
1

1

Relational Algebra and SQL

Chapter 5

2

Relational Query Languages

• Languages for describing queries on a
relational database

•• Structured Query LanguageStructured Query Language (SQL)
– Predominant application-level query language
– Declarative

•• Relational AlgebraRelational Algebra
– Intermediate language used within DBMS
– Procedural

2

3

What is an Algebra?

• A language based on operators and a domain of values
• Operators map values taken from the domain into

other domain values
• Hence, an expression involving operators and

arguments produces a value in the domain
• When the domain is a set of all relations (and the

operators are as described later), we get the relational relational
algebraalgebra

• We refer to the expression as a queryquery and the value
produced as the queryquery resultresult

4

Relational Algebra

• Domain: set of relations

• Basic operators: selectselect, projectproject, unionunion, setset
differencedifference, CartesianCartesian productproduct

• Derived operators: set intersectionset intersection, divisiondivision, joinjoin

• Procedural: Relational expression specifies query
by describing an algorithm (the sequence in which
operators are applied) for determining the result of
an expression

3

5

The Role of Relational Algebra in a DBMS

6

Select Operator

• Produce table containing subset of rows of
argument table satisfying condition

σcondition (relation)

• Example:

Person Person σHobby=‘stamps’ (PersonPerson)

1123 John 123 Main stamps
1123 John 123 Main coins
5556 Mary 7 Lake Dr hiking
9876 Bart 5 Pine St stamps

1123 John 123 Main stamps
9876 Bart 5 Pine St stamps

Id Name Address Hobby Id Name Address Hobby

4

7

Selection Condition

• Operators: <, ≤, ≥, >, =, ≠
• Simple selection condition:

– <attribute> operator <constant>

– <attribute> operator <attribute>

• <condition> AND <condition>

• <condition> OR <condition>

• NOT <condition>

8

Selection Condition - Examples

• σ Id>3000 OR Hobby=‘hiking’ (PersonPerson)

• σ Id>3000 AND Id <3999 (PersonPerson)

• σ NOT(Hobby=‘hiking’) (PersonPerson)

• σ Hobby≠‘hiking’ (PersonPerson)

5

9

Project Operator

• Produces table containing subset of columns
of argument table

πattribute list(relation)

• Example:
PersonPerson πName,Hobby(PersonPerson)

1123 John 123 Main stamps
1123 John 123 Main coins
5556 Mary 7 Lake Dr hiking
9876 Bart 5 Pine St stamps

John stamps
John coins
Mary hiking
Bart stamps

Id Name Address Hobby Name Hobby

10

Project Operator

1123 John 123 Main stamps
1123 John 123 Main coins
5556 Mary 7 Lake Dr hiking
9876 Bart 5 Pine St stamps

John 123 Main
Mary 7 Lake Dr
Bart 5 Pine St

Result is a table (no duplicates); can have fewer tuples
than the original

Id Name Address Hobby Name Address

• Example:
PersonPerson πName,Address(PersonPerson)

6

11

Expressions

1123 John 123 Main stamps
1123 John 123 Main coins
5556 Mary 7 Lake Dr hiking
9876 Bart 5 Pine St stamps

1123 John
9876 Bart

Id Name Address Hobby Id Name

PersonPerson

ResultResult

π Id, Name (σ Hobby=’stamps’ OR Hobby=’coins’ (PersonPerson))

12

Set Operators

• Relation is a set of tuples, so set operations
should apply: ∩, ∪, − (set difference)

• Result of combining two relations with a set
operator is a relation => all its elements
must be tuples having same structure

• Hence, scope of set operations limited to
union compatible relationsunion compatible relations

7

13

Union Compatible Relations

• Two relations are union compatibleunion compatible if
– Both have same number of columns

– Names of attributes are the same in both

– Attributes with the same name in both relations
have the same domain

• Union compatible relations can be
combined using unionunion, intersectionintersection, and setset
differencedifference

14

Example

Tables:
PersonPerson (SSN, Name, Address, Hobby)
ProfessorProfessor (Id, Name, Office, Phone)

are not union compatible.

