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Abstract— Sensor networks are often deployed in a redundant
fashion. In order to prolong the network lifetime, it is desired
to choose only a subset of sensors to keep active and put the
rest to sleep. In order to provide fault tolerance, this small
subset of active sensors should also provide some degree of
redundancy. In this paper, we consider the problem of choosing
a minimum subset of sensors such that they maintain a required
degree of coverage and also form a connected network with
a required degree of fault tolerance. In addition, we consider
a more general, variable radii sensor model, wherein every
sensor can adjust both its sensing and transmission ranges to
minimize overall energy consumption in the network. We call this
the variable radii k1-Connected, k2-Cover problem. To address
this problem, we propose a distributed and localized Voronoi-
based algorithm. The approach extends the relative neighborhood
graph (RNG) structure to preserve k-connectivity in a graph, and
design a distributed technique to inactivate desirable nodes while
preserving k-connectivity of the remaining active nodes. We show
through extensive simulations that our proposed techniques result
in overall energy savings in random sensor networks over a wide
range of experimental parameters.

I. Introduction

Fundamentally, a sensor node’s responsibility is to observe
the physical space around it, and measure some physical
signals or detect various phenomena of interest. This gives rise
to the well-known coverage problem [1], where the issue is to
study how well a sensor network of nodes is able to monitor
the given region of interest, and the minimum resources (in
terms of hardware and battery energy) needed to provide the
desired coverage. The metric that defines the coverage quality
is very much sensor and application specific, and is generally
related to the sensor’s charateristic response to a signal source
at a distance. The issue of providing sufficient coverage is
further complicated in presence of node failures or noise (in
sensor electronics or the propagation environment). In such
cases, collaborative signal processing techniques are used to
combine the data from multiple sensors that are in physical
proximity of the signal to increase the accuracy of the observed
data.

In this article, we address the problem of providing an ap-
propriate coverage from an energy efficiency point of view. In
particular, our goal is to design efficient distributed algorithms
to construct a connected topology in a sensor network that
is (i) fault-tolerant in terms of its connectivity [2], (ii) able
to provide the desired quality of coverage, but uses only a
small amount of sensing and transmission energy. Forming
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a connected topology is important, as the data gathered in
the network need to be transported to a central sink node
for storage and/or analysis. The fault-tolerant connectivity
requirement ensures connectivity even in adverse conditions
wherein some nodes and links may fail. Also, our notion of
coverage is quite general and allows for the use of multiple
sensors to improve confidence.

Energy is optimized by three mechanisms. First, some sen-
sor nodes can be simply inactivated. This is possible as sensor
networks are typically deployed in a highly redundant fashion,
since the deployment cost is expected to be more than the
hardware cost. Second, the transmission power of individual
sensor nodes can be reduced while preserving connectivity
requirements. Similarly, the sensing region can be reduced
as long as the desired coverage quality is maintained [3].
The last strategy of reducing the sensing range of a sensor
node is relatively uncommon. It hinges on the fact that for
higher sensing range, more energy is needed for noise filtering
and signal processing to improve the signal-to-noise ratio.
We envision that sophisticated sensors in future will allow
adjustment of sensing ranges in a similar manner as the
transmission range. Even with the current technology control
of the sensing range is still useful. Take the example of a
wireless network of RFID (radio-frequency identification) [4]
readers that detect RFID tags in a large factory floor. If the
tags are passive, the only way to read the tags is via RF energy
emitted from the reader device that is backscattered from the
tags. The RF power is controlled to control the effective read
range (sensing range in our terminology).

Overall, we take a unified view of coverage, connectivity,
and energy efficiency, and use the available tools – exploiting
redundancy, and adjusting sensing and transmission ranges – to
arrive at an energy efficient topology. The approaches in our
work uses discrete algorithms. Thus, we need to model the
problem using a notion of coverage that is both general and
amenable to such approaches. To this end, we use the notion
of sensing region of a sensor that signifies a region around the
sensor such that the sensor can sense the physical signal of
interest anywhere in this region with a given confidence. For
tractability, we have assumed that the sensing region is circular
(with radius equal to the sensing range). However, in certain
cases this assumption can be relaxed. Coverage requirment is
modeled by requiring that each point in the physical space
of interest to be within the sensing region of at least k
sensors. The value of k depends on the desired accuracy of



observed data and fault tolerance. The fault tolerant aspects of
connectivity is modeled by making the network k-connected,
i.e., the network remains connected even if k nodes fail, or
equivalently there exist k node-disjoint paths between every
pair of nodes in the network. We allow the possibility of using
different k values for connectivity and coverage. Thus, our
goal is to construct a k1-connected k2-cover set of sensors
with assigned transmission and sensing ranges.

The rest of the paper is as follows. We start with giving
a formal definition of the problem addressed in our article.
The next section presents a discussion of related work. In
section IV, we present some topology control schemes that
preserve k-connectivity. We present the Voronoi-based dis-
tributed approach in Section V. We conclude with performance
comparison of various approaches in Section VI, and conclud-
ing remarks in Section VII.

II. Problem Formulation

In this section, we formulate the connected cover problem
addressed in this paper. We begin with the variable radii sensor
model.

We view each sensor I as a stationary node associated with
a maximum sensing radius S∗ and a maximum transmission
radius T ∗. We assume that the maximum radii associated are
same for all the sensors in the network. Each sensor has
associated with it a sensing disk, with radius S(I) chosen
from the range [0, S∗]; and a transmission range, with radius
T (I) chosen from the range [0, T ∗]. Any point is covered by a
sensor I if it falls within distance S(I) from I . Sensor I can
communicate to any other sensor within the range of T (I).
We use θ(I) to denote the assigned sensing disk of sensor I .
This variable radii sensor model is justified in [3].

