Relational Normali zation Theory

Chapter 6

Limitations of E-R Designs

* Provides a set of guidelines, does not result
in a unique database schema

» Does not provide away of evaluating
alternative schemas

» Normalization theory provides a mechanism
for analyzing and refining the schema
produced by an E-R design

Redundancy

» Dependencies between attributes cause
redundancy

— Ex. All addresses in the same town have the
same 2p code

SN Name Town Zip

123 e
4321 Mary | Stony Brook 11790 |~

5454 Tom \Stony Brook 11790

Redundancy and Other Problems

» Set valued attributes in the E-R diagram result in
multiple rowsin corresponding table

» Example: Person (SS\, Name, Address, Hobbies)

— A person entity with multiple hobbies yields multiple
rows in table Person

* Hence, the asciation betwean Name and Address for the
same person is gored redundantly

— SN is key of entity set, but (SSN, Hobby) is key of
corresponding relation
» Therelation Person can’t describe people without hobbies

4

Example

ER Model

SN Name Address Hobby
1111 Joe 123 Main {biking, hiking}

Relational Model

SSN Name Address Hobby
1111 Joe 123 Main) biking
1111 Joe 123 Main| hiking

5

Anomalies

* Redundancy leads to anomalies:

— Update anomaly: A change in Address must be
made in several places

— Deletion anomaly: Suppose a person gives up
all hobbies. Do we:
 Set Hobby attribute to null? No, since Hobby is part
of key
* Delete the entire row? No, since we lose other
information in the row
— Insertion anomaly: Hobby value must be
supplied for any inserted row since Hobby is
part of key

Decomposition

e Solution: use two relations to store Person
information

—Personl (SSN, Name, Address)
—Hobbies (SSN, Hobby)

» The decomposition is more general: people
with hobbies can now be described

» No update anomalies:
—Name and address stored once

—A hobby can be separately supplied or
deleted

Normalization Theory

» Result of E-R analysis need further
refinement

» Appropriate decomposition can solve
problems

» The underlying theory is referred to as
normalization theory and is based on
functional dependencies (and other kinds,
like multivalued dependencies)

Functional Dependencies

Definition: A functional dependency (FD) on a
relation schema R isaconstraint X — Y, where X
and Y are subsets of attributes of R.

Definition: AnFD X - Yissatisfied in an
instancer of R if for every pair of tuples, t and
s. if tand sagreeon all attributes in X then they
must agreeon all attributesin'Y
— Key constraint is a special kind of functional
dependency: all attributes of relation occur on the
right-hand side of the FD:
o SSN - SSN, Nanme, Address

Functional Dependencies

Address - ZipCode
— Stony Brook’s ZIPis11733

ArtistName — BirthYear
— Picasso was born in 1881
Autobrand - Manufacturer, Engine type
— Pontiacis built by General Motors with gasoline engine

Author, Title - PublDate
— Shakespeae’ s Hamlet published in 1600

10

Functional Dependency - Example

» Consider a brokerage firm that allows multiple clients to
share an account, but each account is managed from a
single office and a client can have no more than one
account in an office

— HasAccount (AcctNum, Clientld, Officeld)
* keys are (Clientld, Officeld), (AcctNum, Clientld)
— Client, Officeld - AcctNum

— AcctNum - Officeld
 Thus, attribute values need not depend only on key values

11

Entailment, Closure, Equivalence

e Definition: If F isaset of FDsonschemaR and f is
another FD on R, then F entails f if every instancer of
R that satisfies every FD in F also satisfies f
-ExF={A-BB-Cland fisA-C

e If Town - Zipand Zip - AreaCodethen Town - AreaCode

» Definition: The closure of F, denoted F*, is the set of

al FDs entailed by F

* Definition: F and G are equivalent if F entails G and G
entails F

12

Entaillment (cont’d)

» Satisfadion, entailment, and equivalence ae semantic
concepts — defined in terms of the adual relations in the
“red world.”