But
π Name (PersonPerson) and π Name (ProfessorProfessor)

are union compatible so

π Name (PersonPerson) - π Name (ProfessorProfessor)

makes sense.

8

15

Cartesian Product
• If RRand SSare two relations, RR × SS is the set of all

concatenated tuples <x,y>, where x is a tuple in RR
and y is a tuple in SS
–– RR and SSneed not be union compatible

•• RR × SS is expensive to compute:
– Factor of two in the size of each row
– Quadratic in the number of rows

A B C D A B C D
x1 x2 y1 y2 x1 x2 y1 y2
x3 x4 y3 y4 x1 x2 y3 y4

x3 x4 y1 y2
RR SS x3 x4 y3 y4

RR× SS

16

Renaming
• Result of expression evaluation is a relation

• Attributes of relation must have distinct names.
This is not guaranteed with Cartesian product
– e.g., suppose in previous example a and c have the

same name

• Renaming operator tidies this up. To assign the
names A1, A2,… An to the attributes of the n
column relation produced by expression expr use

expr [A1, A2, … An]

9

17

Example

This is a relation with 4 attributes:
StudId, CrsCode1, ProfId, CrsCode2

TranscriptTranscript (StudId, CrsCode, Semester, Grade)

TeachingTeaching (ProfId, CrsCode, Semester)

π StudId, CrsCode (TranscriptTranscript)[StudId, CrsCode1]

× π ProfId, CrsCode(TeachingTeaching) [ProfId, CrsCode2]

18

Derived Operation: Join

A (generalgeneral or thetatheta) join join of R and S is the expression
R join-condition S

where join-condition is a conjunction of terms:
Ai oper Bi

in which Ai is an attribute of R; Bi is an attribute of S;
and oper is one of =, <, >, ≥ ≠, ≤.

The meaning is:
σ join-condition´ (R × S)

where join-condition and join-condition´ are the same,
except for possible renamings of attributes (next)

10

19

Join and Renaming

• Problem: R and S might have attributes with the
same name – in which case the Cartesian
product is not defined

• Solutions:
1. Rename attributes prior to forming the product and

use new names in join-condition´.
2. Qualify common attribute names with relation names

(thereby disambiguating the names). For instance:
Transcript.Transcript.CrsCodeCrsCode or Teaching.Teaching.CrsCodeCrsCode

– This solution is nice, but doesn’t always work: consider

RR join_condition RR

In RR.A, how do we know which R is meant?

20

Theta Join – Example
Employee(Employee(Name,Id,MngrId,SalaryName,Id,MngrId,Salary)
Manager(Manager(Name,Id,SalaryName,Id,Salary)

Output the names of all employees that earn
more than their managers.

πEmployeeEmployee.Name (EmployeeEmployee MngrId=Id AND Salary>Salary ManagerManager)

The join yields a table with attributes:
EmployeeEmployee.Name, EmployeeEmployee.Id, EmployeeEmployee.Salary, MngrId
ManagerManager.Name, ManagerManager.Id, ManagerManager.Salary

11

21

Equijoin Join - Example

πName,CrsCode(StudentStudent Id=StudId σGrade=‘A’ (TranscriptTranscript))

Id Name Addr Status
111 John ….. …..
222 Mary ….. …..
333 Bil l ….. …..
444 Joe ….. …..

StudId CrsCode Sem Grade
111 CSE305 S00 B
222 CSE306 S99 A
333 CSE304 F99 A

Mary CSE306
Bil l CSE304

The equijoin is used very
frequently since it combines
related data in different relations.

StudentStudent TranscriptTranscript

EquijoinEquijoin: Join condition is a conjunction of equaliti es.