Now we formally define the k1-connected k2-cover
(VRKCKC) problem. First, we describe some necessary defi-
nitions.

Definition 1: (Energy Cost) Consider a sensor I with an
assigned sensing radius of S(I) and a transmission radius of
T (I). We model the energy cost of I as E(I) = f(S(I)) +
g(T (I)) + C, where f(x) and g(x) are non-decreasing func-
tions in x, and C is a constant that represents the idle-state
energy cost.

Definition 2: ((Full) Communication Graph) Given a set of
sensors M in a sensor network, the communication graph of
M is a graph with M as the set of vertices and an edge
between any two sensors if they can directly communicate
with each other using their assigned transmission radii. The
full-communication graph of a set I of sensors is the com-
munication graph of I when each node in I is assigned the
maximum transmission radius T ∗.

Definition 3: (Communication Distance) A path of
nodes/sensors between Ii and Ij in the communication graph
is called a communication path between the sensors Ii and
Ij . The communication distance between two sensors Ii and
Ij is the weight of the minimum node-weighted path between
Ii and Ij in the communication graph, where the weight at

an intermediate sensor node I is the transmission energy cost
g(T (I)) of the sensor node.

Definition 4: (k-Connectivity) The communication graph of
a given set of sensors M is k-connected if for any two vertices
Ii and Ij in M , there are k vertex-disjoint paths from Ii to
Ij . A equivalent definition is, after the removal of any k − 1
nodes the communication graph of M is still connected.

Definition 5: (Variable Radii k1-Connected k2-Cover) Con-
sider a sensor network consisted of a set I of sensors and
a query region RQ. A set of sensors M ⊆ I, M =
I1, I2, . . . , Im, is chosen to be active, where each sensor Ij

is assigned a sensing radius S(Ij)(≤ S∗) and a transmission
radius T (Ij)(≤ T ∗). M is said to be a k1-connected k2-cover
for the query region RQ if the following two conditions are
satisfied:

1) each point p in RQ is covered by at least k2 distinct
sensors in M .

2) the communication graph induced by M is k1-
connected.

Variable Radii k1-Connected k2-Cover Problem: Given a
sensor network and a query region RQ over the network,
the variable radii k1-connected k2-cover problem is to find a
VRKCKC such that the total of the energy cost of the sensors
is minimized. This problem is NP-hard as it is a generalization
of the variable radii 1-connected 1-cover problem, which is
already known to be NP-hard [3].

III. Related Work

Research in connectivity and coverage is not new in ad hoc
or sensor networks, though combining these issues together
has been relatively uncommon. In this section, we briefly
review existing work on connectivity and coverage issues.

Many schemes have been proposed to conserve energy while
maintaining connectivity in the network topology. One of the
most related problem in the above context is the minimum
connected dominating set problem [5]. The work in wireless
network research community ([6], [7], [8], [9], [10], [11],
[12]) has primarily focused on developing energy-efficient
distributed algorithms to construct a near-optimal connected
dominating set. All the above works assume fixed transmission
range for each sensor node. The works in [13], [14], [15],
[16] address the related NP-complete problem of constructing
a minimum energy broadcast tree in a network, where every
node can adjust its transmission power/range. Along the same
line, some recent works address the problem of fault tolerant
topology control [17], [18], [2], [19]. Of particular interest
to us is the protocol in [18] that proposes a cone based
topology control (CBTC) scheme. The CBTC scheme is to
assign the minimum transmission range to a node I such that
the maximum angle between any pair of its two consecutive
neighbors is at most 2π/3k. It is shown that the CBTC scheme
preserves the k-connectivity of the given network. In [2], the
authors propose a scheme that minimizes the maximum power
assigned to any node while preserving k-connectivity. None of



the above described works involve any notion of sensing range
or coverage.

A set of independent research has addressed the cover-
age problem in sensor networks. In [20] the authors have
designed a centralized heuristic to select mutually exclusive
sensor covers that independently cover the network region.
In [21], the authors have investigated linear programming
techniques to optimally place a set of sensors on a sensor
field (three dimensional grid) for a complete coverage of
the field. Meguerdichian et al. ([22], [23]) have considered
a slightly different definition of coverage. They address the
problem of finding maximal paths of lowest and highest
observabilities in a sensor network. A localized protocol is
proposed in [24] that aims at choosing a minimal set of
sensors to be active at any time point, while guaranteeing the
coverage of the grid points. Some articles ([25], [26], [27])
try to address the asymptotic coverage problem, in which they
derive the necessary conditions such that a geographic region
can be covered with high probability, while using a simple
scheduling scheme to coordinate sensor nodes duty cycles.
However, these works only consider fixed sensing ranges.
Besides, connectivity is not involved.

Recently, researchers have also considered connectivity and
coverage in an integrated platform. In particular, the authors
in [26] consider an unreliable sensor network, and derive
necessary and sufficient conditions for the coverage of the
region and connectivity of the network with high probability.
The PEAS protocol [28] considers a probing technique that
maintains only a necessary set of sensors in working mode
to ensure coverage and connectivity with high probability
under certain assumptions. Wang et al. [29] present a localized
heuristic in which they use the SPAN [30] protocol to main-
tain connectivity, and a separate CCP protocol to maintain
coverage. In [1] we have proposed a greedy approximation
algorithm that delivers a connected sensor cover for a sensor
network with fixed transmission and sensing ranges. In [31] we
have extended the above work by considering k-coverage. In
[3], we have considered sensors with variable transmission and
sensing ranges. In the present paper, we introduce the notion
of fault tolerance to this model. Our goal is to use variable
transmission and sensing ranges, but construct k1-connected,
k2-cover. This is the first time that fault tolerant connectivity
and coverage have been combined in the same framework.

