Selection of Views to Materialize in a Data Warehouse

Himanshu Gupta* Inderpal Singh Mumick
SUNY, Stony Brook Kirusa Inc.

Abstract

A data warehouse stores materialized views of data from one or more sources, with the
purpose of efficiently implementing decision-support or OLAP queries. One of the most
important decisions in designing a data warehouse is the selection of materialized views
to be maintained at the warehouse. The goal is to select an appropriate set of views
that minimizes total query response time and the cost of maintaining the selected views,
given a limited amount of resource, e.g., materialization time, storage space etc.

In this article, we have developed a theoretical framework for the general problem
of selection of views in a data warehouse. We present polynomial-time heuristics for
selection of views to optimize total query response time under a disk-space constraint,
for some important special cases of the general data warehouse scenario, viz.: (i) an AND
view graph, where each query/view has a unique evaluation, e.g., when a multiple-query
optimizer can be used to general a global evaluation plan for the queries, and (ii) an OR
view graph, in which any view can be computed from any one of its related views, e.g.,
data cubes. We present proofs showing that the algorithms are guaranteed to provide a
solution that is fairly close to (within a constant factor ratio of) the optimal solution. We
extend our heuristic to the general AND-OR view graphs. Finally, we address in detail
the view-selection problem under the maintenance cost constraint and present provably
competitive heuristics.

Keywords: Views, View Selection, Data Warehouse, Materialization.

1 Introduction

Decision support systems have rapidly become a key to gaining competitive advantage for
businesses. Business analysts want to run decision support applications to detect business
trends by mining the data stored in the information sources. Typically, the information sources
maintain historical information, and hence the databases tend to be very large and grow over

time. Also, the decision support applications run very complex queries over these information
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Figure 1: A typical data warehouse architecture

sources. The size of the information source databases and the complexity of queries can cause
queries to take unacceptably long to complete. Special purpose query optimization[l, 2, 3]
and indexing [4] techniques can reduce query response times to some extent. A commonly
used technique to achieve acceptable query response times (in the order of minutes) in such
situations is to precompute frequently asked queries and store them in a “data warehouse.”

In a typical organization, the information is stored in the form of multiple, independent,
and heterogeneous data sources. Functioning as a “data library,” a data warehouse makes
information readily available for querying and analysis. In essence, a data warehouse extracts,
integrates, and stores “relevant” information from independent information sources into a
central database. The information is stored at the warehouse in advance of the queries. In
such a system, user queries can be answered using the information stored at the warehouse and
need not be translated and shipped to the original source(s) for execution. Also, warehouse
data is available for queries even when the original information source(s) are inaccessible due
to real-time operations or updates.

Figure 1 illustrates the architecture of a typical data warehouse. The bottom of the
figure depicts the multiple information sources of interest. Near the top of the figure is the
data warehouse, where data that is relevant to the queries to be supported is derived and
integrated. Between the sources and the warehouse lie the source monitors and the integrator.
The monitors are responsible for automatically detecting changes in the source data, and
reporting them to the integrator. The integrator is responsible for bringing source data into
the warehouse, propagating changes in the source relations to the warehouse, and maintaining
the tables at the warehouse. Widom in [5] gives a nice overview of the technical issues that
arise in the different components of a data warehouse.

The information stored at the warehouse is in the form of derived views of data from



the sources. These views stored at the warehouse are often referred to as materialized views.
Materialized views can speed up the execution of many queries. Any query whose execution
plan can be rewritten to use a materialized view is subject to speed-up. For complex queries
involving large volumes of data, the speed-up possible using materialized views is dramatic:
from hours or days down to seconds or minutes. In fact, materialized views are regarded as
one of the primary means for managing performance in a data warehouse [6].

One of the most important issues in a data warehouse design is to select an appropriate
set of materialized views to store at the data warehouse. To support a required set of queries
at the warehouse, we materialize a set of views that are “closely-related” to the queries.
We cannot materialize all possible views, as we are constrained by some resource like disk
space, computation time, or maintenance cost. Hence, we need to select an appropriate set
of views to materialize under some resource constraint. The view-selection problem is defined
as selection of a set of views to materialize to minimize the query response time under some
resource constraint. In this article, we address the above described view-selection problem in

detail and present comprehensive solutions for various special cases and scenarios.

Article Organization. The rest of the article is organized as follows. In the next section, we
develop a theoretical framework for the general problem of selecting views to materialize in a
data warehouse. In the next two sections, we present competitive polynomial-time heuristics
for selection of views to optimize total query response time, for some important special cases
of the general data warehouse scenario, viz.: (i) an OR view graph, in which any view can be
computed from any one of its related views, e.g., data cubes, and (ii) an AND view graph,
where each query/view has a unique evaluation. For each of the two cases, we extend the
algorithms to a more general case when there are index structures associated with the views. In
Section 5, we address the view-selection problem in general AND-OR view graphs and present
provably competitive algorithms. For all the above described scenarios, we have considered
only disk-space as a resource constraint. Then, in Section 6, we look at the view-selection
problem under the maintenance-cost constraint. Finally, we end with related work on the

view-selection and some concluding remarks. Proofs of all the lemmas appear in Appendix A.

2 View-Selection Problem Formulation

2.1 AND-OR View Graphs

In this subsection, we develop a notion of an AND-OR view graph, which is one of the inputs
to the view-selection problem. We start by defining the notions of expression DAGs for queries

OT Views.



Definition 1 (Expression AND-DAG) An expression AND-DAG for a query or a view
V is a directed acyclic graph having the base relations as “sinks” (no outgoing edges) and
the node V as a “source” (no incoming edges). If a node/view u has outgoing edges to
nodes vy, vy,...,v;, then all of the views vy, vy,...,v; are required to compute u. This
dependence is indicated by drawing a semicircle, called an AND are, through the edges
(u,v1), (u,v2),...,(u,vr). Such an AND arc has an operator! and a cost associated with

it, which is the cost incurred during the computation of v from vy, v, ..., vs. a
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ORCENONBONONONONORO)
(@ (b)

Figure 2: a) An expression AND-DAG, b) An expression ANDOR-DAG
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An example of an expression AND-DAG is shown in Figure 2(a). Expression AND-DAGs
are more commonly referred to as “expression trees.” One inherent drawback of expression
AND-DAGs is that they do not depict alternative ways of evaluating a view. The expression
ANDOR-DAG, defined next, is a more general notion, which overcomes this shortcoming.
An expression ANDOR-DAG may have more than one AND arc at each node, making it an
AND/OR expression DAG.

Definition 2 (Expression ANDOR-DAG) An ezpression ANDOR-DAG for a view or a
query V' is a directed acyclic graph with V' as a source and the base relations as sinks. Each
nonsink node has associated with it one or more AND arcs, each binding a subset of its
outgoing edges. As in the previous definition, each AND arc has an operator and a cost
(called query-cost) associated with it. More than one AND arc at a node depicts multiple

ways of computing that node. O

Figure 2 shows an example of an expression AND-DAG as well as an expression ANDOR-
DAG. In Figure 2 (b), the node a can be computed either from the set of views {b,¢,d} or
{d,e, f}. The view a can also be computed from the set {j, k, f}, as d can be computed from

j or k and e can be computed from k.

!The operator associated with the AND arc is actually a k-ary function involving operations like join,

union, aggregation etc.



Definition 3 (AND-OR View Graph) A directed acyclic graph GG having the base relations
as the sinks is called an AND-OR view graph for the views (or queries) Vi, Va, ..., V; if for
each V;, there is a subgraph? (; in (7 that is an expression ANDOR-DAG for V;. Each node v
in an AND-OR view graph has the following parameters associated with it: space 5,, query-

frequency f, (frequency of the queries on v), update-frequency ¢, (frequency of updates on

v), and reading-cost R, (cost incurred in reading the materialized view v). O

Note that in an AND-OR view graph, if a view v can be computed from vy, vq,..., vy,
and a view u can be computed from the views v, uy, uq, ..., ug, then the view u can also be
computed from wuy, ug, ..., Uk, V1,V ..., 0.

Definition 4 (Evaluation Cost) The evaluation cost of an AND-DAG H embedded in an
AND-OR view graph (G is the sum of the costs associated with the AND arcs in H, plus the

sum of the reading costs associated with the sinks/leaves of H. O

2.2 Constructing an AND-OR View Graph

Given a set of queries q1, qa, . . ., g1 to be supported at a warehouse, constructing an AND-OR
view graph for the queries involves: (i) constructing an expression ANDOR-DAG D; for each
query ¢;, (ii) “merging” the constructed expression ANDOR-DAGs to construct an AND-OR
view graph G, and (iii) obtaining the view parameters. The process of constructing an AND-
OR view graph for a given set of queries has been addressed comprehensively by Roussopoulos
[7]. Below, we briefly discuss each of the three steps involved in construction of an AND-OR
view graph. The reader is referred to [7] for further details.

Constructing Query ANDOR-DAGs. Constructing an ANDOR-DAG D; for a given
query ¢; involves identifying multiple useful ways of evaluating a query from the given base
relations, in the presense of other queries and views. A query/view can be evaluated using
multiple expression trees depending on the sequence/order of applying the operators. The
problem of building an ANDOR-DAG representing alternate ways of computing a query in
the presence of other view definitions and base relations has been addressed by Roussopoulos
in [7]. For the special case of AND view graphs, wherein, each AND-arc binds all the outgoing
edges from a node, only one evaluation tree for each query is required. Hence, multi-query

optimization techniques [8, 9] can be directly used to derive a unique evaluation tree for

ZAn AND-OR view graph H is called a subgraph of an AND-OR view graph G if V(H) C V(G), E(H) C
E(G), and each edge e; in H is bound with the same set of edges through an AND-arc as it is bound through
an AND-arc in G. That is, if e1,es € F(G), e; € E(H), and e; and ey are bound by an AND-arc (which may
bind other edges too) in G, then e; € E(H), and e; and ey are bound with the same AND-arc in H. For
example, Figure 2 (a) is a subgraph of Figure 2 (b), but Figure 2 (a) without the edge (¢, h) is not.



each query, such that the overall performance is optimized. For the special case of OR view
graphs, wherein, each AND-arc binds exactly one edge, constructing an AND-OR view graph
is equivalent to computing the binary derivability relationship between subexpression views
of the queries [10, 11].

Constructing AND-OR View Graph. An AND-OR view graph G for the set of queries
can be constructed by integrating or merging the expression ANDOR-DAGs Dy, D, ..., Dy
iteratively. Let GG;_; be the AND-OR view graph formed by integrating the ANDOR-DAGs
Dy, ..., D;_1. The process of integration the ANDOR-DAG D; with (G;_; essentially involves:
(i) matching nodes in D; with nodes in (;_; that represent same relational expressions, (ii)
identifying whether an unmatched node in D; can be derived from a set of nodes in G;_; or
vice-versa, and (iii) embedding the derived relationships identified in (ii). Each node in the

final AND-OR view graph G} will represent a view that could be selected for materialization.

