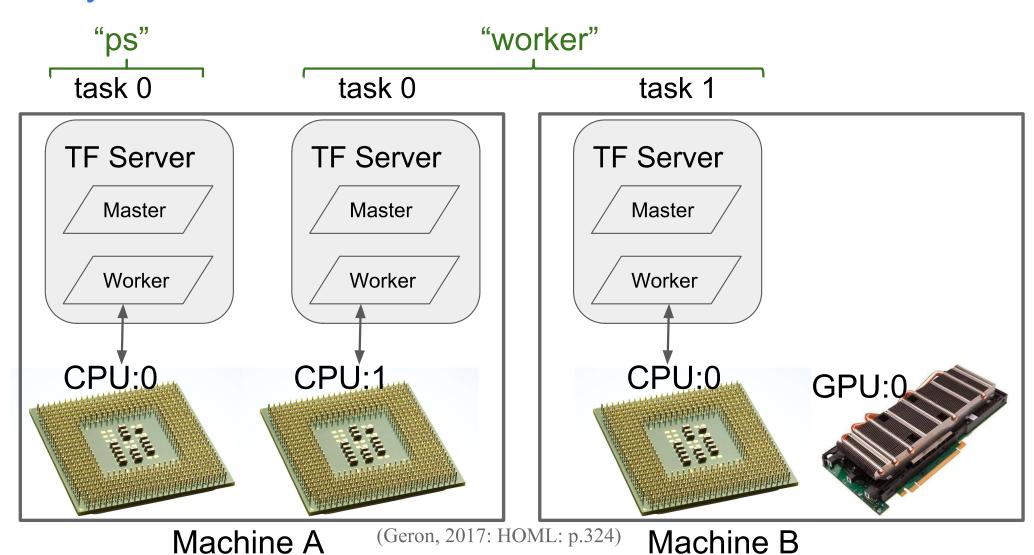
Parallelisms:

- Data Parallelism: All nodes doing same thing on different subsets of data
- Graph/Model Parallelism: Different portions of model on different devices

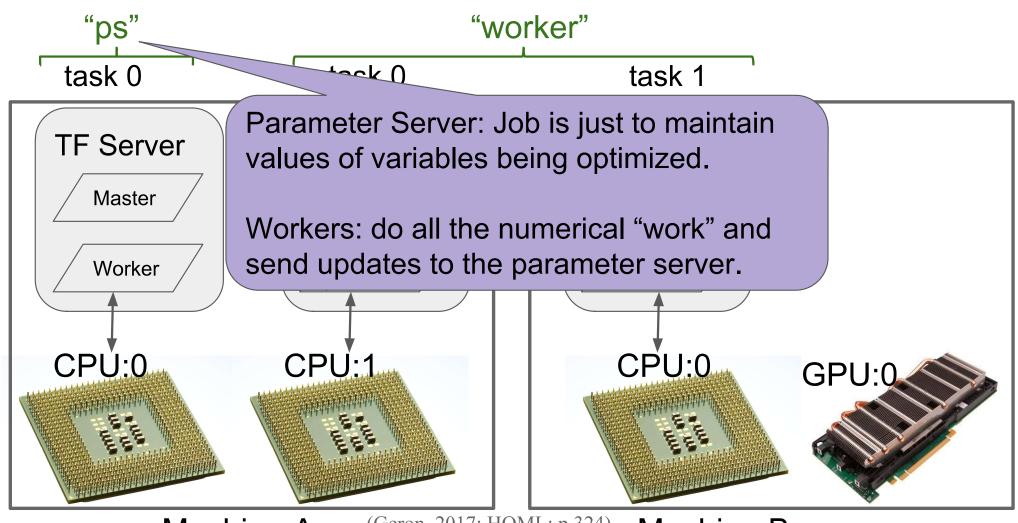
Model Updates:

- Asynchronous Parameter Server
- Synchronous AllReduce (doesn't work with Model Parallelism)