IV. k-Connectivity Preserving Topology Control

In highly redundant sensor networks, we wish to keep only a
subset of sensors active. In addition, to save total energy cost,
we can adjust the transmission powers of the active sensor
nodes, while preserving desired connectivity properties of the
communication graph. In this section, we present topology
control strategies to delete edges or nodes in the network,
while maintaining k-connectivity of the remaining network.
We would use the results presented in this section to design
an efficient distributed algorithm for computing a VRKCKC
in Section V.

u v

Fig. 1. k-RNG example. Given that (u, v) is an edge in the original graph,
(u, v) is a k-RNG edge only if there exist less than k nodes within the
common area.

A. Topology Control by Deletion of Edges

In this subsection, we generalize the RNG (relative neigh-
borhood graph) structure [15] to the k-RNG structure, which
allows us to delete longer edges in the graph in a distributed
and localized manner while preserving k-connectivity of the
graph. Deletion of longer edges allows us to reduce the
transmission powers of the nodes in the network, and thus,
reducing the total energy requirement of the network while
preserving the desired k-connectivity requirement. We start
with recollecting the definition of the RNG structure.

Definition 6: (Relative Neighbor Graph (RNG)) Given a
network of nodes with uniform transmission radius, the rel-
ative neighbor graph is the network communication graph
where an edge exists between any two nodes u and v iff the
following two conditions are satisfied: 1) there exists no node
w which is closer to u as well as v than the distance between u
and v, i.e., there is no node w that satisfies d(u,w) < d(u, v)
and d(v, w) < d(u, v) simultaneously; 2) edge (u, v) exists in
the original graph, i.e., d(u, v) < T ∗, where T ∗ is the uniform
transmission radius.

It can be easily shown that for unit-disk graphs, i.e., full-
communication graphs of networks where each node has the
same transmission radius, the relative neighborhood graph is
connected if the full-communication graph of the network is
connected. Note that RNG can be constructed efficiently in a
distributed and localized manner. Construction of RNG helps
in transmission power control, since each node can adjust its
transmission power to directly transmit with only its RNG
neighbors. We now generalize the above RNG structure to k-
RNG structure which can also be constructed in a distributed
and localized manner while preserving k-connectivity of the
network.

Definition 7: (kth Relative Neighbor Graph (k-RNG))
Given a network of n nodes with uniform transmission radius,
the kth relative neighbor graph is the network communication
graph where an edge exists between two nodes u and v iff the
following two conditions are satisfied, 1) there are at most
(k − 1) nodes w that satisfy the condition d(u,w) < d(u, v)
and d(v, w) < d(u, v) simultaneously; 2) (u, v) is an edge in
the original graph. An example is shown in figure 1.

Theorem 1: Given a network of nodes with uniform trans-
mission radius, if the full-communication graph of the network
is k-connected, then the k-RNG is also k-connected.
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(c) Case 3: There exist at least two nodes ai

and aj on a single path Pm.

Fig. 2. Three cases in the proof of theorem 1.

Proof: Lets consider two nodes x and y such that there
are at least k nodes a1, a2, . . . , ak that satisfies the condition
d(x, ai) < d(x, y) and d(y, ai) < d(x, y) simultaneously. Let
the full-communication graph of the network be G, and let G′

be the graph G without the edge (x, y). Below, we show that
G′ is k-connected, assuming G is k-connected.

Consider an arbitrary pair of nodes s and d in G. Let
P1, P2, . . . , Pk be the k node-disjoint paths between s and
d in the graph G. We try to show that there exist k node-
disjoint paths between s and d in G′ also. If (x, y) does not
belong to any Pi (1 ≤ i ≤ k), then s and d trivially have
k node-disjoint paths in G′. Without loss of generality, let us
assume that (x, y) belongs to P1. Now, there are three cases:

• There is a node ai (1 ≤ i ≤ k) that is not contained in any
of the other paths P2, P3, . . . , Pk. See Figure 2 (a). In this
case, the edge (x, y) in P1 can be replaced by (x, ai, y)
to yield P

′
1, and the set of k node-disjoint paths in G′

connecting s and d are P
′
1, P2, P3, . . . , Pk.

• There is a node ai(1 ≤ i ≤ k) that is contained in
P1. See Figure 2 (b). In this case, the path P1 can be
changed to yield a shorter path P

′
1 which is node-disjoint

from all other paths P2, P3, . . . , Pk. If P1 is of the form
(s, . . . , x, y, . . . , ai, . . . , d), then (s, . . . , x, ai, . . . , d) can
be chosen as P

′
1. Similarly, if P1 is of the form

(s, . . . , ai, . . . , x, y, . . . , d), then (s, . . . , ai, y, . . . , d) can
be chosen as P

′
1.

• There are two nodes ai and aj that are contained in
the same path Pm (2 ≤ m ≤ k). See Figure 2 (c). In
this case, P1 and Pm can be changed to yield two node-
disjoint paths that are also node-disjoint from other paths.
In particular, if P1 is of the form (s, P sx

1 , x, y, P yd
1 , d) and

Pm is of the form (s, P sai
m , ai, P

aiaj
m , aj , P

ajd
m , d), then

we can construct two paths P
′
1 = (s, P sx

1 , x, aj , P
ajd
m , d),

and P
′
m = (s, P sai

m , ai, y, P yd
1 , d). It is easy to see that

the set of k paths P
′
1, P2, . . . , P

′
l , . . . , Pk exist in G′ and

are node-disjoint.
Note that the above three cases cover all possibilities. Thus,
the above analysis shows that G′ is k-connected.

Note that in the above analysis, the new edges introduced
in the paths connecting s and d are strictly shorter than (x, y).