Computing View Parameters. The query frequencies (f,) are computed based on the
query workload of the data warehouse. A simple method for computing query frequencies
is based on the established query usage patterns, if the system has been operational long
enough to establish valid patterns. Update frequencies (g,) of a view is the sum of the
update frequencies of all the base relations used for derivation of the view. Here, we only
consider direct updates on base relations and assume that the updates on base relations are
independent. The space parameter S, for a view v can be determined by computing the

expected number of tuples in the view.

The above discussion gives a general idea of constructing an AND-OR view graph for a
given set of queries, based on previous works [7, 8,10, 11]. In the rest of the article, we assume
that we are given a view graph and we focus our attention on selecting an optimal set of views

for materialization from a given view graph.

2.3 The View-Selection Problem

Given an AND-OR view graph G and a quantity S (available space), the view-selection problem
is to select a set of views M, a subset of the nodes in (5, that minimizes the total query response
time, under the constraint that the total space occupied by M is less than S. In Section 6,
we will address the problem of selection of views under a maintenance-cost constraint.

More formally, let Q(v, M) denote the cost of answering a query v (also a node of () using
the set M of materialized views in the given view graph &, and UC'(v, M)? be the maintenance
cost (due to updates to base tables) for the view v in the presence of the set of materialized

views M. We will always assume that the set of sinks L is also available for querying and

3The function symbol UC denotes update cost.



maintenance purposes. Then, given an AND-OR view graph G for queries ¢y,...,q; and a
quantity S, the view-selection problem is to select a set of views/nodes M = {V;, V,,..., V. },

that minimizes 7(G, M), where

k m
(G, M) = Efan(QiaM) + ZQVL‘UO(VZHM)?
=1 =1
under the constraint that > .55, < 5. Recall that S, is the space occupied by the view v,
The view-selection problem is NP-hard even for the special case of an AND-OR graph
where each AND arc binds exactly one edge, and the update frequencies are zero. There is a

straightforward reduction from minimum set cover.

Computing Q(v,M). The cost of answering a query v in presence of a set of (materialized)
views M, Q(v, M), in an AND-OR view graph (i is actually the evaluation cost of the cheapest
AND-DAG H, for v, such that H, is a subgraph of (G and the sinks of H, belong to the set
M U L, where L is the set of sinks in (G. Again, we have assumed that L, the set of sinks in
(, is available for computation as it represents the set of base tables at the source(s). Thus,
the value Q(v, @) is the cost of answering a query on v directly from the source(s). For special
AND-OR view graphs (called OR view graphs), wherein each AND arc binds exactly one edge,
the query cost Q(v, M) is the minimum query-length of a path from v to some u € (M U L),
where the query-length of a path from v to u is defined as R,,, the reading cost of u, plus the
sum of the query-costs associated with the edges on the path.

In this article, we have ignored maintenance costs except in Section 4.3 and Section 6.
Section 4.3 incorporates update costs in the objective function 7, while Section 6. considers the
view-selection problem under the maintenance-cost constraint. As the results in Section 4.3
are independent of maintenance cost models, we defer the discussion on maintenance cost

models and computation of UC(v, M) until Section 6.

2.4 Benefit of a Set of Selected Views

In this subsection, we define the notion of a “benefit” function, which is central to the devel-
opment of algorithms presented in this article. In the following two sections, we will present
approximation algorithms for some special cases of the general view-selection problem.

Let (' be an arbitrary set of views in a view graph (G. The benefit of C' with respect to M, an
already selected set of views, is denoted by B(C, M) and is defined as 7(G, M) —7(G, M UC),
where 7 is the function defined above. The benefit of ' per unit space with respect to M is
B(C,M)/S(C), where S(C') is the space occupied by the views in C. Also, B(C, ¢) is called
the absolute benefit of the set C'.



2.4.1 Monotonicity Property

The benefit function B is said to satisfy the monotonicity property for M with respect to sets
(of views) O1,04,...,0,, if B(O1UOy...UO,,, M) < =" B(O;, M).*

The monotonicity property of the benefit function is important for the greedy heuristics
to deliver competitive (within a constant factor of optimal) solutions. For a given instance
of AND-OR view graph, if the optimal solution O can be partitioned into disjoint subsets of
views Oy, Oy, ..., 0, such that the benefit function satisfies the monotonicity property w.r.t.
01,04, ...,0,,, then we guide the greedy heuristic to select, at each stage, an optimal set (of
views) of type that includes O; for all © < m. Such a greedy heuristic is guaranteed to deliver a
solution whose benefit is at least 63% of the optimal benefit, as we show later. In the following
two sections, we discuss various special cases of AND-OR view graphs (OR view graphs and

AND view graphs) wherein the benefit function satisfies the monotonicity property.

3 OR View Graphs

In this section, we consider a special case of the view-selection problem for AND-OR view
graphs. We restrict our attention to those AND-OR view graphs in which each AND arc
binds exactly one edge. For such restricted AND-OR view graphs, we can remove AND arcs
altogether, and associate the costs and the operators with the corresponding edges in the
graph. We call such a AND-OR view graph G an OR view graph, where a node can be

computed from any one of its children.

3.1 Motivation

The OR view graphs arise in many useful practical applications when computation of a view
depends on only one other view. A simple application is when all the views and queries
involved are aggregate queries over the base data. Data cubes is another example of OR view

graphs.

Data Cubes. In a data cube users can view the data as multidimensional data. Data
cubes are databases where a critical value, e.g., sales, is organized by several dimensions,
for example, sales of automobiles organized by model, color, day of sale, place of sale, age of
purchaser and so on. The metric of interest is called the measure attribute, which is sales in
the above example. Queries in such a system are of the OLAP (On line Analytic Processing)
type, usually asking for a breakdown of sales by some of the dimensions. Therefore, we can

associate an aggregate view, called a cube, V, with each subset o of the dimensions. A view

*Considering m = 2 is sufficient, but we state it for general m so that its application is direct.



V, is essentially a result of a “Select a, Sum(sales); group by «” SQL query over the base
table. Hence, an aggregate view V,, can be computed from a view Vj iff o C 3.

In a data cube, the AND-OR view graph is an OR view graph, as for each view there are
zero or more ways to construct it from other views, but each way involves only one other view.
Data cubes being a special case of OR view graphs, all the results developed in this section
apply to data cubes. As OLAP databases have very few or no updates at the base table, we

assume that there are no maintenance costs at the materialized views throughout this section.

3.2 Selection of Views in an OR View Graph

In this subsection, we present heuristics for solving the view-selection problem in OR view

graphs without maintenance costs.

Problem: Given an OR view graph G without updates and a quantity S , find a set of views
M that minimizes the quantity 7(G, M), under the constraint that the total space occupied
by the views in M is at most S.

3.2.1 Greedy Algorithm

We present a simple greedy heuristic for selecting views. At each stage, we select a view which
has the maximum benefit per unit space at that stage. The greedy heuristic is presented below

as Algorithm 1.

Algorithm 1 Greedy Algorithm

Given: (G, an AND-OR view graph, and S, the space constraint.
BEGIN
M = ¢; /* M = set of structures selected so far. */
while (S(M) < 5)
Let C' be the view that has the maximum benefit per unit space with respect to M.
M=MUC;
end while;

return M;

END. &

The running time of the greedy algorithm is O(kn?), where n is the number of nodes in the

graph and k is the number of stages used by the algorithm.

Observation 1 In an OR view graph without updates, the benefit function B salisfies the
monotonicity property for any M with respect to arbitrary set of views O1,0q,...,0,,.



Theorem 1 For an OR view graph G without updates and a quantity S, the greedy algorithm
produces a solution M that uses at most S +r units of space, where r is the size of the largest

view in (. Also, the absolute benefit of M is al least (1 — 1/e) times the optimal benefit

achievable using as much space as that used by M.

Proof: It is easy to see that the space used by the greedy algorithm solution, S(M), is at
most S 4 r units. Let & = S(M). Let the optimal solution using k& units of space be O and
the absolute benefit of O be B.

Consider a stage at which the greedy algorithm has already chosen a set G; occupying [
units of space with “incremental” benefits ay,as,...,a;. Incremental benefit a; is defined as
the increase in benefit of M, when the ¢** unit of space is added to M. Thus, the absolute
benefit of (7 is 25:1 a;. Surely the absolute benefit of the set O U G is at least B. Therefore,
the benefit of the set O with respect to G, B(O, ), is at least B — Y'_, a;.

Let O = {01,0;,,...,0,}. By the monotonicity property of the benefit function for the
views O;’s, B(O,G;) < ¥, B(O;,G;). Now, we show by contradiction that there exists
a view O; in O such that B(O;,G)/|0;] > B(O,G))/k. Let us assume that there is no
such view O; in O. Then, B(0;,G)) < (B(O,G))/k) * |0O;| for every view O; € O. Thus,
> 0,0 B(Oj,Gr) < (B(O,Gh)[k) * Y0,e0 |0i| = B(O,G)), which violates the monotonicity
property of the benefit function for the views O; € O. Therefore, there exists a view O; in O
such that B(O;,G1)/]0:] > B(O,G)/k > (B — Y, ai)/k.

The benefit per unit space with respect to G; of the view (' selected by the algorithm is at
least that of O;, which is at least B(O, G})/k = (B—3Y__, a;)/k, as shown above. Distributing
the benefit of C' over each of its unit spaces equally (for the purpose of analysis), we get
aiy; > (B =Y, a;)/k, for 0 < j < S(C). As the above analysis is true for each view C
selected at any stage, we have

j—1
ngaj—l—z:ai for 0 <y <k.
i=1
Multiplying the j** equation by (k;—l)k_j and adding all the equations, we get
A/B>1— (5% >1-1/e, where A = Yi_, a; is the absolute benefit of M. .

If we are required not to exceed the space constraint S, then we consider for selection only
those views that have a space of less than S, and pick the better of the following two solutions:
(i) greedy solution of Algorithm 1 minus the last view added, or (ii) the solution consisting of
just one view that has the highest query benefit. It can be easily shown that the better of the
above two solutions will have a query benefit of at least (1 —1/e)/2 times the optimal benefit
achievable.

Feige in [12] showed that the minimum set-cover problem cannot be approximated within

a factor of (1—o0(1)) In n, where n is the number of elements, using a polynomial time algorithm

10



unless P = NP. There is a very natural reduction of the minimum set-cover problem to
our problem of view selection in OR view graphs. The reduction shows that no polynomial
time algorithm for the view-selection problem in OR view graphs can guarantee a solution of
better than 63% for all inputs unless P = NP.