Asynchronous Parameter Server



Asynchronous Parameter Server

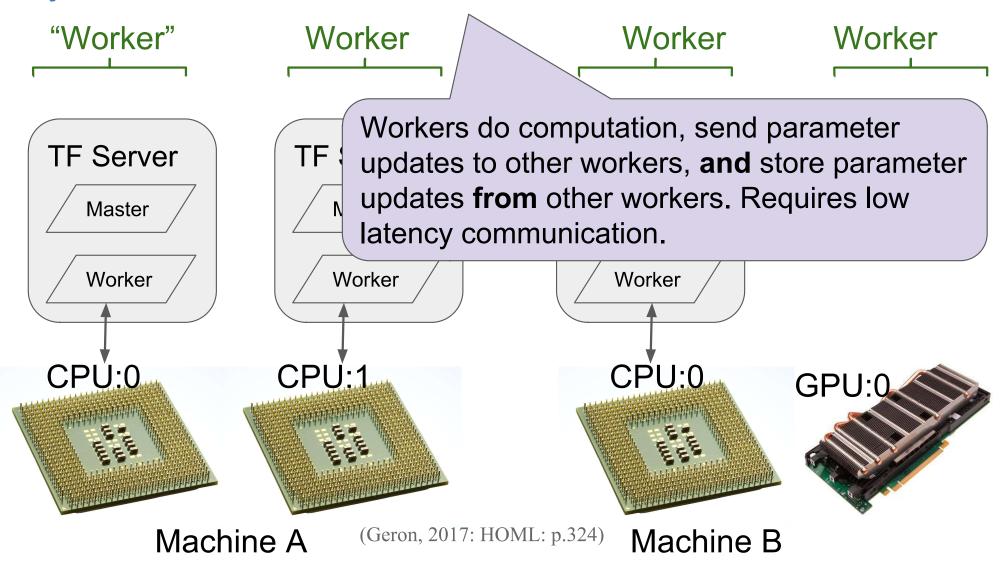


Machine A

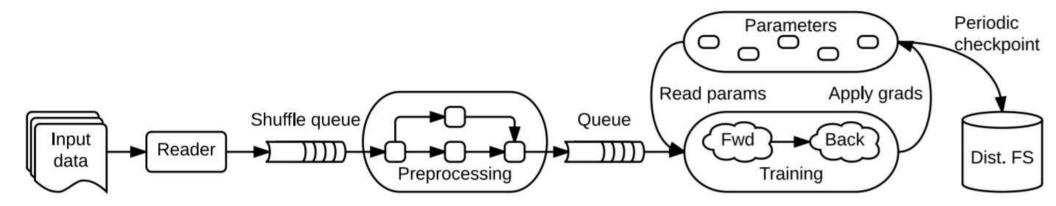
(Geron, 2017: HOML: p.324)