Thus, to show that the k-RNG graph is k-connected, we can
apply the above analysis for one edge removed from G at a
time, in the descending order of the edge lengths.

One of the other distributed and localized schemes proposed
in the literature for transmission power control while preserv-
ing k-connectivity is the CBTC [18] (cone based topology
control) approach. In the CBTC approach, each node u picks
the minimum transmission radius tu such that there is a node
w with d(u,w) < tu in every cone of angle 2π/3k around u.
It is shown in [18] that the resulting graph considering only
the undirected edges is k-connected. Below, we show that the
k-RNG structure is actually a subgraph of the graph generated
by the CBTC approach in unit-disk graphs.

Theorem 2: Consider a network of nodes with uniform
transmission power. The k-RNG is a subgraph of the graph
resulting from the CBTC approach.

PROOF. We prove the theorem by showing that if an edge
(u, v) does not exist in the CBTC graph, then (u, v) is not
in k-RNG. Let tu and tv be the transmission randii of u
and v respectively resulting from the CBTC approach. Since
(u, v) is not an edge in the CBTC graph, we know that either
tu < d(u, v) or tv < d(u, v). Without loss of generality, let
us assume that tu < d(u, v).

Now, consider the circles Cu and Cv with centers u and
v respectively and radii d(u, v), and the intersection region
Ruv of the circles Cu and Cv as shown in Figure 3. Let
p1 and p2 be the points of intersection of the two circles.
Note that � p1up2 = 2π/3 and d(u, p1) > tu. By definition of
CBTC, since there is a node w in every cone of angle 2π/3k
around u such that d(u,w) < tu, there are at least k nodes
w1, w2, . . . , wk in the cone confined by segments ¯up1 and ¯up2

such that d(u,wi) < tu for each wi. The above implies that
there are k nodes in the region Ruv , and hence, (u, v) is not
an edge in k-RNG.

B. Topology Control by Deletion of Nodes

In [12], Wu and Dai propose several schemes for distributed
computation of connected dominating sets. The general strat-
egy of their schemes was to delete nodes I that satisy the
condition that for every pair of neighbors u and v there is a
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Fig. 3. Proof of theorem 2. If (u, v) is not a CBTC edge, then there are at
least k nodes in the region Ruv .

path (called a replacement path) containing nodes with priority
(which could be the unique node ID) higher than that of I . The
above condition can be tested in a distributed and localized
manner by requiring the replacements paths to exist in the
d-hop neighborhood of each node I . They show that after
deletion, the remaining nodes form a connected dominating
set. Below, we generalize their approach to construct a k-
connected dominating set in a distributed manner. In particular,
we propose inactivation of a nodes I that satisfy the below
defined k-delNode, and show that the set of remaining active
nodes form a k-connected dominating set.1

Definition 8: (k-delNode condition:) A node I is said to
satisfy the k-delNode condition if for every pair of active
neighbors u and v of I , there exists k node-disjoint paths
P1, P2, . . . , Pk containing only higher-priority (relative to I’s
priority) active intermediate nodes.

Theorem 3: Given that the full-communication graph of
a given set of active sensors is k-connected. After iterative
inactivation of nodes that satisfy the k-delNode condition, the
full-communication graph of the remaining active nodes is still
k-connected.

In work done concurrently with ours, Wu and Dai [32]
have shown an even stronger result that the remaining active
nodes that do not satisfy the k-delNode2 form a k-connected
k-dominating set. We refer the reader to [32] for a proof of
the above theorem.

V. Voronoi-based Approach

In this section, we present a distributed and localized
Voronoi-based algorithm for the variable radii k1-connected
k2-cover problem. The geometric concept of kth-order voronoi
diagram and the k-connectivity preserving schemes described
in section IV form the basis of our Voronoi-based algorithm.
We start with some definitions.

Definition 9: (l-hop Active Neighborhood) The l-hop active
neighborhood of an active node I , denoted as N(I, l), is
defined as the set of active nodes that are at a distance of
at most l hops from I in the unweighted full-communication

1For application of the k-delNode condition to the problem addressed in
this article, we do not need the dominating property of the non-deleted nodes.

2They refer to the k-delNode condition as the k-coverage condition.

graph of the entire sensor network. Here, I is also included
in N(I, l).

Definition 10: (kth-order Voronoi Diagram/Cell/Neighbor)
Given n nodes in a plane, the kth-order voronoi diagram is
defined as the partitioning of the plane into regions that have
the same set of k nearest nodes [33]. The kth-order voronoi
cell of a node I is defined as the union of the regions that have
I as one of their k nearest nodes. In other words, for any point
p inside the kth-order voronoi cell of I , there are less than k
other nodes that are closer to p than I . Two nodes are called
kth-order voronoi neighbors if their kth-order voronoi cells
intersect or share common edge.

Definition 11: (kth-order Local Voronoi Cell/Neighbor)
The kth order local voronoi cell LV (I) of a node I is the
kth-order voronoi cell of I in the kth-order voronoi diagram
over the set of nodes N(I, l). That is, for any point p ∈ LV (I),
there exist at most k − 1 other nodes J in N(I, l) such that
d(p, J) < d(p, I).

A node J is a kth-order local voronoi neighbor of I if J
is a kth-order voronoi neighbor of I in the voronoi diagram
over the set of nodes N(I, l). Note that the kth-order local
voronoi neighbor relationship is not symmetric. We use LN(I)
to denote the set of kth-order local voronoi neighbors of I .

For any k, the kth-order voronoi diagram over N(I, l)
can be calculated using the arrangement of planes tan-
gent to the paraboloid above the nodes of N(I, l) in time
O(|N(I, l)|3) [33]. In our simulations, we use the polygon
clipping method [34] to calculate the kth-order local voronoi
cell of I .

