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ABSTRACT

Despite numerous devices targeted to fitness tracking, the strength

training domain has often been overlooked and understudied. In

this paper, we propose a smartphone camera based approach to

track users’ strength training workouts, as well as metrics per-

taining to their form and performance. Our goal is to detect the

repetitions in a workout without requiring user intervention or

any training data from the user. Unlike many existing systems,

our proposed system is scalable, low-cost, and widely accessible.

We gather data from two sources for 5 exercises across 25 sub-

jects. We compute performance metrics such as range of motion,

velocity, and duration from each repetition with median errors less

than 10%. These results demonstrate that commercial off the shelf

smartphone cameras can be used to accurately detect and count

repetitions in user movements, as well as to compute rep-by-rep

user performance.
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1 INTRODUCTION

Pose estimation is an active area of computer vision research that

focuses on understanding posture and movement in images and

videos. In addition to applications in action recognition, gaming

industry, and virtual environments [19], it has been used for analyz-

ing player movements [9, 31] in team sports and personal workout

sessions. Tracking of posture during exercise and physical work-

outs has the potential to monitor and improve one’s overall per-

formance [2, 6, 21, 25]. Unfortunately, the number of injuries in
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the fitness domain, particularly in weight training, have been ris-

ing [1, 16]. We believe that these injuries can be alleviated with

improved surveillance and timely feedback. Typically, coaches can

monitor a user’s movements during exercise and provide corrective

feedback. However, instructors are neither affordable nor accessi-

ble for everyone. Existing approaches for automated performance

monitoring require additional equipment like wearable inertial

sensors [2, 11, 21, 25, 26]. However, these additional sensors are

expensive, and can add to the user’s cognitive load by requiring

them to carry and charge an additional device. Techniques using

wireless signals [12] are often affected by the environment.

In this paper, we implement and validate state of the art pose

estimation techniques in the domain of physical activity and exer-

cise monitoring in uncontrolled environments. Our goal is to build

scalable solutions to make the proposed technology widely acces-

sible and to allow smart device users to monitor their movement-

specific progress. However, exercise involves targeted movements

and tracking small body movements in real-world environment

poses significant challenges. Most existing attempts at monitor-

ing fine-grained movement have focused on using multi-camera

motion capture (MoCap) systems [31]. Such infrastructure based

approaches are not scalable and do not allow average users to re-

ceive metrics pertaining to their form and performance. To address

this challenge, we focus on using cameras on users’ smartphones

and laptops. The large-scale availability of these devices makes our

approach accessible to a wider population. We target the strength

training space to design and evaluate a repetition detection system.

The ability to detect temporal events as they happen in a real-time

video stream is the cornerstone of bridging the gap between theo-

retical vision techniques and real world applicability.

We propose a performance monitoring technique that relies on

pose estimation to track user movements during weight training.

A video stream is captured using commercial off-the-shelf (COTS)

device with a camera (laptop or smartphone). The correctness of

athletic movements is often assessed by the athlete themselves,

or those around them. However, there is little agreement on the

criteria to determine correctness. There are, however, widely ac-

cepted practices that are followed in the weight training community.

Therefore, rather than determining correctness of form, we focus on

computing movement related metrics that can then be used to deter-

mine variations in a user’s form over time. We detect repetitions as

a user exercises, and for each repetition we compute the range of

motion, duration, and velocity. Additionally, we analyze the vari-

ation in rest times as an indirect measure of fatigue. In building

this system, we design a low-cost scalable approach that is capable of

allowing users to track their performance. Our proposed technique

can also be enhanced to provide feedback to the user in real-time.
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Figure 1: System Overview

2 BACKGROUND

We present terminology used in the athletic community, prior re-

search [4, 20, 21, 28], and throughout this paper.

Strength training workouts. Strength training, also known as

weight training or resistance training, is a popular form of physi-

cal activity designed to target specific muscle groups by working

against resistance stemming from free weights, weight machines,

or body weight. Controlled body mechanics and correct posture

are an important part of these workouts. If performed incorrectly,

these movements can lead to injuries over time [16, 28].