22

Natural Join
• Special case of equijoin:

– join condition equates all and only those attributes with the
same name (condition doesn’t have to be explicitly stated)

– duplicate columns eliminated from the result

TranscriptTranscript (StudId, CrsCode, Sem, Grade)
Teaching (Teaching (ProfId, CrsCode, Sem)

TranscriptTranscript TeachingTeaching =
πStudId, Transcript.CrsCode, Transcript.Sem, Grade, ProfId

(TranscriptTranscript CrsCode=CrsCode AND Sem=SemSem Teaching Teaching)
[StudId, CrsCode, Sem, Grade, ProfId]

12

23

Natural Join (cont’d)

• More generally:
RR SS= πattr-list (σjoin-cond (RR × SS))

where
attr-list = attributes (RR) ∪ attributes (SS)

(duplicates are eliminated) and join-cond has
the form:

A1 = A1 AND … AND An = An

where
{A1 …An} = attributes(RR) ∩ attributes(SS)

24

Natural Join Example

• List all Ids of students who took at least two
different courses:

πStudId (σCrsCode ≠ CrsCode2 (
TranscriptTranscript

TranscriptTranscript [StudId, CrsCode2, Sem2, Grade2]))

We don’t want to join on CrsCode, Sem, and Grade attributes,
hence renaming!

13

25

Division

• Goal: Produce the tuples in one relation, r,
that match all tuples in another relation, s
–– rr (A1, …An, B1, …Bm)

–– ss (B1 …Bm)

–– rr/ss, with attributes A1, …An, is the set of all tuples
<a> such that for every tuple in ss, <a,b> is
in rr

• Can be expressed in terms of projection, set
difference, and cross-product

26

Division (cont’d)

14

27

Division - Example
• List the Ids of students who have passed all

courses that were taught in spring 2000
• Numerator:

– StudId and CrsCode for every course passed by
every student:

πStudId, CrsCode(σGrade≠ ‘F’ (TranscriptTranscript))

• Denominator:
– CrsCode of all courses taught in spring 2000

πCrsCode (σSemester=‘S2000’ (TeachingTeaching))

• Result is numerator/denominator

28

Schema for Student Registration System

StudentStudent (Id, Name, Addr, Status)
ProfessorProfessor (Id, Name, DeptId)
CourseCourse (DeptId, CrsCode, CrsName, Descr)
TranscriptTranscript (StudId, CrsCode, Semester, Grade)
TeachingTeaching (ProfId, CrsCode, Semester)
DepartmentDepartment (DeptId, Name)

15

29

Query Sublanguage of SQL

•• TupleTuple variable variable C ranges over rows of CourseCourse.

• Evaluation strategy:
– FROM clause produces Cartesian product of listed tables

– WHERE clause assigns rows to C in sequence and produces
table containing only rows satisfying condition

– SELECT clause retains listed columns

• Equivalent to: πCrsNameσDeptId=‘CS’(CourseCourse)

SELECT C.CrsName
FROM CourseCourseC
WHERE C.DeptId = ‘CS’

30

Join Queries

• List CS courses taught in S2000
• Tuple variables clarify meaning.
• Join condition “C.CrsCode=T.CrsCode”

– relates facts to each other
• Selection condition “ T.Semester=‘S2000’ ”

– eliminates irrelevant rows
• Equivalent (using natural join) to:

SELECT C.CrsName
FROM CourseCourse C, TeachingTeaching T
WHERE C.CrsCode=T.CrsCode AND T.Semester=‘S2000’

πCrsName(CourseCourse σSemester=‘S2000’ (TeachingTeaching))

πCrsName (σSem=‘S2000’ (CourseCourse TeachingTeaching))

16

31

Correspondence Between SQL and
Relational Algebra

SELECT C.CrsName
FROM CourseCourse C, TeachingTeaching T
WHERE C.CrsCode = T.CrsCode AND T.Semester = ‘S2000’

Also equivalent to:
πCrsName σC_CrsCode=T_CrsCode AND Semester=‘S2000’

(CourseCourse [C_CrsCode, DeptId, CrsName, Desc]
× TeachingTeaching [ProfId, T_CrsCode, Semester])

• This is the simplest evaluation algorithm for SELECT.
• Relational algebra expressions are procedural.