Machine B

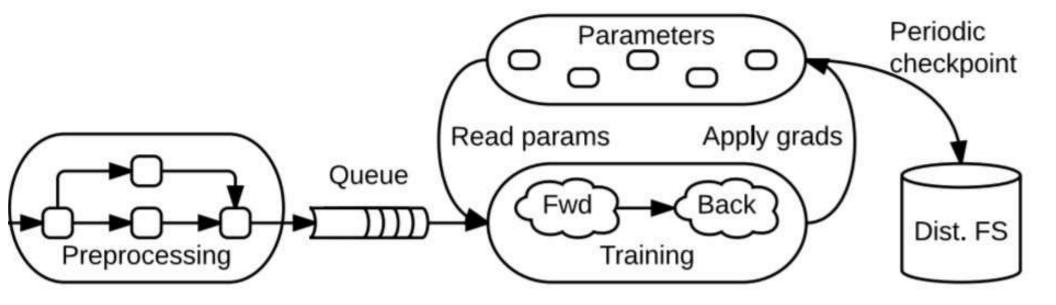
Synchronous AllReduce



Distributed TensorFlow: Full Pipeline

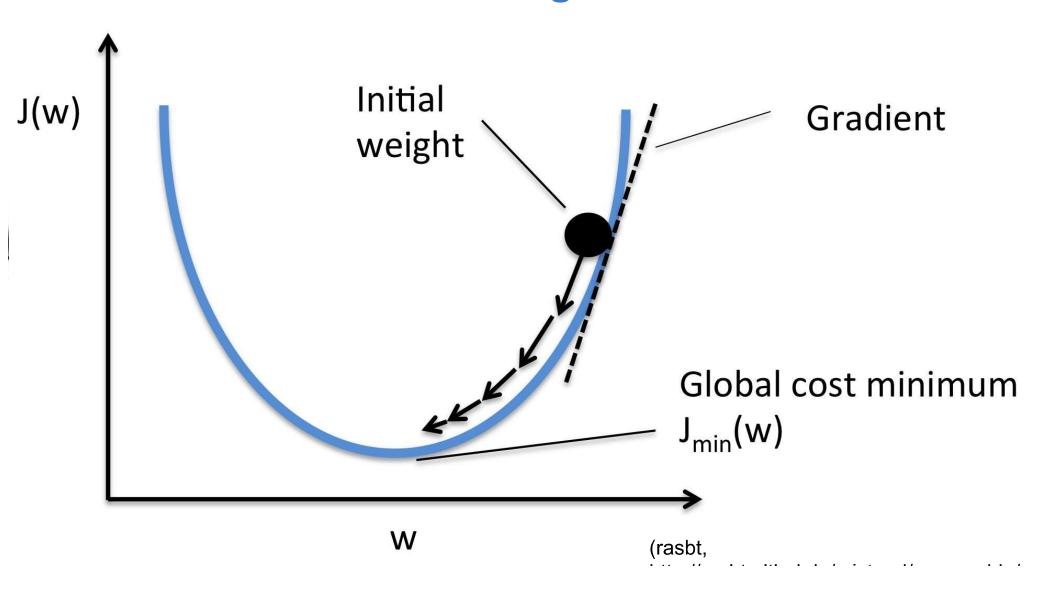


Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow: A System for Large-Scale Machine Learning. In *OSDI* (Vol. 16, pp. 265-283).



TensorFlow has built-in ability to derive gradients given a cost function.

tf.gradients(cost, [params])



$$\hat{\beta} = argmin_{\beta} \{ \sum_{i}^{N} (y_i - \hat{y}_i)^2 \}$$

matrix multiply
$$\hat{\beta} = argmin_{\beta} \{ \sum_{i}^{N} (y_i - \hat{y_i})^2 \}$$

$$\hat{y_i} = X_i \beta \quad \text{Thus:} \qquad \hat{\beta} = argmin_{\beta} \{ \sum_{i=0}^{N} (y_i - X_i \beta)^2 \}$$

Linear Regression: Trying to find "betas" that minimize:

matrix multiply
$$\hat{\beta} = argmin_{\beta} \{ \sum_{i}^{N} (y_i - \hat{y_i})^2 \}$$

$$\hat{y_i} = X_i \beta \quad \text{Thus:} \quad \hat{\beta} = argmin_{\beta} \{ \sum_{i=0}^{N} (y_i - X_i \beta)^2 \}$$

In standard linear equation:

(if we add a column of 1s, mx + b is just matmul(m, x))

Copyright 2014. Laerd Statistics.

$$\hat{\beta} = argmin_{\beta} \{ \sum_{i}^{N} (y_i - \hat{y_i})^2 \}$$

$$\hat{y_i} = X_i \beta \quad \text{Thus:} \quad \hat{\beta} = argmin_{\beta} \{ \sum_{i=0}^{N} (y_i - X_i \beta)^2 \}$$

Linear Regression: Trying to find "betas" that minimize:

$$\hat{\beta} = argmin_{\beta}\{\sum_{i}^{N}(y_i-\hat{y_i})^2\}$$

$$\hat{y_i} = X_i\beta \quad \text{Thus:} \quad \hat{\beta} = argmin_{\beta}\{\sum_{i=0}^{N}(y_i-X_i\beta)^2\}$$