Repetitions. In the context of athletic workouts, a repetition or a

rep, is one complete motion of an exercise and consists of a concen-

tric phase and an eccentric phase. Multiple repetitions performed

consecutively is known as a set, multiple sets of the same type of

motion is an exercise, and multiple exercises form a workout session.

Concentric Phase. It is the positive phase of a repetition where

the athlete’s major muscles contract [24]. This portion of many ex-

ercises tends to be in the opposite direction of gravity, and therefore

we refer to it as lifting phase in the rest of this paper.

Eccentric Phase. It is the negative phase of a repetition where the

athlete’s muscles lengthen or relax. This portion of many exercises

tends to be in the same direction as gravity, and therefore referred

to as the lowering phase in this paper.

Pose Estimation. Human pose estimation is a popular computer

vision technique to identify key points (often the human joints) in

a person’s body captured in an image. Typically, these algorithms

can track the shoulders, elbows, wrists, knees, and ankles. Pose

estimation is a useful tool in analyzing the posture and movements

of a user, enabling us to compute quantitative metrics.

3 SYSTEM DESIGN

The overall system design is presented in Figure 1. It consists of

three components: Pose Extraction, Pose Processing, and Workout

Inference. The details regarding each component are discussed in

the following subsections.

3.1 Pose Extraction

The incoming video stream from camera, smartphone or webcam

is provided to the pose extraction module. Open source pose es-

timation models such as AlphaPose [8], OpenPose [5], and Deep-

Pose [30] were tested, wherein AlphaPose was found to be most

accurate and was thus used in our research. Alphapose [8] is a state

of the art pose estimation technique that processes each incoming

frame from the video to localize human joints, also known as key-

points. The keypoints returned by the pose estimation algorithm

are nose, ears, eyes, shoulders, elbows, wrists, hips, knees, and an-

kle joints. Every keypoint is represented as a point (𝑥,𝑦) in the

frame’s 2D coordinate system. The keypoints are filtered to retain

the shoulder, elbow, wrist and hip joints, in keeping with our goal

of processing upper body movement mechanics. These keypoints

are processed in the next step to get a series of spatio-temporal

values for user arm motion in each frame.

3.2 Pose Processing

After extracting the keypoints in the previous module, we compute

the angle between the upper arm and the lower arm for all exer-

cises except lateral raise. Due to inherent noise in pose estimation

algorithms, there are jitters in keypoint detection for consecutive

frames, often caused by lighting or clothing. Even when the user

is not moving, wrist detection, for example, in consecutive frames

may be displaced by a few pixels. To ensure that our algorithm is

robust to this jitter, we discretize the raw angles and smooth our

observations by using a median filter. We analyze the variations

of this angle in both arms to draw inferences regarding the user’s

movements.

3.3 Workout Inference

In the third module, the time series data is available as a sequence

of angles that represent the orientation and the position of the arm

in each camera frame. Our first task is to detect repetitions from

this sequence of arm angles. Because exercises contain repetitive

movements, performed one after another, the angles exhibit a pat-

tern in this time series data. This is illustrated in Figure 2a for the

bicep curls exercise (shown in Figure 2b). The dashed red lines

in Figure 2a show the beginning and end of each phase. For each

movement during bicep curls, the user’s repetition starts with the

arm almost straight down by their side, and they start curling it

up, bending at the elbow. At the highest point, the wrist is close

to the shoulder and the arm angle measurement now drops to a

few degrees. This is the end of the lifting phase. When the user

brings their arm back to the starting position, we mark a repetition

complete.
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(a) Arm angle from one set of bicep curl exercise.

(b) Angle measurement.

Figure 2: Pattern in the range of angle in one set of the bicep

curl exercise. The angle is measured using shoulder, elbow

and wrist points. The red dashed lines show the beginning

and end of lowering and lifting phases.