3.3 OR View Graph with Indexes

In this section, we generalize the view-selection problem in an OR view graph by introducing
indexes for each node/view. As in the original OR view graph, a node can be computed from
any one of its children, but in the presence of indexes the cost of computation depends upon
the index being used to execute the operation. As indexes are built upon their corresponding
views, an index can be materialized only if its corresponding view has already been material-
ized. Thus, selecting an index without its view does not have any benefit, and the benefit of an
index actually increases with the materialization of its view. Hence, the benefit function may
not satisfy the monotonicity property for arbitrary sets of views and indexes. We use the term
structure to denote a view or an index. We assume that if an index is not materialized, then
it is never “computed” while answering user queries. In our earlier work [11], we determine
the search space of indexes to be considered for materialization.

In most commercial systems today, the views that are to be precomputed are selected first,
followed by the selection of the appropriate indexes on them. A trial-and-error approach is
used to divide the space available between the summary tables and the indexes. This two-step
process can perform very poorly. Since both views and indexes consume the same resource -
space - their selection should be done together for the most efficient use of resources. In this
section, we present a family of algorithms of increasing time complexities, and prove strong
performance bounds for them.

We need to introduce a slightly different cost model for the OR view graphs with indexes.
In an OR view graph with indexes, there may be multiple edges from a node u to v, possibly
one for each index of v. Instead of associating a cost with the edges, we associate a label
(¢,t;) with each edge from u to v. The label ¢;(z > 0) can be thought of as the cost incurred
in computing u from v using its i'* index. When i = 0,1, is the cost in computing u from v

without any of its indexes.

Problem: Given a quantity S and an OR view graph G with indexes. Associated with each
edge is a label (7,1;),7 > 0 as described above. Assume that there are no updates.
Find a set of structures M that minimizes the quantity 7(G, M), under the constraint that

the total space occupied by the structures in M is at most S.

11



3.3.1 Inner-Level Greedy Algorithm

The inner-level greedy algorithm works in stages. At each stage, it selects a subset €', which
consists of either a view and some of its indexes selected in a greedy manner, or a single index
whose view has already been selected in one of the previous stages.

Each stage can be thought of as consisting of two phases. In the first phase, for each view
v; we construct a set [(; which initially contains only the view. Then, one by one its indexes
are added to IG; in the order of their incremental benefits until the benefit per unit space of
IG; with respect to M, the set of structures selected till this stage, reaches its maximum.
That IG; having the maximum benefit per unit space with respect to M is chosen as C'. In
the second phase, an index whose benefit per unit space is the maximum with respect to M
is selected. The benefit per unit space of the selected index is compared with that of C', and
the better one is selected for addition to M. See Algorithm 2.

Algorithm 2 Inner-Level Greedy Algorithm

Given: (¢, a view graph with indexes, and S, the space constraint.

BEGIN
M = ¢; /% M = Set of structures selected so far */
while (S(M) < 9)
C = ¢ /* Set of structures to be selected */

for each view v; in M

IG = {v;}; /% IG = Set of v; and some of its indexes selected in a greedy manner. */

while (S(IG) < 9) /* Construct IG */
Let I;. be the index of v; whose benefit per unit space w.r.t. (M U () is maximum.
1G=1GU I

end while;
if (B(IG,M)/S(IG) > B(C,M)/|C]|)or C =¢
C =1aG,;
end for;
for each index [;; such that its view v; € M

if B(I;, M)/S(I;;) > B(C, M)/S(C)

C ={l};
end for;
M=MUC;
end while;
return M;
END. &

12



The running time of the inner-level greedy algorithm is O(k?m?), where m is the total
number of structures in the given OR view graph and k is the maximum number of structures

that can fit in S units of space, which in the worst case is 5.

Observation 2 In an OR view graph with indexes and without updates, the benefit function
B satisfies the monotonicity property for any M with respect to arbitrary sets of structures

01,04, ...,0,,, where each O; consists of a view and some of ils indexes.

Theorem 2 For an OR view graph with indexes and a given quantity S, the inner-level greedy
algorithm (Algorithm 2) produces a solution M that uses at most 25 units of space. Also, the
absolute benefit of M is al least (1 — 1/e%%%) = 0.467 of the optimal benefit achievable using
as much space as that used by M, assuming thal no structure occupies more than S units of

space.

Proof: It is easy to see that S(M) < 2S. Let k = |M|. Let the optimal solution be O, such
that S(O) = k and the absolute benefit of O be B.
Consider a stage at which the inner-level greedy algorithm has already chosen a set G

occupying [ units of space with incremental benefits ay, as, as.....a;. The absolute benefit of
the set O UG is at least B. Therefore, the benefit of the set O with respect to G}, B(O, ),
is at least B — 3°\_, a;.

If O contains m views, it can be split into m disjoint sets Oy, s, ..., O,,, such that each
O; consists of a view V; and its indexes in O. By the monotonicity property of the benefit
function w.r.t. the sets Oq,...,0,,, B(O,G;) < ¥%, B(O;,G)). Now, it is easy to show by
contradiction that there exists at least one O, such that B(O;,G)/S(0;) > B(O,G))/k (else
B(O,Gh) > ¥", B(O;,GY)).

In this paragraph, we show that the benefit per unit space of the set €, selected by the
inner-level greedy algorithm at this stage, is at least 0.63 times B(O;, G1)/S(0;). Without loss
of generality, we assume that the view V; in O; has not been selected.” Consider the greedy
solution G of the indexes of V; of space S(0;) — S(V;), when G;UV; has already been selected.
The benefit of G is at least 63% of the optimal, from the result of Theorem 1. Hence,

B(G,G1 U {Vi}) > 0.63B(0; — {Vik, G U {Vi}),
as O; — {V;} is also a solution (possibly non-optimal). Now,
B(GU{Vi},Gi) = B(V;,Gi)+ B(G, G U{Vi})
> B(VZ, Gz) + 0633(02 — {VZ}, G U {VZ})

> 0.63B(0:, Gy)

51f the view V; € O; has already been selected, then C is at least as good as O;’s best index not yet selected.
In that case, the benefit per unit space of C' is obviously at least B(O;, G;)/S(0;).
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As the inner-level greedy algorithm, while selecting indexes greedily, stops when the benefit
per unit space of ' becomes maximum, the benefit per unit space of C' is at least that of
G U {V;}. Therefore, B(C,G))/|C| > B(GU{V},G)/S(O;) > 0.63B(0;,G1)/S(0;).

Since, O; is such that B(O;,G;)/S(0;) > B(O,G)) [k, weget B(C,G)/|C| > 0.63B(0O,G))/k >
0.63(B — Y!_, a;)/k. Now, let k' = 0.63. Distributing the benefit of C' over each of its unit
spaces equally (for the purposes of analysis), we get ajp; > k'(B—Y"\_, a;)/k, for 0 < j < S(C).

As the above analysis is true for each set C' selected at any stage, we have
j—1

k
Bgyaj—l—Zazi for 0 <j <k,

=1

Let k" = k/K'. Multiplying the j* equation by (k;lﬁl)k_j and adding all the equations,

we get A/B>1— (k;gﬁl)k >1-— (kl;cjl)k”k’ >1—1/e"% where A = 35 a; is the absolute

benefit of M. -

4 AND View Graph

In this section, we consider another special case of the view-selection problem in AND-OR
view graphs. Here, we assume that each AND arc binds all the outgoing edges from a node.
This case depicts the simplied scenario where each view has a unique way of being computed.
We call such a graph G an AND view graph, where a node is computed from all of its children.
As before, each AND arc has an operator and a cost associated with it. An AND view graph
for a set of queries is just a “merging” of the expression AND-DAGs of the queries. We omit
the proofs of the theorems in this section as they are similar to that of the corresponding

theorems in Section 3.

4.1 Motivation

The general view-selection problem can be approximated by this simplified problem of selecting
views in an AND view graph. Given a set of queries supported at the warehouse, instead of
constructing an AND-OR view graph as in Section 2.2, we could run a multiple query optimizer
[8, 13] to generate a global plan, which is essentially an AND view graph for the queries. Such a
global plan takes advantage of the common subexpressions among the queries. Figure 3 shows
an example of an AND view graph, a global plan, for the queries R XS XT and R XS XU.

4.2 View Selection in an AND View Graph

In this subsection, we show that the greedy algorithm (Algorithm 1) can also be applied to

solve the view-selection problem in AND view graphs without maintenance costs. In the later
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Figure 3: (a) An AND view graph. (b) An AND-OR view graph

subsection, we extend it to a special case of AND view graphs with maintenance costs.

Problem: Given an AND view graph G and a quantity .5, find a set of views M that minimizes
the quantity 7(G, M), under the constraint that the total space occupied by the views in M

is at most 5. Assume that there are no updates.

Observation 3 In an AND view graph without updates, the benefit function B salisfies the

monotonicity property for any M with respect to arbitrary sets of views O1, 04, ...,0y,.

Theorem 3 For an AND view graph G without updates and a given quantity S, the greedy
algorithm produces a solution M that uses alt most S + r units of space, where r is the size of
the largest view in G. Also, the absolute benefit of M is at least (1 — 1/e) times the optimal

benefit achievable using as much space as that used by M. .

4.3 Incorporating Maintenance Costs in 7

Unfortunately, the benefit function may not satisfy the monotonicity property when mainte-
nance costs are included in the objective function (7). To illustrate the nonmonotonicity of
the benefit function, consider a view ('; that helps in maintaining another view C5. Then, the
benefit of C; U 'y might be more than the sum of their benefits individually.

We show that when the update frequency at any node/view is less than its query frequency,
i.e., when the number of times a view is updated (number of batch updates) is less than than
the number of times it is queried, the benefit function does satisfy the monotonicity property
in AND view graphs. Thus, for this special case of AND view graph, the solution returned by
the greedy algorithm is guaranteed to have a benefit of at least 63% of the optimum benefit.

Lemma 1 In an AND view graph,® B(v,¢) > B(v, M) for any view v and a set of views M,
if the update frequency g, at any view x s less than ils query frequency f,. .

5The claim doesn’t hold for OR view graphs.
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Lemma 2 In an AND view graph, the benefit function B satisfies the monotonicity property
for any M with respect lo sets consisting of single views, if the update frequency g, al any

view v 18 less than its query frequency f,. .

Theorem 4 Consider an AND view graph G with updates, where for any view the update
frequency is less than its query frequency. For such a graph G, the greedy algorithm produces
a solution M whose absolute benefit is at least (1 — 1/e) times the optimal benefit achievable

using as much space as that used by M. .

4.4 AND View Graph With Indexes

As in the case of OR view graphs, we generalize the view-selection problem in AND view
graphs by introducing indexes for each node/view. As in the original AND view graph, a
node can be computed from all of its children, but in the presence of indexes the cost of
computation depends upon the indexes being used to execute the operation.

We need to introduce a slightly different cost model for the AND view graphs with indexes.
In an AND view graph with indexes, instead of associating costs with the arcs, we associate
a label (i,¢;) with each edge from u to v. The cost ¢; ( > 0)7 can be thought of as the cost
incurred in accessing the relation (as many times as required to compute u) at v using its '
index. In addition, we have a k-ary monotonically increasing cost function associated with
every arc that binds &k edges.