— They define what these notions are, not how to compute them

 How toched if F entailsf orif F and G are
equivalent?
— Apply the respective definitions for all possible relations?
 Bad idea: might be infinite number for infinite domains
« Even for finite domains, we haveto lodk at relations of all arities
— Solution: find algorithmic, syntactic ways to compute these
notions

e Important: The syntactic solution must be “corred” with resped to the
semantic definitions

¢ Corrednesshastwo aspeds. soundness and completeness — seelater

13

Armstrong’s Axioms for FDs

Thisisthe syntactic way of computing/testing
the various properties of FDs

Reflexivity: If Y Xthen X - Y (trivial FD)
— Name, Address - Name

Augmentation: If X - Y then XZ- YZ
— If Town - Zip then Town, Name — Zip, Name

Trangtivity: If X - YandY - Zthen X - Z

14

Soundress

Axioms are sound: If an FD f: X~ Y can be derived
fromaset of FDs F using the axioms, then f holdsin
every relation that satisfies every FD in F.

Example: Given X- Y and X- Z then

X - XY Augmentation by X
YX - YZ Augmentationby Y
X > YZ Trangitivity

— Thus, X- Y Z is stisfied in every relation where both X - Y
and X- Z aresatisfied
e Therefore, we have derived the union rule for FDs: we @n take the
union of the RHSs of FDs that have the same LHS

15

Compl eteness

o Axiomsare complete: If F entailsf, then f
can bederived from F using the axioms

A consegquence of completenessisthe
following (naive) algorithm to determining
if F entailsf:

— Algorithm: Use the axioms in all possible ways

to generate F* (the set of possible FD's is finite
so this can be done) and seeif f isinF*

16

Correctness

» The notions of soundness and completeness
link the syntax (Armstrong’s axioms) with
semantics (the definitions in terms of
relational instances)

» Thisisaprecise way of saying that the
algorithm for entailment based on the
axiomsis “correct” with respect to the

definitions
17
Generating F*
F
AB C e
aug union“AB . BCD .. decomp

A~ D ~“AB- BD trans; AB_. BCDE -~ AB- CDE
D E ®9-BCD _. BCDE

Thus, AB - BD, AB - BCD, AB . BCDE, and AB - CDE
are all elements of F*

18

Attribute Closure

 Calculating attribute closure leads to a more
efficient way of checking entailment

» The attribute closure of a set of attributes, X,
with respect to a set of functional dependencies,
F, (denoted X*¢) isthe set of all attributes, A,
suchthat X - A

— X *r,isnot necessarily thesameas X *, if F1ZF2

« Attribute closure and entailment:

— Algorithm: Given aset of FDs, F, then X - Y if and
onlyif X* O VY

19

Example - Computing Attribute Closure

X X+
F:AB - C A {A, D, E}
A-D AB {AB,C,D,E}
D-E (Hence AB is akey)
AC - B B (8}
D (D, E}

Is AB - Eentailedby F? Yes
Is D> C entaledby F? No

Result: X:* allows us to determine FDs
of theform X - Y entailed by F

20

10

Computation of Attribute Closure X',

closure:= X; [l since X O X*¢
r epeat
old := closure;
if thereisan FD Z - Vin F such that
Z U closureand V [J closure
then closure:= closured V
until old = closure

— If TO closurethen X - T isentailled by F

21

Example: Computation of Attribute Closure

Problem: Compute the attribute closure of AB with
respecttothesetof FDs: A - c (g

A-D (b
D-E (o
AC -~ B (d)

Solution:

Initially closure = {AB}
Using (a) closure = {ABC}
Using (b) closure = {ABCD}
Using (c) closure = {ABCDE}

22

11

Normal Forms

Each normal form is a set of conditions on a schema
that guarantees certain properties (relating to
redundancy and update anomalies)

First normal form (INF) is the same as the definition
of relational model (relations = sets of tuples; each
tuple = sequence of atomic values)

Second normal form (2NF) — aresearch lab accident;
has no practical or theoretical value —won't discuss

The two commonly used normal forms are third
normal form (3NF) and Boyce-Codd normal form
(BCNF)

23

BCNF

» Definition: A relation schemaR isin BCNF if
for every FD X Y associated with R either

—Y O X (i.e, theFD istrivia) or
— Xisasuperkey of R

« Example: Person1(SSN, Name, Address)
—Theonly FD is SSN - Name, Address
—Since SSN isakey, Personl isin BCNF

24

12

(non) BCNF Examples

* Person (SSN, Name, Address, Hobby)
—The FD SSN - Name, Address does not satisfy
requirements of BCNF
* since the key is (SSN, Hobby)

» HasAccount (AcctNum, Clientld, Officeld)

— The FD AcctNum— Officeld does not satisfy BCNF
requirements

* since keys are (Clientld, Officeld) and (AcctNum, Clientld);
not AcctNum.