To detect these repetitions, we focus on identifying phase transi-

tions in Figure 2a. These can be seen as the positive and negative

peaks in the figure. A pair of phases constitutes one repetition. A

clustering method [18] is used to identify phase transition regions.

We define an empirically derived threshold for the arm angle, that

is different for each exercise, since each has a different movement

and range of motion. When the angle values exceed the threshold,

the data samples between the last pair of threshold crossings are

passed to the k-means clustering algorithm. Rather than clustering

the arm angle, we use the y-coordinate value of the wrist locations.

This is designed to capture the spatial aspect of the user’s motion.

We define the number of initial centers 𝑘 as 3. Having three clusters

separates the angle values in three regions. The cluster that has a

center with the biggest or smallest y-axis value is detected as the

region where a phase transition occurred. Each alternate transition

marks the end of the previous rep and beginning of the next one.

For rapid movements, these transitions or peaks are observed to

be somewhat sharp. However, for slow movements where a user

spends some time at the top or bottom of each phase, the detected

curve shows somewhat flat peaks. Each phase is therefore repre-

sented by a start time and an end time. The detected reps are then

used to compute relevant metrics.

3.4 Workout Metrics

Based on previous research and literature survey [3, 4, 13, 21], we

select three quantifiable metrics to be computed for each detected

repetition: range ofmotion (𝑅), duration, and velocity. Thesemetrics

are used to evaluate the algorithm’s ability in measuring themetrics,

and monitoring variations in the metrics’ values during a set or a

session. 𝑅 is defined as the distance moved by the weight during

each repetition. To maintain scalability of our solution by avoiding

camera calibration, we use pixel based distance for𝑅. The velocity𝑉

is calculated as:𝑉 =
𝑅

𝑡
, where 𝑡 denotes the time taken to complete

Figure 3: Demostration of the bicep curls exercise. The im-

ages show the user’s pose at the end of lifting phase (left)

and end of lowering phase (right).

one movement or phase. Duration is another metric that is affected

by the movement velocity. As a user fatigues, the lifting is often

longer (slower) and lowering is shorter (faster). Therefore, detecting

these metrics play a significant role in informing users about their

motion, allowing them to adjust their movement in real-time.

4 EVALUATION

We evaluate our system by answering the following questions:

• How well can the system detect and count repetitions?

• How accurately can the system measure the range of motion,

duration, and velocity?

• How early can the system detect a repetition before it ends?

• Is the system capable of capturing variations in form?

Data Collection. In order to study the performance of the proposed

system and answer the above questions, we collected data for vari-

ous upper body exercises: bicep curls, shoulder press, tricep dips,

upright rows, and lateral raise. One of these exercises is shown in

Figure 3 with the pose estimation output superimposed on them.

We collected data by recording front view of participants, using

a mobile camera, when they were exercising at their gym. This

allowed us to take the real environment into account when design-

ing our algorithm. We also compiled additional data by gathering

videos from the internet, particularly YouTube. These are videos

posted by athletes as part of their training. Overall, we gathered

data for a total of 25 subjects. Different exercise equipment were

used in these videos. The exact number of sets and repetitions

in each exercise is shown in Table 1. The ground truth for each

video was labeled manually, by annotating keypoints of interest in

subsequent frames.

4.1 Repetition Detection Performance

To answer the first question, we evaluate the repetition detection

accuracy of the proposed system. The accuracy of system is shown

in Table 1. Our algorithm detects 100% repetitions for 4 exercises.

A slightly lower accuracy of 80.3% is observed for dips due to

the higher diversity among people while performing the exercise

movement. Observations from our data show that some people have

very small range of movement in dips, making it more challenging

for the algorithm.
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Table 1: Detection accuracy of the proposed system

Exercise Number of

Sets

Number of

Reps

Detected

Reps

Detection

Rate

Bicep Curl 10 54 54 100%

Lateral Raise 10 113 113 100%

Shoulder Press 10 73 73 100%

Upright Row 10 53 53 100%

Dip 8 61 49 80.3%
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Figure 4: Error in range of motion.