Consider a node u that has k£ outgoing edges to nodes vy, vq,...,v; and let the k-ary cost
function associated with the arc binding all these outgoing edges be f. Then, the cost of
computing u from all its children vy, vy, ..., vy using their 7y, 1,,...,i%" indexes respectively is

Sty tiy, .., 1), where there is an edge from u to v;, for 0 < j < k, with a label (7}, ;).

Problem: Given a quantity S and an AND view graph GG with indexes, find a set of structures
M that minimizes the quantity 7(G, M), under the constraint that the total space occupied

by the structures (views and indexes) in M is at most S. Assume that there are no updates.

Observation 4 [n an AND view graph with indexes and withoul updales, the benefit function
B satisfies the monotonicity property for any M with respect to disjoint sets of structures

O1,...,0,,, where each O; consists of a view and some of its indexes.

Theorem 5 For an AND graph, the inner-level greedy algorithm produces a solution M that
uses at most 2.5 unils of space. Also, the absolute benefit of M is at least (1 —1/€%%3) = 0.467
of the optimal benefit achievable using as much space as that used by M, assuming that no

structure occupies more than S units of space. .

“When i = 0, is the cost in accessing v without any of its indexes.
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5 View Selection in AND-OR View Graphs

In this section, we try to generalize our results developed in the previous sections to the
view-selection problem in general AND-OR view graphs. Unfortunately, we couldn’t devise a
polynomial time algorithm for the general AND-OR view graphs that delivers a competitive
solution. Instead, we present here an AO-greedy algorithm (a modification of the greedy
heuristic) that could take exponential time in the worst case, but has a performance guarantee
of 63%. We show that the AO-greedy algorithm developed here runs in polynomial time when
the view graph is an OR view graph. We also present a multi-level greedy algorithm which is
a generalization of the inner-level greedy algorithm (Algorithm 2). The proofs of theorems in
this section are somewhat similar to previous proofs and can also be found in [14].

We give a different formulation of the view-selection problem in AND-OR graphs, for the

sake of simplifying the presentation. First, we define the notion of query-view graphs.

Definition 5 (Query-View Graph) A query-view graph (i is a bipartite graph (Q U (, F),
where () is the set of queries to be supported at the warehouse and ( is a subset of the power
set of V, the set of views. An edge (q,0) is in F iff the query ¢ can be answered using the
views in the set o, and the cost associated with the edge is the cost incurred in answering ¢

using 0.® There is also a frequency f, associated with each query ¢ € ). We assume that
there is a set p € ( (the set of base tables) such that (¢,p) € £ for all ¢ € Q. O

Note that any given AND-OR view graph can be converted into an equivalent query-view
graph. The size of the resulting query-view graph is equal to the number of sets of views that
help answer a query, and may be exponential in the size of the original AND-OR view graph.

We now formulate the view-selection problem in a query-view graph.

Problem (View Selection in Query-View Graphs): Given a quantity S and a query-

view graph G = (( U @, F), select a set of views M C V that minimizes the total query
response time,? under the constraint that the total space occupied by the views in M is at

most S.

5.1 AO-Greedy Algorithm for Query-View Graphs

We define an inlersection graph F, of ¢ as a graph having ¢ and D as its set of vertices and
edges respectively, such that an edge (o, 3) € D if and only if the sets of views a and

intersect.

8A query-view graph can be looked upon as an OR graph, as a query ¢ € @ can be computed by any of
the set of views o where (q,0) € E.

°Though we ignore maintenance costs, it can be incorporated by adding additional nodes in (.
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The AO-greedy algorithm works in stages as follows. At each stage, the algorithm picks a
connected subgraph H of F; whose corresponding set of views Vi (union of the sets of views
corresponding to the vertices of H) offers the maximum benefit per unit space at that stage.
The set of views Vg is then added to M, the set of views already selected in previous stages.
The algorithm halts and returns M when the space occupied by M exceeds S.

The time complexity of the AO-greedy algorithm is exponential in the number of edges in
the intersection graph Fy. Thus, AO-greedy algorithm may be practical for query-view graphs
that have very sparse intersection graphs. To improve the running time, after the selection at
each stage, we can change the set ( by removing the selected views Vg from each element (a

set of views) in (. Graph F¢, for the next stage, is then reconstructed from the new (.

Lemma 3 An optimal solution O of the view-selection problem in query-view graph G =
(CUQ, F) can be partitioned into sets of views Oy, s, ..., Oy, such that each O; corresponds
to a connected subgraph in Fy, as defined above, and B(O, M) < 37, B(O;, M). .

Theorem 6 For a query-view graph and a quantity S, the AO-greedy algorithm produces a
solution M that uses at most 25 units of space. Also, the absolute benefit of M is at least
(1 —1/e) times the optimal benefit achievable using as much space as that used by M. .

The equivalent query-view graph G = (( U @, ) of an OR view graph is such that each
element o € ( consists of exactly one view and hence F; has zero edges. For such a graph
(7, the AO-greedy algorithm behaves exactly as the greedy algorithm (Algorithm 1), taking

polynomial time for OR view graphs.

5.2 Multi-Level Greedy Algorithm

In this section, we generalize the inner-level greedy algorithm (Algorithm 2) to multiple levels
of greedy selection in query-view graphs. We try to modify the AO-greedy algorithm for
query-view graphs in an attempt to improve its running time at the expense of its performance
guarantee.

Consider a query-view graph G = (@ U (, E) and the intersection graph F; of (. Let
F¢ have [ > 1 connected components and the let Gy, Gy, ..., G where G; = (Q U (;, F;) be
the corresponding query-view subgraphs of G. The multi-level inner greedy algorithm works
in stages. At each stage, it searches for a set of views W, in each G;, such that the benefit
per unit space of W; is maximum. Each set W; is computed by using the recursive function
InnerGreedy on (;. Among all W;’s, the set W; that has the maximum benefit per unit space
is added to the solution M being maintained. The solution M is returned when the total

space constraint has been consumed.
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The recursive function InnerGreedy works as follows. Let the input be the set of nodes I'.
Let us assume that there is a view v where v € o for each node ¢ in I'. If no such v exists, then
the InnerGreedy function does an exhaustive search (or run the AO-greedy algorithm) and
return a set of views that has the optimal benefit per unit space. If v exists, let I'1,'y,..., ",
be the sets corresponding to the connected components of the resulting intersection graph.
The set of views U, that has to be returned by the InnerGreedy function, is selected in the
following greedy manner. Initially the set U contains only v. Then, at each stage, we search
recursively in each I'; for a set of views .J; that has the maximum benefit per unit space. The
set .J; that has the maximum benefit per unit space is added to the set U being maintained.
We continue adding views to U until the total benefit per unit space of U cannot be further
improved. At that point, the set U is returned.

The multi-level (r-level) greedy algorithm and the InnerGreedy function is shown below
as Algorithm 3.

Algorithm 3  Multi-level (r-level) Greedy Algorithm
Given: A query-view graph GG = (Q U ¢, F) and the space constraint S.
BEGIN
M = ¢; /* M = set of structures selected so far. */
while (S(M) < 5)
Let Gy, Gy, ..., G be the connected components of the intersection graph F and

let (q,...,(n be the corresponding subsets of (.
For each 1 < m, W; = InnerGreedy(r, (;, M );
Let W be the W, that has the maximum benefit per unit space;
M=MUW;
Reduce ¢ by removing the views in W from each of its elements;

end while;

return M;
END.
Function InnerGreedy(r,I', M) /* Returns a set of views U that has the best
benefit per unit space. The main inputs (G and S are globally defined. */
BEGIN

If r =0, pick U by doing exhaustive search;
Let Fr be the intersection graph of I'.
Let v be such that for all c € I', v € 0.
If no such v exists, pick U by doing exhaustive search.
Let I'y,...,I',, be the corresponding subsets of T’

obtained after removing the view v from each element.

P=0; U={v}
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while (S(U) < 5)
For each 1, let .J; = InnerGreedy(r — 1,1';, (M U U));
Let J be the J; with the maximum benefit per unit space.
if (B(UUJ M)/ S(UUJ)< BU,M)/B(U))
return U;
U=UUJ;
end while;

return U.

END. &

Lemma 4 The InnerGreedy function with the first parameter value equal to r delivers a so-
lution U whose benefit per unit space is at least g(r) of the optimal benefit per unit space
achievable. The function g(r) is defined recursively as g(r) =1 —1/e?"=Y and g(0) = 1. 4

Theorem 7 For a query-view graph G and a given quantity S, the r-level greedy algorithm
delivers a solution M thal uses at most 25 units of space. Also, the benefit of M is at least
g(r+1) times the optimal benefit achievable using as much space as that used by M, assuming

that no view occupies more than S units of space. x

For a given instance one could estimate the value of r such that at the r* level the graphs
F; are small constant-size graphs. The last level would then take only a constant amount of
time. The r-level greedy algorithm takes O((kn)*") time, excluding the time taken at the final
level, where k is the maximum number of views that can fit in S units of space. Also, the
values of the function g(r) for increasing values of r are 1, 0.63, 0.46, 0.37, 0.31, 0.26, 0.23
and so on.

The equivalent query-view graph G = (( U @, F) of an OR view graph with indexes is
such that each element o € ( consists of a single view and one of its indexes. For such a query-
view graph (G, the 1-level greedy algorithm behaves exactly the same as the inner-level greedy
algorithm (Algorithm 2) on OR view graphs with indexes. The 2-level greedy algorithm is
very well suited for the case of OR graph with index, where even the indexes are indexed.
So, r-level greedy algorithm is well suited for OR or AND view graphs with r-level indexing

schemes.

6 View-Selection Under a Maintenance Cost Constraint

In the previous sections, we have looked at the view-selection problem under the disk-space

constraint.!® Now, we consider the view-selection problem under the constraint that the

10Gection 4.3 only incorporated maintenance costs in the objective function (7).
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selected set of views incur less than a given amount of total maintenance time. Hereafter, we
will refer to this problem as the maintenance-cost view-selection problem.

In practice, the real constraining factor that prevents us from materializing everything at
the warehouse is the maintenance time incurred in keeping the materialized views up to date
at the warehouse. Usually, changes to the source data are queued and propagated periodically
to the warehouse views in a large batch update transaction. The update transaction is usually
done overnight, so that the warehouse is available for querying and analysis during the day
time. Hence, there is a constraint on the time that can be allotted to the maintenance of
materialized views. Thus, the maintenance-cost view-selection problem is of much practical

importance.

Section Organization. We start with a formal definition of the view-selection problem under
the maintenance cost constraint. Section 6.2 shows how to extend view graphs to incorporate
maintenance costs. We present our approximation algorithm for the maintenance-cost view-
selection problem in Section 6.3. We end the section with experimental results that indicate
that the proposed greedy heuristic almost always returns an optimal solution for OR view

graphs and runs must faster than the A* heuristic.