�
Which of the two equivalent expressions is more easily evaluated?

32

Self-join Queries
Find Ids of all professors who taught at least two
courses in the same semester:

SELECT T1.ProfId
FROM TeachingTeaching T1, TeachingTeaching T2
WHERE T1.ProfId = T2.ProfId

AND T1.Semester = T2.Semester
AND T1.CrsCode <> T2.CrsCode

Tuple variables are essential in this query!

Equivalent to:
πProfId (σT1.CrsCode≠T2.CrsCode(TeachingTeaching[ProfId, T1.CrsCode, Semester]

TeachingTeaching[ProfId, T2.CrsCode, Semester]))

17

33

Duplicates

• Duplicate rows not allowed in a relation

• However, duplicate elimination from query
result is costly and not done by default;
must be explicitly requested:

SELECT DISTINCT …..
FROM …..

34

Equality and comparison operators apply to
strings (based on lexical ordering)

WHERE S.Name < ‘P’

Use of Expressions

Concatenate operator applies to strings
WHERE S.Name || ‘--’ || S. Address = ….

Expressions can also be used in SELECT clause:

SELECT S.Name || ‘--’ || S. Address AS NmAdd
FROM StudentStudent S

18

35

Set Operators

• SQL provides UNION, EXCEPT (set difference), and
INTERSECT for union compatible tables

• Example: Find all professors in the CS Department and
all professors that have taught CS courses

(SELECT P.Name
FROM ProfessorProfessor P, TeachingTeaching T
WHERE P.Id=T.ProfId AND T.CrsCode LIKE ‘CS%’)

UNION
(SELECT P.Name
FROM ProfessorProfessor P
WHERE P.DeptId = ‘CS’)

36

Nested Queries
List all courses that were not taught in S2000

SELECT C.CrsName
FROM CourseCourse C
WHERE C.CrsCode NOT IN

(SELECT T.CrsCode --subquery
FROM TeachingTeaching T
WHERE T.Sem = ‘S2000’)

Evaluation strategy: subquery evaluated once to
produces set of courses taught in S2000. Each row
(as C) tested against this set.

19

37

Correlated Nested Queries
Output a row <prof, dept> if prof has taught a course
in dept.

(SELECT T.ProfId --subquery
FROM TeachingTeaching T, CourseCourse C
WHERE T.CrsCode=C.CrsCode AND

C.DeptId=D.DeptId --correlation
)

SELECT P.Name, D.Name --outer query
FROM ProfessorProfessor P, DepartmentDepartment D
WHERE P.Id IN

-- set of all ProfId’s who have taught a course in D.DeptId

38

Correlated Nested Queries (con’t)

• Tuple variables T and C are local to subquery
• Tuple variables P and D are global to subquery
•• CorrelationCorrelation: subquery uses a global variable, D
• The value of D.DeptId parameterizes an evaluation of

the subquery
• Subquery must (at least) be re-evaluated for each

distinct value of D.DeptId

• Correlated queries can be expensive to evaluate

20

39

Division in SQL
• Query type: Find the subset of items in one set that

are related to all items in another set
• Example: Find professors who taught courses in all

departments
– Why does this involve division?