4.2 Metrics Evaluation

To evaluate the proposed system, we first focus on assessing the

accuracy for each metric computed by the system. We identify

repetitions and compute duration, range of motion (𝑅), and velocity

for each phase (lifting and lowering).

Range of Motion. The system performance in computing user’s

𝑅 is shown in Figure 4. While the 𝑅 is computed in pixel, the error

is shown as a percentage of the ground truth. This figure shows

the percent error during the lifting and lowering phases of each

exercise. We can see that for bicep curls, lateral raise, upright rows,

as well as shoulder press, we observe errors between 0%-3% for

lifting and lowering movements. We observe degraded performance

in dips due to the increased variability in the motion, where median

errors in 𝑅 were observed to be around 9%.

Duration. The duration for each phase in each repetition is mea-

sured in number of frames, which is then converted to seconds

based on the frame rate. From Figure 5 we can see that for both

lifting and lowering motion, the duration measurements exhibit

almost 0 seconds of error in most cases. We observe occasional

outliers that exhibit errors around 0.1 seconds. This also indicates

that our system was able to segment the data into repetitions and

constituent phases precisely.
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Figure 5: Error in duration.
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Figure 6: Error in velocity.

Velocity. Velocity is measured by the system in pixels/second.

Figure 6 shows the percent error for velocity measurement in each

exercise. Our system can compute velocity with less than 2% error

for 4 exercises from our dataset. Due to the error in measuring

range of motion during dips, we see higher errors, up to 15%, in

velocity measurements.

4.3 Early repetition detection

The goal of early detection is to identify repetitions before they

finish. By detecting repetitions as they happen, the system can

potentially generate alerts and warnings in real-time, much like a

human would. Figure 7 shows the CDF for early repetition detec-

tion. We can detect repetitions up to 1.5 seconds before they end.

For users that perform movements slowly and pause in between

4
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Figure 7: Early repetition detection by the proposed system.

0 on the x-axis indicates the time a rep ends. Early detection

can support live feedback about a rep to allow a user tomake

adjustments to the next rep.

repetitions, our system can detect repetitions even 3 seconds be-

fore they end. Bicep curls and upright rows can be detected earlier

compared to faster or smaller movements, such as those during

lateral raise or dips. All repetitions are detected by the time they

finish. This allows for computing and displaying the metrics for

each repetition in real-time.

4.4 Observing user form and fatigue

The time in between two repetitions is referred to as rest or recov-

ery time. We hypothesize that as a set progresses, users get fatigued,

which may result in an increase in the duration of rest times. Fig-

ure 8 shows the rest time for 2 different users during 2 consecutive

sets of lateral raise. For both, subjects 1 and 2, we can see that the

rest times increase across each set. Subject 1 exhibits higher rest

times than Subject 2. Indicators of fatigue, such as an increase in

the rest times in between repetitions or even in between sets can

be used to determine user performance over time. As fatigue sets

in, user form is seen to deteriorate [21]. Strength training workouts

emphasize on a controlled motion. Therefore, velocity, range of

motion, and rest times combined can enable detecting when a user

is getting fatigued, thus generating warnings that could potentially

prevent injuries caused by deteriorated form.

Further, we use pose to determine the changes in user’s form and

posture over time. Figure 9 shows the positions of wrist and elbow

keypoints for a user completing the lifting phase of a bicep curl.

The output of the pose detection system is shown in red and yellow

colors, for wrist and elbow respectively. Green and grey colors

show the ground truth labels for the wrist and elbow positions.

The ground truth is obtained by annotating the keypoints in each

frame manually. We draw two key insights from this image. First,

the detected keypoints overlap with the ground truth labels, thus

showing that our pose detection algorithm works well. Second,

we can see the variability of joint positions during an exercise.

This is extremely important since higher variability can indicate

incorrect form. As shown earlier [21] the stability of the elbow is

an important factor in determining user form. We can incorporate

graphical cues into our system to encourage users to keep certain

joints stable - for example the elbow when performing bicep curls.
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Figure 8: Measured rest times between repetitions during

lateral raise exercise for 2 subjects. The second half of the

graph shows increase in rest times - indicating the onset of

fatigue.