6.1 The Maintenance-Cost View-Selection Problem

In this section, we present a formal definition of the maintenance-cost view-selection problem,
which is to select a set of views in order to minimize the total query response time under a
given maintenance-cost constraint.

Given an AND-OR view graph G and a quantity S (available maintenance time), the
maintenance-cost view-selection problem is to select a set of views M, a subset of the nodes
in (¢, that minimizes the total query response time such that the total maintenance time of
the set M is less than S.

Let @Q(v, M) denote the cost of answering a query v (also a node of () in the presence
of a set M of materialized views. As defined in the previous section, let UC(v, M) is the
cost of maintaining a materialized view v in presence of a set M of materialized views. The
maintenance-cost view-selection problem is formally formulated as follows. Given an AND-
OR view graph (G and a quantity 5, the maintenance-cost view-selection problem is to select

a set of views/nodes M, that minimizes the objective function (G, M), where

T(Ga M) = E va(UvM)a

veV(G)

under the constraint that U(M) < S, where U(M), the total maintenance time, is defined as

UM)=> ¢UC(v,M).

veEM
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The view-selection problem under a disk-space constraint can be easily shown to be NP-
hard, as there is a straightforward reduction [15] from the minimum set cover problem. The
view-selection problem under a disk-space constraint is a special case of the maintenance-cost
view-selection problem, when the maintenance cost of each view remains constant. Thus,
the maintenance-cost view-selection problem, which is a more general problem, is trivially
NP-hard.

Space vs. Maintenance-Cost constraint. The main difficultly in the maintenance-cost
view-selection problem arises from the fact that the maintenance cost of a view v depends on
the set of other materialized views, whereas in the space-constraint view-selection problem the
space associated with a view remains constant. Thus, even when the query-benefit function
satisfies the monotonicity property (Section 2.4.1), the query-benefit per unit of maintenance-
cost of a view can actually increase, since the maintenance cost of a view can decrease with the
selection of other views. This nonmonotonic behavior of the query-benefit per unit constraint
function can cause the query-benefit per unit maintenance-cost of two “dependent” views
to be sometimes much greater than the query-benefit per unit maintenance-cost of either
of the individual views. Thus, the simple greedy approach of selecting the best individual
view at each stage can perform arbitrarily bad. Example 2 in Section 6.3 illustrates the above
described nonmonotonic behavior of the query-benefit per unit maintenance-cost function and

shows that the simple greedy approach could deliver an arbitrarily bad solution.

6.2 Incorporating Maintenance Costs in View Graphs

We need to incorporate maintenance costs in the definition of AND-OR view graphs, so that
the input to the view-selection maintenance-cost problem is complete. So, with each AND-OR
graph defined there is a maintenance-cost function UC" associated with it. The function UC'
is such that for a view v and a set of views M, UC(v, M) gives the cost of maintaining v in
presence of the set M of materialized views. We assume that the set L of base relations in GG
is always available. In this article, we do not discuss various maintenance cost models possible
for an AND-OR view graph, and hence we assume that the function UC' is given as part of
an input with the AND-OR graph.

Maintenance Costs in OR View Graphs. In case of OR view graphs, instead of the
maintenance cost function UC' for the graph, there is a maintenance-cost value associated
with each edge (u,v), which is the maintenance cost incurred in maintaining u using the
materialized view v. Figure 4 shows an example of an OR view graph G with the associated
maintenance-costs. In OR view graphs with maintenance costs, let us define maintenance-

length of a path in the OR graph as the sum of the maintenance-costs associated with the edges

22



v
8
Vg Vy

8 10
v 7 Maintenance-cost of edges (V4, B) and (V5 , B) = 4.
1 V2 ©°11  All other maintenance and query costs are 0
All query and update frequencies =1
L abels associated with nodes are their

e 12 reading-costs.

Figure 4: G: An OR view graph

on the path.!'’ Then, the maintenance cost UC(v, M) is equal to the minimum maintenance-
length of some path from v to another node w in (M U L). The above characterization of
UC(v, M) in OR view graphs is without any loss of generality of a maintenance-cost model,
because in OR view graphs a view u uses at most one view to help maintain itself.

In the following example, we illustrate how to compute Q(v, M) and UC(v, M) on OR

view graphs.

EXAMPLE 1 Consider the OR view graph G of Figure 4, where B is the base table and
Vi,..., Vs are the views. The maintenance-costs and query-costs associated with each edge
is zero, except for the maintenance-cost of 4 associated with the edges (Vi, B) and (Vz, B).
Also, all query and update frequencies are uniformly 1. The label associated with each of the
nodes in G is the reading-cost of the node. Also, the set of sinks . = {B}.

In the OR view graph G, Q(V;,¢) = 12 for all ¢ < 5, because as the query-costs are all
zero, the minimum query-length of a path from V; to B is just the reading-cost of B. Note

that Q(B,¢) = 12. Also, as the minimum maintenance-length of a path from a view V; to B
is 4, UC(V;,¢) = 4 for all « < 5. O

6.3 Inverted-Tree Greedy Algorithm

In this section, we present a competitive greedy algorithm called the Inverted-Tree Greedy Al-
gorithm which delivers a near-optimal solution for the maintenance-cost view-selection prob-
lem in OR view graphs.

One of the key notions required in designing a greedy algorithm for selection of views is
the notion of the “most beneficial” view. In the greedy heuristics proposed in Section 2 for

selection of views to materialize under a space constraint, views are selected in order of their

Note that the maintenance-length doesn’t include the reading cost of the destination as in the query-length

of a path.
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“query benefits” per unit space consumed. We now define a similar notion of benefit for the

maintenance-cost view-selection problem addressed in this section.

Most Beneficial View. Consider an OR view graph G. At a stage, when a set of views
M has already been selected for materialization, the query benefit B(C, M) associated with
a set of views C' with respect to M is defined as 7(G, M) — 7(G, M U C'). We define the
effective maintenance-cost EU(C, M) of C with respect to M as U(M U C') — U(M).'? Based
on these two notions, we define the view that has the most query-benefit per unit effective
maintenance-cost with respect to M as the most beneficial view for greedy selection at the
stage when the set M has already been selected for materialization.

We illustrate through an example that a simple greedy algorithm, that at each stage selects

the most beneficial view, as defined above, could deliver an arbitrarily bad solution.

EXAMPLE 2 Consider the OR view graph G shown in Figure 4. We assume that the base
relation B is materialized and we consider the case when the maintenance-cost constraint is
4 units.

We first compute the query benefit of V] at the initial stage when only the base relation
B is available (materialized). Recall from Example 1 that Q(V;,¢) = 12 for all ¢ < 5 and
Q(B,¢) = 12. Thus, 7(G,¢) = 12 x 6 = 72, as all the query frequencies are 1. Also,
Q(Vi,{Vi}) = 7, as the reading-cost of Vi is 7, Q(V;,{Vi}) = 12 for « = 2,3,4,5, and
Q(B,{Vi}) = 12. Thus, 7(G,{Vi}) = 12 x 5+ 7 = 67 and thus, the initial query benefit of V}
is 72 — 67 = 5. Similarly, the initial query benefits of each of the views V5, V5, Vj, and V5 can
be computed to be 4.

Also, U{V;}) = UC(V;,{Vi}) = 4 as the minimum maintenance-length of a path from any
V; to B is 4. Thus, the solution returned by the simple greedy algorithm, that picks the most
beneficial view, as defined above, at each stage, is {V;}.

It is easy to see that the optimal solution is {V3, V3, V4, V5 } with a query benefit of 11 and
a total maintenance time of 4. To demonstrate the nonmonotonic behavior of the benefit
per unit maintenance-cost function, observe that the query-benefits per unit maintenance-cost
of sets {Vo}, {Vs}, {V2, V5} are 1, 1, and 7/4 respectively. This nonmonotonic behavior is the
reason why the simple greedy algorithm that selects views on the basis of their query-benefits
per unit maintenance-cost can deliver an arbitrarily bad solution.

Figure 5 shows an extended example where the optimal solution can be made to have an
arbitrarily high query benefit, while keeping the simple greedy solution unchanged. Initially,
the query benefit of any odd numbered V; is 12 -3 = 9, while the query benefit of any even
numbered V; is 0. Also, the maintenance cost of any V; is 4. Hence, the simple greedy

algorithm starts by selecting {V1}. As the maintenance cost constraint is 4 units, the solution

12The effective maintenance-cost may be negative. The results in this section hold nevertheless.
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Figure 5: An OR view graph, H, for which simple greedy performs arbitrarily bad

returned by the simple greedy algorithm is {V;}. The optimal solution is {V5, V5,..., V5,}

with a huge query benefit, but a maintenance cost of only 4. a

The above example shows that an appropriate definition of benefit is not enough to guar-
antee a good solution, and that selecting the most beneficial view at each stage can lead to a
very bad greedy strategy.

Note that the nodes in the OR view graphs G and H, presented in Figure 4 and Figure 5
respectively, can be easily mapped into real queries involving aggregations over the base data
B. The query-costs associated with the edges in G and H depict the linear cost model, where
the cost of answering a query on v using its descendant w is directly proportional to the size
of the view u, which in our model of OR view graphs is represented by the reading-cost of w.
Notice that the minimum query-length of a path from u to v in G or ‘H is R,, the reading-
cost of v. As zero maintenance-costs in the OR view graphs G and H can be replaced by
extremely small quantities, the OR view graphs G and H depict the plausible scenario when
the cost of maintaining a view u from a materialized view v is negligible in comparison to the

maintenance cost incurred in maintaining a view u directly from the base data B.

Definition 6 (Inverted Tree Set) A set of nodes R is defined to be an inverted tree set in
a directed graph G if there is a subgraph (not necessarily induced) Tx in the transitive closure

of G such that the set of vertices of T is R, and the inverse graph'® of T is a tree.'*

13The inverse of a directed graph is the graph with its edges reversed.
4Here, by a tree we mean a connected graph wherein each vertex except the root has exactly one incoming

edge.

25



In the OR view graph G of Figure 4, any subset of {V5, V3, V4, V5} that includes V; forms an
inverted tree set. Note that {Vj, V5} is forms an inverted tree set. The Tg graph corresponding
to the inverted tree set R = {V3, V5, V5} has the edges (V3, V5) and (Vz, V3) only. O

The motivation for the inverted tree set comes from the following observation, which we
prove in Lemma 5. In an OR view graph, an arbitrary set O (in particular an optimal solution
0), can be partitioned into inverted tree sets such that the effective maintenance-cost of O
with respect to an already materialized set M is greater than the sum of effective-costs of
inverted tree sets with respect to M.

Based on the notion of an inverted tree set, we develop a greedy heuristic called the
Inverted-Tree Greedy Algorithm which, at each stage, considers all inverted tree sets in the
given view graph and selects the inverted tree set that has the most query-benefit per unit

effective maintenance-cost.