Note that the choice of l can affect the result of the
constructed kth-order local voronoi neighbor at any node.
However, it is difficult to decide what value l should take.
A low l can result in construction of inaccurate voronoi cells,
which does not affect the correctness of our algorithm but
degrades the performance. A large l can result in a high
construction cost. In the experiments, l is chosen as 2S∗/T ∗,
a compromise between the construction cost and the energy
efficiency of the resulting sensor cover set. In the rest of the
discussion, we view l as a constant to a sensor network.

The following procedure to assign radii to all the active
sensor nodes form the core of our Voronoi-based algorithm.

V-R Assignment of Radii. Consider a set of active sensors
A in a sensor network. The set of sensors whose maximum
sensing region intersect with the given query region is M .
The V-R assignment of sensing and transmission radii is as
follows. Each sensor I in M is assigned a sensing radius to
cover its kth

2 -order local voronoi cell or S∗, the maximum
sensing level, if its kth

2 -order local voronoi cell is larger than
its maximum sensing region. The transmission radius of I
is assigned so as to support all the edges in the k1-RNG
graph of M . The sensors that are not in M are assigned
zero sensing and transmission radius. Below, we show that
the V-R assignment of radii guarantees k1-connectivity and
k2-coverage.

Theorem 4: Given a set of active sensors A and a query
region in a sensor network such that the query region is k2-



covered by the union of the maximum sensing regions of nodes
in A, the V-R assignment of sensing radii ensures k2-coverage
of the query region.

Let the set of sensors whose maximum sensing region
intersect with the given query be M . If the full communication
graph of M is k1-connected, then the V-R assignment of
transmission radii ensures k1-connectivity of M .

PROOF. It is easy to see that (V (I)∩RQ) ⊆ LV (I), where
V (I) is the kth

2 -order voronoi cell of I , RQ is the query region,
and LV (I) is the kth

2 order local voronoi cell of I . Consider
a point p in the query region, and let Ip be the k2 nearest
active sensor nodes to p. Now, for any I ∈ Ip, p ∈ V (I)
and hence, p ∈ LV (I). Since p is covered by the maximum
sensing region of at least k2 active sensor nodes, it is covered
by the maximum sensing region of each node in Ip, and hence,
it is covered by the assigned sensing region of each node I in
Ip.

As k-RNG preserves the k-connectivity of the original
graph, the V-R assignment ensures k1-connectivity of M .

Voronoi-Based Algorithm Description. The V-R assignment
of sensing and transmission radii is key in the design of
the Voronoi-based algorithm. Informally, the Voronoi-based
algorithm works as follows. We start with all sensors in
the network as active nodes, and use the V-R assignment
method to assign their sensing and transmission radius. At
each stage, certain sensor nodes become inactive, and the
assignment of sensing and transmission radii is redone for the
remaining active nodes. A sensor node is chosen to become
inactive only if the remaining active sensors are capable of k2-
covering the query region and maintaining k1-connectivity of
their communication graph. We use an appropriately defined
concept of “benefit” to choose the best sensor nodes to become
inactive. The algorithm terminates when no more sensors can
be made inactive. In the end, the set of active sensor nodes
with their assigned radii form a variable radii k1-connected
k2-cover. Formally, our proposed Voronoi-based algorithm
consists of the following steps.

1) Initially, each sensor node in the sensor network is
active, and gathers locations of all the nodes in the l-hop
active neighborhood.

2) Each active sensor node computes its kth
2 -order local

voronoi cell, and the neighbors in the k1-RNG over
active nodes. It uses the V-R assignment method to
assign itself a sensing and a transmission radius.

3) Each node I computes its sleeping benefit (formally
defined later), which is the decrease in the total energy
cost of the “local” active sensors if I is inactivated.

4) A sensor node I is considered removable, if it satisfies
the following two conditions.

• Node I satisfies k1-delNode condition.
• The region (LV (I) ∩ θ(I)) is k2-covered by the

union of the maximum sensing regions of the kth
2 -

order local voronoi neighbors of I . We show in The-
orem 5 that the above condition ensures coverage of
the query region, if I is made inactive.

5) If I is removable and has the most sleeping benefit
among all its local voronoi neighbors, then I becomes
inactive.

6) Go to Step 2.
The above described algorithm can be easily implemented

in a distributed setting, where the communication model is
reliable. To ensure correctness in an unreliable communication
model, we need to add certain tedious steps as discussed in [3].

Calculating Sleeping Benefit. The calculation of sleeping
benefit has been described in [3]. For completeness, we include
the discussion here.

The sleeping benefit B(I) of an active node I is defined as
the decrease in total energy cost of the set of active sensors in
the networks due to inactivation of the node I . More precisely,

B(I) = E(I) −
∑

J∈LN(I)

(Enew(J) − E(J)),

where E(X) is the current energy cost of a node X , LN(I)
is the set of local neighbors (local voronoi neighbors union 1-
hop communication neighbors) of I , and Enew(X) is the new
energy cost of a node X after inactivation of I . Each node I
is aware of the current assignment of sensing and transmission
radii (and hence, the energy cost) of all its local neighbors.
Thus, to compute its sleeping benefit, a node I only needs
to compute the increase in sensing and transmission radii of
nodes in its local neighborhood.

Based on the V-R assignment, only the local voronoi
neighbors of I need to increase their assigned sensing radius
when I is inactivated. The local voronoi neighbors increase
their sensing radii to cover the local voronoi cell LV (I) of I ,
and the increase in sensing radius of a local voronoi neighbor
can be computed using the polygon clipping method [34]. Note
that only the nodes in N(I, 1) may increase their transmission
radius due to inactivation of I , and the increase in transmission
energy cost of the nodes in N(I, 1) can be easily computed by
first constructing the induced subgraphs of RNG over N(I, 1),
with and without I .