Figure 9: Analyzing variation in wrist and elbow keypoints

at the end of lifting phase for a bicep curl. Yellow and red

points are output from pose detection algorithm, and grey

and green colors are ground truth. Variations in joint posi-

tions can indicate user form over time.

5 RELATED WORK

Earlier approaches for tracking and monitoring exercises include

wearable devices and computer vision, discussed here.

Wearable Devices. Sensors worn by the user such as an Inertial

Measurement Units (IMU) or smart watches have been commonly

used to collect and process the signal pertaining to user motion.

Milanko et al. [21, 22] propose LiftRight for segmenting workout

sessions and providing feedback on performance and form during

exercise. They use an arm-mounted inertial sensor for tracking arm

movements and computing associated metrics. Kwapisz et al. [15]

use an accelerometer to recognize when the user starts a particular

exercise and accurately classify patterns in body movements. Shen

et al. [27] processed IMU data from a smart watch to classify arm

and hand posture. They were able to estimate the location of the

wrist within a few centimeters. Today, many commercial products

such as [25], [2], and [10] have gained popularity in the domain

of personal fitness. They combine the use of wearable sensors like

smart watches and sensor processing to help the user plan, track,

assess, and improve their athletic ability in real-time. Despite the ad-

vancements, wearable devices require a user to carry an additional

device, making it inconvenient and expensive.

Computer Vision. Recent advancements in computer vision, par-

ticularly in deep learning, have resulted in a wide range of ap-

plications including fitness tracking. Levy et al. [17] propose a

5
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repetition detection system that uses convolution neural network

to estimate the length of repetition in video. Recently, human pose

estimation methods [5, 8, 30] have been used to detect joints in

human body, which can be used to analysis motion during exercise.

Pose trainer [7] is an end-to-end algorithm that uses OpenPose [5]

human pose estimation framework to provide feedback on fitness

exercise form. Gymcam [14] uses camera to track repetitive motions

in a gym. It detects, identifies and tracks partially visible exercises.

More recently, home gym systems [23, 29] use a combination of

vision and human instructors to provide guidance to users. How-

ever, these systems are very expensive and not scalable. To the best

of our knowledge, none of these works detect repetitions early or

quantify the performance of each repetition. Our research fills this

gap and can potentially enable real-time feedback to the user.

6 CONCLUSION AND FUTUREWORK

We have proposed a cost-effective and scalable solution that relies

on commercial off-the-shelf mobile cameras and open source li-

braries to allow users to compute workout metrics in real-time. We

demonstrate that we can accurately count the number of repetitions

for 5 different exercises for data captured across 25 subjects. Our

system can also detect repetitions early, before they are over, thus

enabling potential feedback to the user in real-time. By providing

the user access to various metrics related to their physical training,

we hope our system can reinforce fitness tracking, prevent injuries,

and aid in physical development at a lower cost.

Currently, the system does not detect the exercise being per-

formed. Moreover, the system has not been evaluated with multiple

users in the camera’s view. In the future, we aim to increase the

range of workouts to include lower body and full body exercises.

We plan to broaden the set of metrics we learn from the user’s

workout such as the rate of force development. Our system will

eventually incorporate audio feedback that is intended to supple-

ment the user’s performance, form, motivation, and experience,

much like a personal trainer. This will further our efforts to cre-

ate a more efficient weight training environment and correct form

related issues in real-time.

Our system could eventually integrate wearable sensors for more

extensive and accurate metric creation; while still housing the cur-

rent methodology. A Bluetooth connection from the camera device

to the wearable sensor could give us insights into the user’s heart

rate, energy consumption, etc. over time. We envision application

being used not only by athletes, but also in physical therapy. Improv-

ing such an application could help accelerate a patient’s recovery

time and potentially prevent exercise-related injuries.
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