ProfId DeptId DeptId

All department IdsContains row
<p,d> if professor
p taught a
course in
department d

πProfId,DeptId(Teaching Course) / πDeptId(Department)

40

Division in SQL

• Strategy for implementing division in SQL:
– Find set, A, of all departments in which a

particular professor, p, has taught a course

– Find set, B, of all departments

– Output p if A ⊇ B, or, equivalently, if B–A is
empty

21

41

Division – SQL Solution

SELECT P.Id
FROM ProfessorProfessor P
WHERE NOT EXISTS

(SELECT D.DeptId -- set B of all dept Ids
FROM DepartmentDepartment D

EXCEPT
SELECT C.DeptId -- set A of dept Ids of depts in

-- which P taught a course
FROM TeachingTeaching T, CourseCourse C
WHERE T.ProfId=P.Id -- global variable

AND T.CrsCode=C.CrsCode)

42

Aggregates

• Functions that operate on sets:
– COUNT, SUM, AVG, MAX, MIN

• Produce numbers (not tables)

• Not part of relational algebra (but not hard to add)

SELECT COUNT(*)
FROM ProfessorProfessor P

SELECT MAX (Salary)
FROM EmployeeEmployee E

22

43

Aggregates (cont’d)

SELECT COUNT (T.CrsCode)
FROM TeachingTeaching T
WHERE T.Semester = ‘S2000’

SELECT COUNT (DISTINCT T.CrsCode)
FROM TeachingTeaching T
WHERE T.Semester = ‘S2000’

Count the number of courses taught in S2000

But if multiple sections of same course
are taught, use:

44

Grouping
• But how do we compute the number of courses

taught in S2000 per professor?
– Strategy 1: Fire off a separate query for each

professor:
SELECT COUNT(T.CrsCode)
FROM TeachingTeaching T
WHERE T.Semester = ‘S2000’ AND T.ProfId = 123456789

• Cumbersome
• What if the number of professors changes? Add another query?

– Strategy 2: define a special grouping operatorgrouping operator:
SELECT T.ProfId, COUNT(T.CrsCode)
FROM TeachingTeaching T
WHERE T.Semester = ‘S2000’
GROUP BY T.ProfId

23

45

GROUP BY

46

GROUP BY - Example

SELECT T.StudId, AVG(T.Grade), COUNT (*)
FROM TranscriptTranscript T
GROUP BY T.StudId

TranscriptTranscript

Attributes:
–student’s Id
–avg grade
–number of courses

1234 3.3 41234
1234
1234
1234

24

47

HAVING Clause
• Eliminates unwanted groups (analogous to

WHERE clause, but works on groups instead of
individual tuples)

• HAVING condition is constructed from attributes
of GROUP BY list and aggregates on attributes
not in that list

SELECT T.StudId,
AVG(T.Grade) AS CumGpa,
COUNT (*) AS NumCrs

FROM Transcript Transcript T
WHERE T.CrsCode LIKE ‘CS%’
GROUP BY T.StudId
HAVING AVG (T.Grade) > 3.5

48

Evaluation of GroupBy with Having

25

49

Example

• Output the name and address of all seniors
on the Dean’s List

SELECT S.Id, S.Name
FROM StudentStudent S, TranscriptTranscript T
WHERE S.Id = T.StudId AND S.Status = ‘senior’

GROUP BY

HAVING AVG (T.Grade) > 3.5 AND SUM (T.Credit) > 90

S.Id -- wrong
S.Id, S.Name -- right

Every attribute that occurs in �����������
clause must also

occur in 	�
���
������ or it
must be an aggregate.
S.Name does not.

50

Aggregates: Proper and Improper
Usage

SELECT COUNT (T.CrsCode), T. ProfId
– makes no sense (in the absence of

GROUP BY clause)

SELECT COUNT (*), AVG (T.Grade)
– but this is OK

WHERE T.Grade > COUNT (SELECT ….)
– aggregate cannot be applied to result

of SELECT statement

26

51

ORDER BY Clause

• Causes rows to be output in a specified order

SELECT T.StudId, COUNT (*) AS NumCrs,
AVG(T.Grade) AS CumGpa

FROM TranscriptTranscript T
WHERE T.CrsCode LIKE ‘CS%’
GROUP BY T.StudId
HAVING AVG (T.Grade) > 3.5
ORDER BY DESC CumGpa, ASC StudId