Algorithm 4 Inverted-Tree Greedy Algorithm

Given: An OR view graph ((7), and a total view maintenance time constraint
BEGIN
M = ¢; Bo =0;
repeat
for each inverted tree set of views 7" in G such that TN M = ¢
if (FU(T,M)<S)and (B(T,M)/EU(T,M) > Bc¢)
Be = B(T,M)/EU(T, M);

C =T,
end if}
end for;
M=MU C;
until (U(M) > S);
return M;
END. <

We prove in Theorem 8 that the Inverted-tree greedy algorithm is guaranteed to deliver
a near-optimal solution. In Section 6.5, we present experimental results that indicate that in
practice, the Inverted-tree greedy algorithm almost always returns an optimal solution. We

now define a notion of update graphs which is used to prove Lemma 5.

Definition 7 (Update Graph) Given an OR view graph (G and a set of nodes/views O in
(. An update graph of O in (@ is denoted by U§ and is a subgraph of G such that V(U§) = O,
and E(U§) = {(v,u) | u,v € O and v(€ O) is such that UC(u,{v}) < UC(u,{w}) for all
w € O}. We drop the superscript @ of U§, whenever evident from context. O
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Figure 6: The update graph for {V;, V5, V3, V5} in G

It is easy to see that an update graph is an embedded forest in G. An update graph of
O is useful in determining the flow of changes when maintaining the set of views O. An edge
(v,u) in an update graph Up signifies that the view u uses the view v (or tables computed for
maintenance of v) to incrementally maintain itself, when the set O is materialized. Figure 6
shows the update graph of {Vj, V2, V5} in the OR view graph G of our running example in
Figure 4.

Lemma 5 For a given selt of views M, a set of views O in an OR view graph G can be
partitioned into inverted tree sets O1,0z,...,0,,, such that 37 FU(O;,, M) < EU(O,M). u

Theorem 8 Given an OR view graph G and a total maintenance-time constraint S. The
Inverted-tree greedy algorithm (Algorithm /) returns a solution M such that U(M) < 2S5 and
M has a query benefit of at least (1 — 1/e) = 63% of that of an optimal solution that has a
maintenance cost of at most U(M), under the assumption that the optimal solution doesn’t
have an inverted tree set O; such that U(O;) > S.

Proof: It is easy to see that the maintenance cost of the solution returned by the Inverted-tree
greedy algorithm is at most 25 units. Let O be a solution having U(M) = k units of total
maintenance time, with an optimal query benefit of B.

Consider a stage when the Inverted-tree greedy algorithm has already chosen a set M hav-
ing a total maintenance time of [ units with incremental per unit query benefits of ay, as, ..., a;.
Thus, the absolute query benefit of M, B(M, ¢), is 3\_, a;. Trivially, the query benefit of the
set O U M is at least B. Therefore, the query benefit B(O, M) of the set O with respect to
M is at least B — Y°!_, a;.

By Lemma 5, the set O can be partitioned into inverted tree sets Oy,0s,...,0,, such
that >, EU(O;, M) < EU(O,M). Also, by monotonicity of the query-benefit function,
B(O, M) <¥™, B(O;, M). Now, it is easy to show by contradiction that there is an inverted
tree set view O; such that B(O;, M)/FEU(O;,M) > B(O,M)/EU(O,M), i.e., the query-
benefit per unit of effective maintenance-cost of O; is at least that of O at this stage (else
B(O, M) >3>7", B(O;, M)).

As EU(O;, M) < U(0;) < S, O, is also considered for selection by the Inverted-tree

greedy at this stage. Thus, the query benefit per unit of effective maintenance-cost of the
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set ' selected by the Inverted-tree algorithm is at least the query-benefit per unit effective
maintenance-cost of O; at this stage. Now as FU(O, M) < k, we have B(C,M)/EU(C, M) >
B(O:, M)/ EU(O;, M) > B(O,M)/EU(O, M) > B(O,M)/k > (B — Y\_, a;)/k. Distributing
the benefit of C' over each of its unit spaces equally (for the purpose of analysis), we get
ary; > (B =Y.', a;)/k, for 0 < j < EU(C, M). As the above analysis is true for each set C
selected at any stage, we have

j-1

ngaj—l—Zai, for 0 <y <k.

i=1
Multiplying the j'* equation by (k;—l)k_j and adding all the equations, we get A/B > 1 —
(kk;l)k >1—1/e, where A = Y% . a; = B(M, $), the (absolute) query benefit of M. -

The simplifying assumption made in the above algorithm is almost always true, because
U(M) is not expected to be much higher than S. The following theorem (see [14] for proof)

proves a similar performance bound without the assumption used in Theorem 8.

Theorem 9 Given an OR view graph G and a total maintenance-time constraint S. The
Inverted-tree greedy algorithm (Algorithm /) returns a solution M such that U(M) < 2S5 and
B(M,¢)/U(M) > 0.5B(0,¢)/S, where O is an optimal solution such that U(O) < S. .

Dependence of Query and Update Frequencies. Note that we have not made any
assumptions about the independence of query frequencies and update frequencies of views. In
fact, the query frequency of a view may decrease with the materialization of other views. It
can be shown that the above performance guarantees hold even when the query frequency of

a view decreases with the materialization of other views.

Time Complexity. In the worst case the total number of inverted tree sets in an OR view
graph G is exponential in the size of the graph. However, it is not difficult to see that for the
special case of an OR view graph being a balanced binary tree, each stage of the Inverted-tree
greedy algorithm runs in polynomial time O(n?), where n is the number of nodes in the graph.

Even though the worst-case time complexity of the Inverted-tree greedy algorithm for
general OR view graphs is exponential, our experiments (Section 6.5) show that the Inverted-
tree greedy approach takes substantially less time than the A* algorithm, especially for sparse
graphs. Also, the space requirements of the Inverted-tree greedy algorithm is polynomial in

the size of graph while that of the A* heuristic is exponential in the size of the input graph.

6.4 A* Heuristic

In this section, we present an A* heuristic that, given an AND-OR view graph and a quantity

S, deliver a set of views M that has an optimal query response time such that the total
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maintenance cost of M is less than S. Recollect that an A* algorithm [16] searches for an
optimal solution in a search graph where each node represents a candidate solution.

Let GG be an AND-OR view graph instance and S be the total maintenance-time constraint.
We first number the set of views (nodes) N of the graph in an inverse topological order
<v1,Vg,...,0,> so that all the edges (v;,v;) in G are such that ¢ > j. We use this order
of views to define a binary tree Ty of candidate feasible solutions, which is the search tree
used by the A* algorithm to search for an optimal solution. Fach node z in T has a label
<Ny, M,>, where N, = {vy,vq,...,v4} is a set of views that have been considered for possible
materialization at  and M,(C N,), is the set of views chosen for materialization at x. The
root of T has the label <¢, ¢>, signifying an empty solution. Each node = with a label
<N, M;> has two successor nodes [(x) and r(z) with the labels <N, U {vg41}, M,> and
<Ny U{vgp1}, My U {vg41}> respectively. The successor r(z) exists only if M, U {vg41} has
a total maintenance cost of less than S, the given cost constraint.

The Algorithm 5 shown below depicts the A* heuristic for the maintenance-cost view-
selection problem in general AND-OR graphs. We define two functions'® g : V(Tg) — R,
and h : V(Tg) — R, where R is the set of real numbers. For a node x € V(T¢), with a label
<N, M;>, the value g(z) is the total query cost of the queries on N, using the selected views
in M,. That is,

Gz = E fv,‘Q(UiaMx)'

viENg
The number h(z) is an estimated lower bound on h*(z) which is defined as the remaining
query cost of an optimal solution corresponding to some descendant of = in Tg. In other
words, h(z) is a lower bound estimation of h*(z) = 7(G, M,) — g(z), where M, is an optimal

solution corresponding to some descendant y of = in Tg.

Algorithm 5 A* Heuristic
Input: G, an AND-OR view graph, and 5, the maintenance-cost constraint.
Output: A set of views M selected for materialization.
BEGIN
Create a tree T having just the root A. The label associated with A is <¢, ¢>.
Create a priority queue (heap) L = <A>.
repeat
Remove z from L, where z has the lowest g(z) + h(z) value in L.
Let the label of  be <N, M,>, where N, = {vy,vq,...,v4} for some d < n.
if (d = n) return M,.
Add a successor of z, [(z), with a label <N, U {vg41}, Mz> to the list L.
if (U(M,) < S)

15The function g should not be confused with the update frequency g, of a view in a view graph.
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Add to L a successor of z, r(x), with a label <N, U {vg41}, My U {vgp1}>.
until ( L is empty);
return NULL;
END. O

We now show how to compute the value h(z), a lower bound for 2*(z), for a node z in the
binary tree Tg. Let N = V() be the set of all views/nodes in (. Given a node z, we need to
estimate the optimal query cost of the remaining queries in N — N,. Let s(v) = ¢,UC(v, N),
the minimum maintenance time a view v can have in presence of other materialized views.
Also, if a node v € V(@) is not selected for materialization, queries on v have a minimum
query cost of p(v) = f,Q(v, N—{v}). Hence, for each view v that is not selected in an optimal
solution M, containing M,, the remaining query cost accrues by at least p(v). Thus, we fill
up the remaining maintenance time available S — U(M,,) with views in N — N, in the order of
their p(v)/s(v) values. The sum of the f,Q(v, N —{v}) values for the views left out will give
a lower bound on A*(x), the optimal query cost of the remaining queries. The above described
algorithm to compute h(x) is presented formally in Appendix B, along with the proof of the

following theorem.
Theorem 10 The A* algorithm (Algorithm 5) returns an oplimal solution. x

The above theorem guarantees the correctness of A* heuristic. Better lower bounds yield
A* heuristics that will have better performances in terms of the number of nodes explored
in Tg. In the worst case, the A* heuristic can take exponential time in the number of nodes
in the view graph. There are no better bounds known for the A* algorithm in terms of the

function hA(z) used.

6.5 Experimental Results

We had run some experiments to determine the quality of the solution delivered and the
time taken in practice by the Inverted-tree Greedy algorithm for OR view graphs. We ran
our algorithms on random acyclic OR view graphs with varying edge-densities. A random
directed acyclic is generated by tossing a biased coin to decide whether an edge exists between
a pair of nodes. The random bias gives the edge-density of the generated graph. For each
randomly generated instance of a view graph, we labeled the nodes with random query and
update frequencies. We start by describing the cost model we used for the purposes of our

experiments.

Cost Model. For the purposes of experimentation, we assumed that each view is an aggregate

view defined over the base data. Hence, we assume a linear query cost model, wherein the cost
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of answering a query u from its descendant v in a view graph is proportional to |v|, the size of
v. The experimental results are independent of the proportionality factor(s). The linear cost
model is a reasonable assumption when each view in the OR graph is an aggregate view.