Coverage Guarantee. Now, we show that the above described
algorithm maintains k2-coverage of the query region, if the
query region was initially k2-covered by the active sensors.
We use θ∗(I) to represent the maximum sensing region
(corresponding to the maximum sensing radius S∗) of I . Also,
recall that LN(I) is the set of local voronoi neighbors of I .
We start with a lemma.

Lemma 1: Consider the kth
2 -order local voronoi cell LV (I)

of a sensor node I . For any point p ∈ LV (I), the line segment
pI lies completely within LV (I).

PROOF. Let us assume that there exists a point q ∈ pI , such
that q /∈ LV (I). Then there must exist a node J , such that
d(p, J) > d(p, I) and d(q, J) < d(q, I). Now, according to
triangular inequality d(p, J) < d(p, q) + d(q, J), which gives
d(p, J) < d(p, q) + d(q, I) = d(p, I) — a contradiction.

Lemma 2: Let I be an active sensor, and θ(I) be the sensing
region assigned by the V-R assignment. If LV (I)∩θ(I) is k2-
covered by

⋃
j∈LN(I) θ∗(j), then θ∗(I) is also k2-covered by
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Fig. 4. Proof of lemma 2

⋃
j∈LN(I) θ∗(j). Here, LV (I) is the kth

2 -order local voronoi
cell of I .

PROOF. We show that any arbitrary point p in θ∗(I) is
covered by the maximum sensing region of at least k2 distinct
sensor nodes in LN(I). We consider two cases depending on
whether p is in LV (I).

If p ∈ LV (I), then p ∈ θ(I). Thus, p ∈ (LV (I) ∩ θ(I))
and hence, is k2-covered by

⋃
j∈LN(I) θ∗(j).

Let us now consider the case when p /∈ LV (I). From
Lemma 1, we know the line segment pI intersects the border
of LV (I) at only one point s, as illustrated in Figure 4. Define
subcell as the region that has the same k2 nearest nodes, and
we denote the first subcell that pI traverses inside LV (I) as
X; the set of k2 nearest nodes relating to X as NX (note that
I ∈ NX ). Because s is at the border of LV (I) and X , there
exists a node J /∈ NX such that d(s, J) = d(s, I), and thus
J is in LN(I) according to the definition of LN(I). Hence
d(p, J) < d(p, s)+d(s, J) = d(p, s)+d(s, I) = d(p, I) ≤ S∗.
Also, for any node u ∈ NX , we know d(s, u) ≤ d(s, J). Thus,

d(p, u) < d(s, u) + d(p, s)
≤ d(s, J) + d(p, s)
= d(s, I) + d(p, s)
= d(p, I)
≤ S∗

Thus, p lies in the maximum sensing region of at least k2

distinct nodes in LN(I), that is, node J and the nodes in set
NX − I .

Theorem 5: Given a set of active sensors A and a query
region in a sensor network, such that the query region is k2-
covered by the union of the maximum sensing regions of nodes
in A, the Voronoi-based algorithm ensures k2-coverage of the
query region.

PROOF. We showed in Theorem 4 that the V-R assignment
preserves the k2-coverage of the query region. Below, we show
that at any stage of the algorithm, for every point p in the
query region, there are at least k2 distinct active sensor nodes
covering p using their maximum sensing region that cannot
be inactivated.

Let C(p) denote the set of active sensors that can cover a
point p using their maximum sensing regions. Consider a point
p in the query region such that |C(p)| ≥ k2. Let I be a sensor

node in C(p) such that its sleeping benefit is more than the
sleeping benefit of at most k2 −1 other sensor nodes in C(p).
We show that the sensor node I will not be inactivated by the
Voronoi-based algorithm. Let us assume the contrary that the
sensor node I is inactivated, which means that LV (I)∩θ(I) is
k2-covered by

⋃
j∈LN(I) θ∗(j), and the sleeping benefit of I is

maximum among all nodes in LN(I). From Lemma 2, there
is a set of nodes H ⊆ LN(I) such that |H| = k2 and each
sensor node in H covers p with its maximum sensing region.
Thus, H ⊆ C(p). Also, since H ⊆ LN(I), I’s sleeping benefit
is more than the sleeping benefit of any node in H . Thus, I’s
sleeping benefit is more than at least k2 other sensors in C(p),
which contradicts our hypothesis.

K1-Connectivity Guarantee. Theorem 3 states that removal
of nodes that satisfy the k1-delNode condition preserves
the k1-connectivity of the full-communication graph of the
remaining nodes. Also, since the V-R assignment of radii
preserves the k1-connectivity, the solution returned by the
Voronoi-based algorithm is k1-connected.

A. Relaxation of Assumptions

The techniques presented above appears to use a set of
idealized assumptions. We argue below how such assumptions
can be relaxed and the techniques can be applied to practical
cases.

Circular Sensing Range. Our Voronoi-based approach as-
sumes that each sensor has the same circular, maximum
sensing region. However, in reality, the maximum sensing
regions may not be identical and they may not be circular.
This may be true even when a homogenous network is used.
Difference is ranges can result from noise properties, occlusion
etc. In a general scenario, each sensor node has associated
with it h different sensing regions (not necessarily circular)
each with an associated energy cost. Our designed Voronoi-
based algorithm is still applicable in this general scenarion,
by choosing the minimum-energy sensing region that contains
the local voronoi cell at any stage.