How to update? $\beta_{new} = \beta_{prev} - \alpha * \text{grad}$

$$\hat{\beta} = argmin_{\beta} \{ \sum_{i}^{N} (y_i - \hat{y_i})^2 \}$$

$$\hat{y_i} = X_i \beta \quad \text{Thus:} \quad \hat{\beta} = argmin_{\beta} \{ \sum_{i=0}^{N} (y_i - X_i \beta)^2 \}$$
 How to update?
$$\beta_{new} = \beta_{prev} - \alpha * \text{grad----}$$
 (for gradient descent) "learning rate"

Ridge Regression (L2 Penalized linear regression, $\lambda ||\beta||_2^2$)

$$\hat{\beta}^{ridge} = argmin_{\beta} \{ \sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \}$$

1. Matrix Solution:

$$\hat{\beta}^{ridge} = (X^T X + \lambda I)^{-1} X^T y$$

Demo

Ridge Regression (L2 Penalized linear regression, $\lambda ||\beta||_2^2$)

$$\hat{\beta}^{ridge} = argmin_{\beta} \{ \sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \}$$

2. Gradient descent solution

(Mirrors many parameter optimization problems.)

Matrix Solution:

$$\hat{\beta}^{ridge} = (X^T X + \lambda I)^{-1} X^T y$$

Gradients

Ridge Regression (L2 Penalized linear regression, $\lambda ||\beta||_2^2$)

$$\hat{\beta}^{ridge} = argmin_{\beta} \{ \sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \}$$

Gradient descent needs to solve.

(Mirrors many parameter optimization problems.)

TensorFlow has built-in ability to derive gradients given a cost function.

Gradients

Ridge Regression (L2 Penalized linear regression, $\lambda ||\beta||_2^2$)

$$\hat{\beta}^{ridge} = argmin_{\beta} \{ \sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \}$$

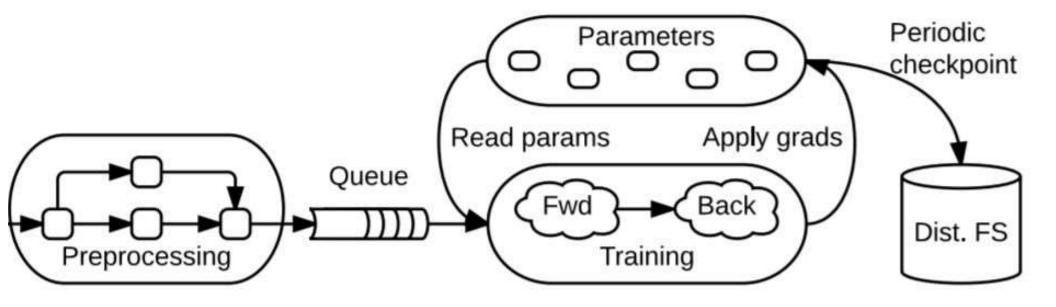
Gradient descent needs to solve.

(Mirrors many parameter optimization problems.)

TensorFlow has built-in ability to derive gradients given a cost function.

tf.gradients(cost, [params])

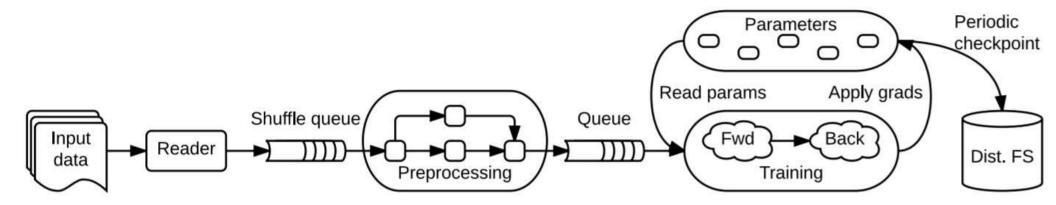
Gradients



TensorFlow has built-in ability to derive gradients given a cost function.

tf.gradients(cost, [params])

Distributed TensorFlow: Full Pipeline



Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016, November). TensorFlow: A System for Large-Scale Machine Learning. In *OSDI* (Vol. 16, pp. 265-283).