Descending Ascending

52

Query Evaluation with GROUP BY,
HAVING, ORDER BY

1 Evaluate FROM: produces Cartesian product, A, of tables in
FROM list

2 Evaluate WHERE: produces table, B, consisting of rows of
A that satisfy WHERE condition

3 Evaluate GROUP BY: partitions B into groups that agree on
attribute values in GROUP BY list

4 Evaluate HAVING: eliminates groups in B that do not
satisfy HAVING condition

5 Evaluate SELECT: produces table C containing a row for
each group. Attributes in SELECT list limited to those in
GROUP BY list and aggregates over group

6 Evaluate ORDER BY: orders rows of C

A
 s

b

e
f

o
r

e

27

53

Views
• Used as a relation, but rows are not physically

stored.
– The contents of a view is computed when it is used

within an SQL statement

• View is the result of a SELECT statement over
other views and base relations

• When used in an SQL statement, the view
definition is substituted for the view name in the
statement
– As SELECT statement nested in FROM clause

54

View - Example

CREATE VIEW CumGpaCumGpa (StudId, Cum) AS
SELECT T.StudId, AVG (T.Grade)
FROM TranscriptTranscript T
GROUP BY T.StudId

SELECT S.Name, C.Cum
FROM CumGpaCumGpa C, StudentStudent S
WHERE C.StudId = S.StudId AND C.Cum > 3.5

28

55

View Benefits

• Access Control: Users not granted access to
base tables. Instead they are granted access
to the view of the database appropriate to
their needs.
–– External schemaExternal schema is composed of views.
– View allows owner to provide SELECT access

to a subset of columns (analogous to providing
UPDATE and INSERT access to a subset of
columns)

56

Views – Limiting Visibility

CREATE VIEW PartOfTranscriptPartOfTranscript (StudId, CrsCode, Semester) AS
SELECT T. StudId, T.CrsCode, T.Semester -- limit columns
FROM TranscriptTranscript T
WHERE T.Semester = ‘S2000’ -- limit rows

Give permissions to access data through view:

GRANT SELECT ON PartOfTranscriptPartOfTranscript TO joe

This would have been analogous to:

GRANT SELECT (StudId,CrsCode,Semester)
ON TranscriptTranscript TO joe

on regular tables, ifif SQL allowed attribute lists in GRANT SELECT

Grade projected out

29

57

View Benefits (cont’d)

• Customization: Users need not see full
complexity of database. View creates the
illusion of a simpler database customized to
the needs of a particular category of users

• A view is similar in many ways to a
subroutine in standard programming
– Can be reused in multiple queries

58

Nulls
• Conditions: x op y (where op is <, >, <>, =, etc.)

has value unknownunknown (U) when either x or y is null
– WHERE T.cost > T.price

• Arithmetic expression: x op y (where op is +, –, *,
etc.) has value NULL if x or y is NULL
– WHERE (T. price/T.cost) > 2

• Aggregates: COUNT counts NULLs like any other
value; other aggregates ignore NULLs

SELECT COUNT (T.CrsCode), AVG (T.Grade)
FROM TranscriptTranscript T
WHERE T.StudId = ‘1234’

30

59

• WHERE clause uses a threethree--valued logic valued logic –– T, F, T, F,
U(ndefinedU(ndefined)) –– to filter rows. Portion of truth table:

• Rows are discarded if WHERE condition is F(alse)
or U(nknown)

• Ex: WHERE T.CrsCode = ‘CS305’ AND T.Grade > 2.5

Nulls (cont’d)

C1 C2 C1 AND C2 C1 OR C2
T U U T
F U F U
U U U U

60

Modifying Tables – Insert

• Inserting a single row into a table
– Attribute list can be omitted if it is the same as

in CREATE TABLE (but do not omit it)