Omnidirectional Transmission Ranges. The k-connectivity
preserving topology control scheme described in section IV
works under the assumption that all sensors share the same
maximum transmission range in the sensor network and that
the range is independent of direction. This does not hold
in reality because of irregularity in the radio propagation
environment and impracticality of a perfectly omnidirectional
antenna, etc. However, note that in this topology control
scheme, what is necessary for each sensor to make decision is
only the knowledge of the existing bidirectional links within
its l-hop neighborhood. This knowledge can be obtained by
asking each sensor to broadcast its actual communication
neighbor information within its l-hops neighborhood. It is
trivial to see that theorem 3 still holds true under this situation,
because the assumption of omnidirectional transmission range
is not there. In order for k-RNG to preserve k-connectivity,
we need to update the definition of k-RNG below.



Definition 12: (kth Relative Neighbor Graph (k-RNG))
Given n nodes in a 2D plane, the kth relative neighbor graph
is the graph where an edge exists between any two nodes u, v,
iff the communication link between u and v exists, and there
exist less than k nodes, w, satisfying 1) d(u,w) < d(u, v)
and d(v, w) < d(u, v); 2) the communication links (u,w) and
(v, w) exist.

With this updated definition of k-RNG, the proof of theo-
rem 1 can then be used. Thus, this updated k-RNG subgraph
preserves k-connectivity of the original graph.
Error Free Transmissions. To ensure correctness with un-
reliable communication models, some measures need to be
taken in the Voronoi-based approach. We do not go into
details as a similar discussion has been presented in [3] for
the variable radii 1-connected 1-coverage problem. The basic
idea is, 1) require positive confirmation before a node enters
sleeping mode; 2) underestimate N(I, l) in V-R assignment,
and making sleeping decision.

B. Comparison with Other Approaches with a Performance
Bound

The Voronoi-based approach is localized and distributed;
but it presents a heuristics. An approximation algorithm for
the VRKCKC problem remains an open problem. However, it
is possible to generalize the centralized greedy algorithm in
[3] to construct a variable radii 1-connected k-cover sensor set
within O(r log hn) factor of the optimal energy cost, where
r is the link radius (the maximum communication distance
between any two sensors whose sensing regions intersect) of
the network, h is the total number of sensing radius choices
available to a sensor node. An extended version of this paper
[35] includes the necessary arguments. This algorithm can be
distributed. Still, performance comparisons in [35] shows that
the Voronoi-based approach compares favorably for this 1-
connected k-cover case.

VI. Performance Evaluation

We built a specific simulator for the distributed algorithms,
and carried out experiments to evaluate the performance of the
proposed algorithms. The simulator randomly places sensors
within a given region. The simulator does not model any
link layer protocol or wireless channel characteristics. Thus,
all messages in the simulator are transmitted in an error-
free manner. While such a simulator models an idealized
communication subsystem, it is sufficient for our purpose of
comparing the performance of our proposed algorithms.
Cost Model. The sensing energy cost function depends on
the specific sensor type and environment, but is usually of the
form S(I)x, where S(I) is the assigned sensing radius and
x is a constant [36]. Similarly, the transmission energy cost
function is of the form T (I)y , where T (I) is the assigned
transmission radius and y is a constant between 2 to 4 [16]. For
our experiments, we chose x = y = 4. We assume that total
energy cost incurred (sensing and transmission) in keeping a
sensor node active for a unit time is:

E(I) = αS(I)4 + (1 − α)T (I)4 + C,

where α is a parameter that signifies relative weight of sensing
and transmission energies, and C is a constant signifying
a constant cost of keeping the sensor node active. In our
experiments, we use three different values of α viz. 0.1, 0.5,
and 0.9 to simulate different sensor types. For example, when
α is 0.1, the energy consumption due to sensing is relatively
much less than the energy consumption due to transmission.
We measure the performance of our algorithms for all these
three energy cost models.

Network and Battery Parameter Values. We run our ex-
periments with the following choice of parameter values.
The maximum sensing radius S∗ as well as the maximum
transmission radius T ∗ for each sensor node is chosen to
be 10. Each sensor can choose from 5 different sensing and
transmission radii: 2, 4, 6, 8, or 10. We randomly distribute
a certain number of sensor nodes in a query region of size
50× 50. The total size n of sensor network is varied between
150 to 600, representing sensor networks of varying sparsity,
from very sparse (barely connected) to very dense. In our
experiments, we set each sensor node’s battery power as
12,000,000 units, and the constant C in the energy cost
function is set at 2,000 units. If the sensing and transmission
radii of a sensor node are set to the maximum (10), the total
energy cost incurred in keeping the node active for a unit
time is 12,000 units. In a naive approach wherein all sensor
nodes are kept active with maximum sensing and transmission
radii, the sensor network will last for 1,000 time slots, for any
value of α. During the construction phase , the energy cost
incurred in transmitting a message is proportional to the size
of the message. We assume that an active sensor transmits 100
bytes of data in unit time; thus, the energy cost incurred in
transmitting a message of size � bytes during the construction
phase is (1 − α)104�/100 (note that during the construction
process, maximum transmission range is used). This indicates
that even for the same construction process, more energy is
consumed on sensor networks with smaller value α.

We measure the effectiveness of the Voronoi-based approach
by comparing it with three other heuristics.

1) COMPLETE KCONE – This is a straightforward
method to address this problem. All sensors keep active.
V-R assignment in Section V is used to assign sensing
radii; Cone based topology control [18] is used to assign
transmission radii.

2) COMPLETE KRNG – All sensors keep active. V-R
assignment in Section V is used to assign sensing radii;
k-RNG is used to assign transmission radii. By compar-
ing COMPLETE KRNG with COMPLETE KCONE,
we show the effectiveness of k-RNG over CBTC.