For the purposes of computing maintenance costs, we assume the following model for cost
of maintaining a view u in presence of a descendant v. The changes to u, Au, can be computed
from changes to v, Av, in time proportional to |Av|, and the view u can be refreshed using
Awu in time proportional to |Au|. Thus, the total maintenance time incurred in maintaining
u using its materialized descendant v is proportional to (|Au|+ |Av]|). For sake of simplicity,
we further assume that (|Au| + |Awv]|) is proportional to (|u| + |v]) as is likely to be the case
when updates are insertion generating (as defined in [17]), or when the updates are update
generating but uniformly spread across the domain.

Also, as we are considering aggregate views, we assigned random sizes to each view/node
in the view graph in such a way that the size of a view u was less than the size of each of its

descendants.

Observations.  In our experiments, the Inverted-tree Greedy Algorithm (Algorithm 4)
returned an optimal solution as computed by the A* heuristic for almost all (96%) view graph
instances. In other cases, the solution returned by the Inverted-tree greedy algorithm had a
query benefit of around 95% of the optimal query benefit.

For balanced trees and sparse graphs having edge density less than 40%, the Inverted-
tree greedy took substantially less time (a factor of 10 to 500) than that taken by the A*
heuristic. With the increase in the edge density, the benefit of Inverted-tree greedy over the
A* heuristic reduces and for very dense graphs, A* may actually perform marginally better
than the Inverted-tree greedy. One should observe that OR view graphs that are expected to
arise in practice would be very sparse. For example, the the OR view graph corresponding to
a data cube having n dimensions has Zle((?) 2¢) = 3" edges and 2" vertices. Thus, the edge
density is approximately (0.75)", for a given n.

As the space requirement of an A* heuristic grows exponentially in the size of the input
graph, we could not run A* heuristic for N larger than around 25 because of memory-space
limitations. In contrast, note that the Inverted-Tree Greedy heuristic takes only quadratic
O(n?) space, where n is the number of views in an OR view graph. In light of the performance
guarantees (Theorem 8 and Theorem 10) of the algorithms, our experiment results provide a

good evidence for efficiency of our proposed inverted-tree greedy algorithm.

Explanation of Figures. The comparison of the time taken by the Inverted-tree greedy and
the A* heuristic is presented in Figure 7. In all the plots shown in Figure 7, the different view
graph instance s of the maintenance-cost view-selection problem are plotted on the z-axis.
A view graph instance G is represented in terms of N, the number of nodes in G, and S5,

the maintenance-time constraint. The view graph instances are arranged in the lexicographic
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Figure 7: Experimental results. The z-axis shows the view graph instances in lexicographic
order of their (N,S) values, where N is the number of nodes in the graph and S is the

maintenance-time constraint.
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order of (N,95), i.e., all the view graphs with smallest N are listed first, in order of their
constraint S values. In all the graph plots, the number N varies from 10 to 25, and S varies
from the time required to maintain the smallest view to the time required to maintain all
views in a given view graph. The breaks in the graph plots depict a change in the value of V.

In Figure 7, for the case of balanced trees and view graphs with an edge-density of 10%,
we have plotted times taken by the Inverted-tree greedy as well as the A* heuristic. One can
see that the time taken by A* heuristic is 100 to 500 times the time taken by the Inverted-tree
greedy. For other graphs instances of edge densities 15%, 25%, and 40%, we have plotted
the performance ratio (the ratio of the time taken by the A* heuristic to the time taken by
the Inverted-tree Greedy.) We also ran experiments on random graphs with number of edges
linear in the number of nodes. The performance ratio obtained for random graphs having
2n edges, where n is the number of nodes in the graph, was similar to the case of 15% edge
density.

For a particular value of N, the time taken by the A* heuristic first increases and then
decreases, with increase in .S, the maintenance-time constraint. The initial increase is due to
the increase in the number of feasible solutions and the later decrease is due to the fact that

h(z) becomes a better approximation of A*(z) with the increase S.

7 Related Work

In the initial research done on the view-selection problem, Harinarayan, Rajaraman, and
Ullman [10] presented algorithms for the view-selection problem in data cubes under a disk-
space constraint. A data cube is a special purpose data warehouse, where there are only
queries with aggregates over the base relation. Gupta et al. extended their work to include
indexes in [11]. The work presented in this article is an extension and generalization of the
work in [10], and first appeared in [15] and [18].

There has also been some negative theoretical results on the problem of selection of views.
In particular, Karloff et al. [19] show that the variation of the view-selection problem where
the goal is to optimize the query cost (in contrast to our optimization goal of query benefit)
is inapproximable for general partial orders. In other work, Chirkova et al. in [20] show that
the number of views involved in an optimal solution for the view-selection problem may be
exponential in the size of the database schema, when the query optimizer has good estimates
of the sizes of the views. The result was lated extended in [21] for a more practical query
cost model. In both articles ([20, 21]), the authors assume that the input consists of only the
database scheme and the workload queries, whereas our approximation algorithms start with
a query-view graph as an input.

Apart from the above theoretical research, there has been a substantial amount of effort
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([22, 23, 24, 25]) on developing heuristics for the view-selection problem that may work well
in practice. Most of the work done in this context has developed various frameworks and
heuristics for selection of views in order to optimize the query response time and/or view
maintenance time with or without a resource constraint. The heuristics developed are either
exhaustive searches or do not have any performance guarantees on the quality of the solution
delivered. In the similar vein, [26, 27, 28] have used randomized and genetic approaches to
select a set of views to materialize. In particular, Kalnis et al. in [28] show that randomized
search methods provide near-optimal solutions and can easily be adapted to various versions
of the problem, including existence of size and time constraints. In validation of our greedy ap-
proach, they also show through experiments that the greedy algorithms delivers near-optimal
solutions. Our work presented in this article differs for the above works in that we have de-
signed approximation algorithms that deliver a provably good solution with a query benefit
within a constant factor of the optimal query benefit.

There has also been a fair amount of work in incorporating various heuristics for view-
selection problem into commercial database systems. Most of the work done in this context
use some variation of the greedy heuristic for selection of views and/or indexes. In particular,
Chaudhury and Narasayya [29] use a variation of the greedy approach, wherein they select
an optimal ‘seed’ of k£ indexes as a starting point, and show that the greedy heuristic with
a seed of size 2 does very well for a large variety of workloads over Microsoft SQL Server.
Some other systems, e.g., Redbrick/Informix Vista [30] and Oracle 8, also provide tools to
tune the selection of materialized views for a workload, wherein they use variations of the
greedy heuristics for selection of views. Also, Agrawal et al. in [31], extending their earlier
work ([29, 32]), describe an architecture for selection of views and indexes, where they use

various ways of effectively pruning the space of possible views and indexes.

8 Concluding Remarks

A data warehouse is built for the purposes of information integration and/or decision support
and analysis. One of the most important design issues that arise in a data warehouse is
selection of views to materialize. This article has extensively addressed the problem of selection
of views and made significant contributions in solving it comprehensively.

In particular, we have developed a theoretical framework for the general view-selection
problem of selection of views in a data warehouse. We have presented polynomial-time greedy
heuristics that provably deliver a solution within a constant factor of the optimal for some
important special cases, viz. OR view graphs and AND view graphs, under the disk-space
constraint. For each of these special cases, we have extended the algorithms to graphs when

there are indexes associated with each view and proved approximation bounds for the extended
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settings. The developed heuristic was also extended to the most general case of AND-OR
view graphs. Finally, we addressed the maintenance-cost view-selection problem where the
resource constraint is the total maintenance cost of the views selection for materialization. For
the maintenance-cost view-selection problem, we developed a inverted-tree greedy heuristic
that provably delivers a competitive solution for the OR view graphs. Since, the designed
inverted-tree greedy heuristic is exponential in worst case analysis, we show empirically that
the inverted-tree heuristic performs much better than the alternative A* heuristic and almost

always returns an optimal solution. Our results are summarized in Table 1.

Algorithm View Graphs | Constraint | Performance | Complexity
Greedy OR/AND Disk Space | 63% O(kn?)
Inner-level Greedy OR/AND Disk Space | 47% O(k*n?)

with indexes
AO-Greedy AND-OR Disk Space 63% Exponential
r-level Greedy AND-OR Disk Space | g(r)?* O((kn)*")
Inverted-tree Greedy | OR Update Cost | 63% Exponential®
A* AND-OR Update Cost | Optimal Exponential

Table 1: Algorithms. Here, n is the size of the view-graph, and £ is the constraint.

The techniques developed in this article offer significant insights into the greedy heuristic
and in particular, into the nature of the view-selection problem in a data warehouse. The
techniques developed in this article seem to have much broader applications. Recently, we
have applied some of the techniques developed in this article to the problem of computing a
dominating set in hypergraphs [33] in the context of exploiting data correlation in sensor net-
works, and to the problem of selecting an optimal set of intermediate nodes to store documents
in ad hoc wireless networks [34].

There are still a lot of important open questions in the context of the view-selection
problem. In particular, there is still very little known on the approximability of the view-
selection problem in general AND-OR view graphs. Also of significant interest is to design
approximation algorithms for other special cases of AND-OR view graphs viz. binary AND-
OR view trees, AND-OR graphs that arise in aggregate views with selection and union, and
AND-OR view graphs for range queries/views which can be mapped to rectangles in a two
Moreover, the view-selection problem in AND view graphs is not yet

dimensional plane.

known to be NP-hard.

TAO-Greedy algorithm is exponential in the number of edges in the intersection graph F.
!The value g(r) is defined recursively as g(r) = 1 —1/e9"=1 and g(0) = 1.

§Inverted-tree greedy algorithm is polynomial in the number of inverted tree sets.
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A Proofs of Lemmas

Lemma 1 In an AND view graph, B(v,¢) > B(v, M) for any view v and a set of views M,
if the update frequency g, at any view x is less than ils query frequency f,.

Proof: Let A be the set of ancestors of v, including v, in the AND view graph G. Let
M4y = MnNA. Let Ap be the set of those ancestors of v which do not have any descendants
in the set M4. For any z € A, we have Q(z,¢) — Q(z,v) = Q(v, ¢). Therefore,

B(U7¢) = Z fﬂf(Q('erb) - Q(xvv)) - QUUO(U7U)

r€A

= E f$Q(U7¢) - ngC(U,U) as T &€ A.

r€A

Now consider B(v, M). When M has already been materialized, v reduces then query costs
of only the nodes in Ap. Also, materialization of v also helps in reducing the maintenance
costs of nodes in My. Therefore,

B(v,M) = > fo(Q(z,M)—Q(x, M U{v})) - g,UC(v, MU {v})

rE€Ap
+ 5 (U0 M)~ UC( MU o)
rEM 4
Now Qv,¢) > Qv,M)>UC(x,M)—-UC(x,M U{v}) for any = € My,
and  Q(v,M) = Qz,M)—Q(x,MU{v}) for any = € Ap.
Thus, Bo.M) < Y LQUM)=gUC(, M)+ Y 6.0(v,0)
zE€EApD zEM 4
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IA

Z fo(”? M) - gUUC(U, M) + Z fo(Ua¢) as go < fao.