25

Redundancy

e SupposeR hasaFD A - B, and Aisnot a superkey. If an
instance has 2 rows with same value in A, they must also
have same value in B (=> redundancy, if the A-value
repeats twice)

e . SN - Name, Address
-~ | SSN__Name Address Hobby

/1111 Joe 123 Main stamps
1111 Joe 123 Main coins

» |If Alisasuperkey, there cannot be two rows with same
value of A

— Hence, BCNF diminates redundancy

26

13

Third Normal Form

» A reational schemaR isin 3NF if for
every FD X- Y associated with R ether:
—Y O X (i.e, theFD istrivia); or
— Xisasuperkey of R; or

o 3NF isweaker than BCNF (every schema
that isin BCNF isaso in 3NF)

27

—Every AT Yispart of somekey of R - &miers

3NF Example

» HasAccount (AcctNum, Clientld, Officeld)
— Clientld, Officeld - AcctNum
¢ OK since LHS containsa key
— AcctNum -, Officeld
e OK since RHS s part of akey
» HasAccount isin 3NF but it might still contain
redundant information due to AcctNum > Officeld
(which is not allowed by BCNF)

28

14

3NF (Non) Example

* Person (SSN, Name, Address, Hobby)
— (SSN, Hobby) isthe only key.

—SSN - Name violates 3NF conditions
since Name is not part of akey and SN
IS not a superkey

29

Decompositions

» Goal: Eliminate redundancy by
decomposing arelation into several
relations in a higher normal form

» Decomposition must be lossless: it must be
possible to reconstruct the original relation
from the relations in the decomposition

» We will see why

15

Decomposition

* SchemaR = (R, F)
— Risset aof attributes

— F isaset of functional dependencies over R
e Each key isdescribed by a FD

» The decomposition of schema R is a collection of
schemas R, = (R, F;) where
— R=[0;R fordli (nonew attributes)

— F, isaset of functional dependences involving only
attributes of R

— F entailsF; for ali (nonewFDs)

» The decomposition of an instance, r, of R isaset
of relationsr; = 75, (r) for all i

31

Example Decomposition

Schema (R, F) where
R = {SSN\, Name, Address, Hobby}
F ={SSN- Name, Address}
can be decomposed into
R, = {SS\, Name, Address}
F,={SSN - Name, Address}
and
R, = {SSN, Hobby}
F={}

32

16

L ossless Schema Decomposition
* A decomposition should not lose information
* A decomposition (R,,.., R,) of aschema, R, is

losdessif every valid instance, r, of R can be
reconstructed from its components:

r=r, <4 r, XL > T

» whereeach r, = Ti(r)

Lossy Decomposition

Thefollowingis alwaysthe ase (Think why?):

ror, oaor, o Xr,
But the following is not always true:
ror, DA r, o AT,
Example: r m r, r,

SN Name Address SN Name Name Address
1111 Joe 1 Pine 1111 Joe Joe 1 Pine
2222 Alice 2 0ak 2222 Aliceyz fAlice 2 Oak
3333 Alice 3 Pine 3333 Aliceq |Alice 3 Pine

Thetuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are inthejoain,
but nat in the original 4

17

Lossy Decompositions:
What is Actually Lost?

* Inthe previous example, the tuples (2222, Alice, 3
Pine) and (3333, Alice, 2 Oak) were gained, not lost!

— Why do we say that the decomposition was lossy?

 What was lost is information:

— That 2222 livesat 2 Oak: In the decomposition, 2222 can
live at either 2 Oak or 3 Pine

— That 3333 livesat 3 Pine: Inthe decomposition, 3333 can
live at either 2 Oak or 3 Pine

Testing for Losslessness

* A (binary) decompositionof R = (R, F)
intoR, = (R, Fy)) and R, = (R,, F») is
losslessif and only if :

— either the FD

(RRNR,) - R, isin F
—or the FD

(RiNR,) - R, isin F

18

Example

Schema (R, F) where
R = {SSN\, Name, Address, Hobby}
F={SS\ - Name, Address}
can be decomposed into
R, = {SSN\, Name, Address}
F,= {SSN - Name, Address}
and
R, = {SSN, Hobby}
Fo={1}
SinceR, n R,= SSN and SSN - R, the
decomposition is lossless

37

Intuition Behind the Test for
L ossl essness

 SupposeR; N R, - R,. Thenarow of r
can combine with exactly onerow of r, in
the natural join (sincein r, aparticular set
of valuesfor the attributesin R, n R,
defines a unique row)