3) SLEEPING FIXED – In this method, the sleeping ben-
efits are calculated and nodes are turned inactive in the
same way as in the Voronoi-based approach. The only
difference is that the radii are fixed. All combinations of
possible sensing and transmission radii are tried in this
experiment, while the best result among them is picked.

In the Voronoi-based approach, to save communication



costs, we estimate sleeping benefit B(I) of a node I using
only the local kth voronoi diagram of I (i.e., we assume that
I has the same kth local voronoi diagrams as its local voronoi
neighbors).

We have conducted two sets of experiments. The first
set of experiments is to compare the performance of the
various algorithms in terms of the total energy cost of the 3-
connected 2-cover sensor set delivered by the algorithms. The
experiment results are presented in Figure 5. In the second
set of experiments, we compare the performance of these
algorithms in terms of their effectiveness in prolonging the
sensor network lifetime.

Energy Cost of the Sensor Cover. In Figure 5, we present
the energy cost of the 3-connected 2-cover returned by the
algorithms for varying network density. Naive scheme of
keeping all the sensors active using maximum transmission
and sensing power is not presented in these figures. As we
pointed out, the cost of this naive scheme is simply 12000∗n,
a much larger number than any of the shcemes we present
here. We can see that the Voronoi-based approach delivers the
most energy-efficient solution as expected.

COMPLETE KCONE and COMPLETE KRNG keep all
sensors active, so their solutions incur more energy cost than
Voronoi-based approach. This is particularly true, when the
network density is high. Between these two non-sleeping
schemes, COMPLETE KRNG is consistently more energy
efficient than COMPLETE KCONE. Because they both keep
all the sensors active while employing the same scheme in
assigning sensing radii, this saving in energy cost for COM-
PLETE KRNG over COMPLETE KCONE is purely from
transmission power control, resulting from Theorem 2. We can
see that as the relative weight of transmission cost increases (α
decreases), the difference between COMPLETE KRNG and
COMPLETE KCONE grows rapidly.

SLEEPING FIXED performs better than COM-
PLETE KRNG when the network density is relatively
high, in which case, a significant part of sensors can be
put to sleeping and thus energy cost can be saved. While
this saving is less obvious when the network density
is low. When the network density is low, a much less
percentage of sensors can satisfy the sleeping condition. As
a result, both COMPLETE KRNG and SLEEPING FIXED
have similar number of active sensors. In this situation,
COMPLETE KRNG shows superior performance over
SLEEPING FIXED because of the elaborate power control
scheme it employed. This explains the crossover of the
performance trends of the two schemes in the figures.

Note that the results shown here for SLEEPING FIXED
are the best one picked from all combinations of available
transmission and sensing radii levels. Still, our Voronoi-based
approach still consistently beats these best fixed radii results.
This demonstrates the need for adaptive ability to control
transmission and sensing ranges for energy conservation.

Network Lifetime: We run these algorithms to generate a
3-connected 2-cover, which remain active until some sensor

dies. Then in COMPLETE KCONE and COMPLETE KRNG,
the neighboring nodes reassign their sensing and transmis-
sion ranges to compensate for this; while in Voronoi-based
approach and SLEEPING FIXED, the dying sensor awakens
its neighboring sleeping sensors to sustain the 3-connected 2-
cover. The awakening of the sleeping sensors can be done
in a local manner, which is similar to [3]. As mentioned
before, employing the naive method, the network can last
1000 units of time under our settings. In Figure 6, we see
that the energy efficiency exhibited in the connected sensor
cover set really leads to a prolonged network lifetime. Again,
Voronoi-based approach prolongs the network lifetime more
effectively than all the others. COMPLETE KCONE exhibits
worst network lifetime than the others, which can be explained
by the fact that its generated sensor cover incurs signifcantly
more energy cost than the others. Again, COMPLETE KRNG
and SLEEPING FIXED show a similar trend as in the previous
set of experiments on energy cost. When the network is sparse,
COMPLETE KRNG is better; while when the network is
dense, SLEEPING FIXED shows better performance. Also,
we can see Voronoi-based approach performs well in exploit-
ing the network redundancy. It greatly improves the network
lifetime as the network size (redundancy) grows.

VII. Conclusions

In this paper, we have addressed the problem of building
a minimum-energy fault-tolerant connected sensor cover in
a sensor network in the most general form. The cover is
formed by choosing a subset of sensor nodes to keep active
and also adjusting their transmission and sensing ranges to an
appropriate value. The goal is to form a k1-connected network
of sensor nodes that is also able to provide a k2 coverage,
and does this with a minimum energy. The energy model
assumes that the energy expended by each sensor node is
sum of three components: a constant component modeling
the cost of keeping the sensor node alive, a transmission
power component that is a non-decreasing function of the
transmission range, and a similar sensing power component.
This very general modeling of a sensor network’s coverage
and connectivity is a contribution in this paper.

We propose a distributed and localized Voronoi-based al-
gorithm to solve the above variable radii k1-connected, k2-
coverage problem. The approach derives leverage from the
new notion of the k-RNG structure that is a generalization of
the well-known RNG structure. A distributed technique is used
to inactivate desirable nodes while preserving k-connectivity
of the remaining nodes. A set of simulations on random
sensor networks demonstrates the superiority of this technique
relative to other, simpler techniques for energy conservation,
including a technique that uses fixed transmission and sensing
ranges, but considers the best among all possible assignments.
While the evaluations have been done in a set of idealized
conditions, we present arguments that our technique applies
to environments where sensing and transmission ranges are
irregular and communication model is not error-free.
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Fig. 5. Total energy cost of 3-connected sensor 2-cover delivered by various algorithms for various network size.
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Fig. 6. Sensor network lifetime (3-connected 2-cover) for various distributed algorithms.
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