I‘EAD IEMA

B(v,¢)— B(v,M) > foQ(v,qb)—gUUC(v,v)

€A
—ngE Qv, M)+ g,UC(v, M) — fo
r€EAD rEM 4
> Zsz(Uvqb)_ Z wa(UvM)_ Z fIQ(UWD)
z€A TEAp TEM 4
—g,(UC(v,0) = UC(v, M))
> Y LQ.d)+ Y LQv,d)— Y £Q(v, M
z€ApD zEM 4 z€ApD
- Z er(Uvqb) —gU(UO(U,U) o UC(U,M)), as Ap N My = Qb
TEM 4
> XA: fx(Q(Uvqb) - Q(vv M)) - gv(UC(va) - UO(U, M))
r€Ap

> LQv,6) — Qv, M) — [,(UC(v,0) = UC(v, M))

Now, let Cayrp be the cost of materialization all descendants of v that are in M. Then,
Qv,¢) —Qv,M)=Cyp > UC(v,0)—UC(v, M).

Therefore, we get B(v,¢) — B(v, M) > 0. .

Lemma 2 In an AND view graph, the benefit function B salisfies the monotonicity property

for any M with respect to sets consisting of single views, if the update frequency g, at any
view v 18 less than its query frequency f,.

Proof: Consider views Vi, V,, ..., V,, and a set of views M. Also, for simplicity, let M; =
MU{Vi,Vy, ..., V;} for 1 < < m. Note that Lemma 1 implies that B(v, L) > B(v,LU M)

for any view v and sets of views L and M. Therefore, we have
B(Vi, M) > B(V;, M;) for 1 < i < m.
Also, by definition of the benefit function, we have
B{WVi, Vo, ...,V l, M) = BV}, M) + B({Va}, My) + BU{V5}, M) + ... + B({Vi }, Mi,,).
Using the above two equations, we get
B({Vi,Vas..., Vi3, M) < BUVi}, M) + B({Va}, M) + B({Va}, M) + ...+ B({Vin}, M),

which proves the monotonicity of the benefit function for an arbitrary M with respect to
arbitrary views Vi, V5, ..., V. .

Lemma 3 An optimal solution O of the view-selection problem in query-view graph G =
(CUQ, F) can be partitioned into sets of views Oy, Oy, ..., Oy, such that each O; corresponds
to a connected subgraph in Fe, as defined above, and B(O, M) < ¥, B(O;, M).

Proof: We start by showing that there exists a subset I' of ¢ such that O = (J,cr o, if O is
an optimal set.

38



Let " be a maximal subset of ( such that for every ¢ € I', ¢ C O. Consider an arbitrary
view v € 0. As O is optimal, v helps answer some query, else it could be removed from O.
Thus, for some o, C O, v € 0, € (, implying that o, € I'. Thus, v € O implies v € [, o for
an arbitrary v. Therefore, O C (J,cr 0. Also, by definition of T', it is obvious that J,c.r 0 C O.
Hence, O = U, cr 0.

Now, consider the intersection graph FT of I'. The intersection graph Fr is only an induced
subgraph of the intersection graph F; on the nodes in I'. Consider the connected components
of Fr which partition the set of nodes I' into I'y, Ty, ..., Ty Let O; = Uyer, 0. Now O;’s also
form a partition of O, because there are no edges in F; between the nodes of I'; and I'; for any
i and j. It is easy to see that for the above O;’s, B(O, M) < >, B(O;, M), because exactly
one materialized node in ( is used to answer any query ¢ in (). .

Lemma 4 The InnerGreedy function with the first parameter value equal to r delivers a
solution U whose benefit per unit space is at least g(r) of the optimal benefit per unit space

achievable. The function g(r) is defined recursively as g(r) =1 —1/e?"=Y  and g(0) = 1.

Proof: We prove this lemma by induction. The base case for r = 0 is obvious. Assume that
the value of the first parameter to the InnerGreedy function is r.

Without loss of generality, we assume that the input parameter M to InnerGreedy is ¢.
Consider a set of views O" in I' that has the optimal benefit per unit space. It is obvious that
O’ contains the view v that is in all elements of I'. Let O" — {v} = O.

Consider a stage at which the InnerGreedy algorithm has already chosen a set () (apart
from v) occupying [ units of space with incremental benefits a1, as, as.....a; with respect to v.
Let GY = G U {v}, also the value of U (see Algorithm 3) at this stage. The benefit of the
set O U G with respect to {v} is at least that of O with respect to v, i.e., B(OU Gy, {v}) >
B(O,{v}). Also, B(O U Gy, {v}) = B(O,GY) + S\_, a;. Therefore, the benefit of the set O
with respect to G, B(O,GY), is at least B(O, {v}) — X}, a;.

As T consists of m connected components I'y, ..., 1", after deleting v, the set O can be split
into m disjoint sets Oy, Oy, ..., O,,, such that each O; belongs to I';. By the monotonicity prop-
erty of the benefit function w.r.t. the sets Oy,...,0,,, B(O,G}) < Y7, B(0;,G}). Now, it is
easy to show by contradiction that there exists at least one O; such that B(O;, G})/S(0;) >

Now, by inductive hypothesis, the benefit per unit space of the set .J, selected by the Inner-
Greedy algorithm at this stage, is at least g(r — 1) times B(0;, G})/S(0;), as the InnerGreedy
function when called with the first parameter equal to r — 1 returns a solution that is within
g(r—1) of the optimal. Thus, B(.J,G}) > g(r—1)B(0;,G})/S(0;) > ¢g(r—1)B(0,G})/S(0) >
g(r = )(B(O,{v}) = Xiy a:)/S(O).

Let us assume, that the InnerGreedy Algorithm continues to select views (apart from v) till
it has exhausted S(O) space, and the final set of views selected is G. Using techniques similar
to the proof of Theorem 2, it is easy to show that B(G,{v}) = (1 — 1/e?U"=")B(0,{v}) =
g(r)B(O,{v}), as k' = g(r — 1) here. Thus, we have

B(GU{v},9) B(v,¢) + B(G,{v})

B(v,¢) + g(r)B(0,{v})

9(r)B(0', )

Thus, the benefit per unit space of GU{v} is at least g(r)B(0’, ¢)/S(O"), as G and O occupy

the same space. But, the InnerGreedy algorithm actually stops when the benefit of U per
unit space reaches the maximum. Therefore, the benefit per unit space of U is at least equal

v, ¢
v, ¢

AVARAVART
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to the benefit per unit space of GG, which is g(r) times the optimal. x

Lemma 5 For a given set of views M, a set of views O in an OR view graph GG can be
partitioned into inverted tree sets O1,04, ..., O, such that Y7 KU(O;, M) < EU(O, M).

Proof: Consider the update graph Up of O in G. By definition, Uy is a forest consisting of
m trees, say, Uy, ..., U, for some m < |0|. Let, O; = V(U;), for i < m.

An edge (y, ) in the update graph Ug implies the presence of an edge (z, y) in the transitive
closure of G. Thus, an embedded tree U; in the update graph Up is an embedded tree in the
transitive closure of the inverse graph of G. Hence, the set of vertices O; is an inverted tree
set in G.

For a set of views C, we use UC(C, M) to denote the maintenance cost of the set C' w.r.t.
M. ie , UC(C.,M) =% cc 9.UC(v, MUC), where UC (v, M) for a view v is the maintenance
cost of v in presence of M as defined in Section 2.3. Also, let Rd(M,C) = U(M)—-UC(M, (),
i.e., the reduction in the maintenance time of M due to the set of views C'. Now, the effective
maintenance-cost of a set O; with respect to a set M, EU(O;, M), can be written as

EU(0;, M) = (UC(0;, M)+ UC(M,0;)) = U(M)
= UC(0;, M) — (U(M)—=UC(M,O0;,))
UC(0:, M) — Rd(M, O;)

As no view in a set O; uses a view in a different set O; for its maintenance,

UC(O,M) = ijc(oi, M).

=1

Also, as any view uses at most one view to help maintain itself, the reduction in the main-
tenance cost of M due to the set O is less than the sum of the reductions due to the sets

O1,...,0,, e,

m

<D Rd

=1

Therefore, we have EU(O, M) = UC(O, M)—Rd(M,0) > >, UC(O;, M)—=>"7", RdA(M,0;) >
S (BU(O;, M), .

B A* Heuristic

Algorithm 6 Computing &

Input: An AND-OR view graph (), a maintenance-time constraint S, and
a node x with a label <N, M,> in the search tree T¢.
N ={v1,vq,...,v,} is the set of all views/nodes in G.
Output: The value h(z).
BEGIN
Let N = {v1,vq,...,04} and N, =N — N, = {vgq1,..., v}
For each view v € N/, define a profit p(v) = f,Q(v, N — {v}) and space s(v)
is ¢,U(v, N), the minimum possible maintenance cost of v.
S, = 0;
Let w be the view that has the highest profit in N..

40



P, = p(w); N, = N, —{w}; /* To nullify the ’knapsack’ effect. */
repeat

Let v be the view with the highest value of p(v)/s(v) in N..
Sy = Sz + s(v);
No= N o}

until ( S, > 5 — U(M,));

h(z) = 0;

for v € N,

h(z) = h(z) + p(v);
return h(z);

END. <&

Theorem 10 The A* algorithm (Algorithm 5) returns an optimal solution.

Proof: If an A* heuristic expands nodes in the increasing order of their g(x)+h(x) values, it is
known ([16]) that the first leaf node found by the algorithm corresponds to an optimal solution.
Thus, we only need to show that h(z) is indeed a lower bound of h*(z), i.e., h(x) < h*(z) for
all z € V(Tg).

Consider an optimal feasible solution M, corresponding to a node y that is a descen-
dant of z in Tg. FEach view v ¢ M, adds at least p(v) = f,Q(v,N — {v}) units to the
remaining query cost. So, h*(z), the remaining query cost of the optimal solution M,, is at
least 3=, e(v—(m,un,)) P(V) = Xoev-n) P(V) = Zoeat,—n,) P(0) = P+ h(2) = X (m, -,y P(V),
where h(z) = ¥, e(v-n,) P(v) — P:, as computed by Algorithm 6. We will show that P, >
>ve(M,-N,) P(v), which will imply that h*(z) is at least h(z).

To prove the above claim, note that U(M,) < S + UC(v, M,) for some v € (M, — M,).
As, UMy) > U(M.) + Xue(m,-m,)(s(u)), where s(u) is the minimum possible maintenance
cost of u, we get X e,—m,)(s(u)) < S+ UC(v, M) — U(M,). Asv € M, — M, and
UC(v, My) > s(v), we have 3 e (M, -, )— (o) (8(u)) < S —U(M,). Note that P, as computed
by the Algorithm 6, is such that P, — p(w) is more than the maximum profit that can be fit
in the knapsack of size S — U(M,). Thus, P, — p(w) > Y ue((m,-N.)—{v}) P(1), which implies
that P, > Zue(My—NI) p(u). ]
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