19

Proof of Lossless Condition
e rry >4 r, —thisistruefor any decomposition

e rlr, D 1y

card (r; ><) =card(ry)
(since echrowof r, joinswith exactly onerow of r,)

But card (r) = card (r,) (since r, isa projectionof r)
and therefore card (r) = card (r,><r,)

Hencer =r, o< Ty

39

Dependency Preservation

 Consider adecompositionof R = (R, F) into R, = (Ry,
Fp)and R, = (Ry, Fy)
—AnFD X - Yof FrisinF; iff XOYOR
—AnFD, f OF* may bein neither F,, nor F,, nor even
(FL O Fy)*
» Checking that f istrueinr, orr, is(relatively) easy
» Checking f in r,P><I r, isharder —requiresajoin
* Ideally: want to check FDs locally, inr, andr,, and have
aguaranteethat every f OF holdsinr, < r,
» The decomposition is dependency preserving iff the sets
FandF, O F,areequivalent: F* =(F, O F,)*
— Then checking all FDsin F, asr, and r, are updated, can be

done by checking F, inr, and F, inr,
40

20

Dependency Preservation

o If fisanFDinF,butf isnotinF, [0 F,,
there are two possibilities:
-0 (FLOFy)*

* If theconstraintsin F, and F, are maintained, f
will be maintained automatically.

—f0 (F,OFy)*

« f can be checked only by first taking the join of r,
andr,. Thisiscostly.

41

Example

Schema (R, F) where
R = {SSN\, Name, Address, Hobby}
F={SSN - Name, Address}
can be decomposed into
R, = {SSN\, Name, Address}
F,={SS\N - Name, Address}
and
R, = {SSN, Hobby}
Fo={}
SinceF = F; 00 F, the decomposition is
dependency preserving

42

21

Example

« Schema (ABC; F), F={A> B, B>C, C> B}
» Decomposition:
—(AC, F)), F,={A>C}
* Notee A>CUOF, butinF*
- (BC,F,), F,={B>C,C> B}

« A>BO(F,OF,), but A>BO(F, OF,)"

- So F*=(F, O F,)* and thusthe decompositionsis
still dependency preserving

Example

» HasAccount (AcctNum, Clientld, Officeld)
f,: AcctNum - Officeld
f,: Clientld, Officeld — AcctNum
» Decomposition:
R, = (AcctNum, Officeld; {AcctNum - Officeld})
R, = (AcctNum, Clientld; {})
» Decomposition is lossless:
R, n R,={AcctNum} and AcctNum - Officeld
* INnBCNF
 Not dependency preserving: f,[J(F, O F,)*
» HasAccount does not have BCNF decompositions that are both
lossless and dependency preserving! (Check, eg, by enumeration)

 Hence: BCNF+losslesstdependency preserving decompositions
are not always achievable!

22

BCNF Decomposition Algorithm

Input: R=(R;, F)

Decomp =R

while thereisS= (S F’) 0 Decomp and Snotin BCNF do
Find X - Y[JF’ that violatesBCNF // Xisn't asuperkeyin S
Replace Sin Decomp with S, = (XY; F,), S,=(S- (Y- X); F,)
Il F,=all FDsof F’' involving only attributes of XY
Il F,=all FDsof F’ involving only attributes of S- (Y - X)

end
return Decomp

45
Simple Example
» HasAccount :
(Clientld, Officeld, AcctNum) Clientld,Officeld — AcctNum
AcctNum -, Officeld
» Decompose using AcctNum - Officeld :
(Officeld, AcctNum) (Clientld , AcctNum)
BCNF: AcctNumis key BCNF (only trivial FDs)
FD: AcctNum - Officeld
46

23

A Larger Example

Given: R =(R; F) where R= ABCDEGHK and

F={ABH- C,A- DE,BGH- K,K- ADH, BH- GE}
step 1. Find aFD that violates BCNF

Not ABH - C since (ABH)* includes all attributes

(BH isakey)

A - DE violates BCNF since A is not asuperkey (A" =ADE)
step 2: Split R into:

R, = (ADE, F,={A- DE})

R, = (ABCGHK; F,={ABH - C, BGH - K, K- AH, BH- G})

Note1: R, isin BCNF

Note 2: Decomposition is losdess since Aisakey of R,

Note3: FDsK -~ DandBH - EarenotinF, or F,. But

both can be derived from F,[F,
(E.g., K- A andA- DimpliesK- D)
Hence, decomposition is dependency preserving.