– NULL and DEFAULT values can be specified

INSERT INTO TranscriptTranscript(StudId, CrsCode, Semester, Grade)
VALUES (12345, ‘CSE305’, ‘S2000’, NULL)

31

61

Bulk Insertion
• Insert the rows output by a SELECT

INSERT INTO DeansListDeansList (StudId, Credits, CumGpa)
SELECT T.StudId, 3 * COUNT (*), AVG(T.Grade)
FROM TranscriptTranscript T
GROUP BY T.StudId
HAVING AVG (T.Grade) > 3.5 AND COUNT(*) > 30

CREATE TABLE DeansListDeansList (
StudId INTEGER,
Credits INTEGER,
CumGpa FLOAT,
PRIMARY KEY StudId)

62

Modifying Tables – Delete

• Similar to SELECT except:
– No project list in DELETE clause
– No Cartesian product in FROM clause (only 1 table

name)
– Rows satisfying WHERE clause (general form,

including subqueries, allowed) are deleted instead of
output

DELETE FROM TranscriptTranscript T
WHERE T.Grade IS NULL AND T.Semester <> ‘S2000’

32

63

Modifying Data - Update

• Updates rows in a single table

• All rows satisfying WHERE clause (general
form, including subqueries, allowed) are
updated

UPDATE EmployeeEmployee E
SET E.Salary = E.Salary * 1.05
WHERE E.Department = ‘R&D’

64

Updating Views

• Question: Since views look like tables to users, can
they be updated?

• Answer: Yes – a view update changes the
underlying base table to produce the requested
change to the view

CREATE VIEW CsRegCsReg (StudId, CrsCode, Semester) AS
SELECT T.StudId, T. CrsCode, T.Semester
FROM TranscriptTranscript T
WHERE T.CrsCode LIKE ‘CS%’ AND T.Semester=‘S2000’

33

65

Updating Views - Problem 1

• Question: What value should be placed in
attributes of underlying table that have been
projected out (e.g., Grade)?

• Answer: NULL (assuming null allowed in the
missing attribute) or DEFAULT

INSERT INTO CsRegCsReg (StudId, CrsCode, Semester)
VALUES (1111, ‘CSE305’, ‘S2000’)

66

Updating Views - Problem 2

• Problem: New tuple not in view

• Solution: Allow insertion (assuming the
WITH CHECK OPTION clause has not
been appended to the CREATE VIEW
statement)

INSERT INTO CsRegCsReg (StudId, CrsCode, Semester)
VALUES (1111, ‘ECO105’, ‘S2000’)

34

67

Updating Views - Problem 3

• Update to a view might not uniquely specify the
change to the base table(s) that results in the desired
modification of the view (ambiguity)

CREATE VIEW ProfDeptProfDept (PrName, DeName) AS
SELECT P.Name, D.Name
FROM ProfessorProfessor P, DepartmentDepartment D
WHERE P.DeptId = D.DeptId

68

Updating Views - Problem 3 (cont’d)

• Tuple <Smith, CS> can be deleted from
ProfDeptProfDept by:
– Deleting row for Smith from ProfessorProfessor (but this

is inappropriate if he is still at the University)
– Deleting row for CS from DepartmentDepartment (not

what is intended)
– Updating row for Smith in ProfessorProfessor by setting

DeptId to null (seems like a good idea, but how
would the computer know?)

35

69

Updating Views - Restrictions
• Updatable views are restricted to those in which

– No Cartesian product in FROM clause

– no aggregates, GROUP BY, HAVING
– …

For example, if we allowed:

CREATE VIEW AvgSalaryAvgSalary (DeptId, Avg_Sal) AS
SELECT E.DeptId, AVG(E.Salary)
FROM EmployeeEmployee E
GROUP BY E.DeptId

then how do we handle:

UPDATE AvgSalaryAvgSalary
SET Avg_Sal = 1.1 * Avg_Sal