47

Example (con't)

Given: R, = (ABCGHK; {ABH - C, BGH - K, K- AH, BH - G})
step 1. Find aFD that violates BCNF.

Not ABH — C or BGH - K, sinceBH isakey of R,

K- AH violates BCNF since K is not a superkey (K* = AH)
step 2: Split R, into:

R,1 = (KAH, F5={K - AH})

R,, = (BCCK; F={})

Note 1: Both R,, and R,, are in BCNF.
Note 2: The decomposition islosdess (since K isakey of R,,)
Note 3: FDs ABH- C,BGH- K,BH- G arenotinF,,
or F,,,andthey can't bederived fromF, 0 F,, OF,,.
Hence the decomposition is not dependency-preserving

48

24

Properties of BCNF Decomposition Algorithm

Let X - Yviolate BCNF inR = (RF) and R, = (R.,F),
R, = (R,F») isthe resulting decomposition. Then:
* There are fewer violations of BCNF in R; and R, than
there werein R
— X - Y implies X isakey of R,
— Hence X — Y O F, does not violate BCNF in R; and, since
X - Y OF,, does not violate BCNF in R, either
— Supposef isX’- Y and f O F doesn’t violate BCNF in R.
If fOF,orF, it doesnot violate BCNF in R, or R, either
since X" isasuperkey of R and hence also of R; and R, .

49

Properties of BCNF Decomposition Algorithm

» A BCNF decomposition is not necessarily
dependency preserving
» But always lossless:
snceR, N R,=X, XY, and R =XY

» BCNF+losslesst+dependency preserving is
sometimes unachievable (recall HasAccount)

25

Third Normal Form

» Compromise — Not all redundancy
removed, but dependency preserving
decompositions are always possible (and, of
course, lossless)

» 3NF decomposition is based on a minimal
cover

51

Minima Cover

* A minimal cover of aset of dependencies, F, is aset of
dependencies, U, such that:
— UisequivalenttoF (F* = U*)
— All FDsin U havetheform X - Awhere Aisasingle
attribute

— It is not possible to make U smaller (while preserving
equivalence) by
» Deeting an FD

e Deleting an attribute from an FD (either from LHS or RHS)

— FDsand attributes that can be deleted in thisway are called
redundant

52

26

Computing Minimal Cover

 Example: F={ABH - CK,A - D,C - E,
BGH - L,L -~ AD,E - L,BH - E}
» step 1: Make RHS of each FD into a single attribute

— Algorithm: Use the decomposition inference rule for FDs

— Example: L - AD replacedbyL -~ AL - D; ABH - CK by
ABH _.C, ABH -K

* step 2: Eliminate redundant attributes from LHS.
— Algorithm: If FD XB -~ A F (where B isasingle attribute)
and X - Aisentailed by F, then B was unnecessary
— Example: Can an attribute be deleted fromABH - C?
e Compute AB*, AH*, BH* .

e SinceC 0O (BH)*-,BH - C isentailed by F and A isredundant in
ABH - C.

53

Computing Minimal Cover (con't)

» step 3: Delete redundant FDs from F

— Algorithm: If F —{f} entails f, then f isredundant
 If fisX - Athencheckif A X"y

— Example: BGH - LisentaledbyE - L, BH - E,
S0 it is redundant

* Note: The order of steps 2 and 3 cannot be
interchanged!! See the textbook for a
counterexample

Synthesizing a 3NF Schema

Starting with aschemaR = (R, F)

 step 1: Compute aminimal cover, U, of F. The
decomposition is based on U, but since U* = F*
the same functional dependencieswill hold

— A minimal cover for
F={ABH_-CK,A-D,C-EBGH-L,L-AD,
E- L,BH - E}

IS
U={BH-C,BH-K, A.D,C~E L-AE-L}

55

Synthesizing a 3NF schema (con't)

 step 2: Partition U into setsU,, U,, ... U,
such that the LHS of all elements of U, are the
same
—U,;={BH - C,BH - K}, U,={A - D},

Us={C - E,Us={L-ALU={E- L}

28

Synthesizing a 3NF schema (con't)

* step 3: For each U, form schemaR,; = (R, U),
where R, isthe set of al attributes mentioned in
U.

|

— Each FD of U will bein some R;. Hencethe
decomposition is dependency preserving

- R, =(BHCK; BH-C, BH- K), R,=(AD; A-D),

R;=(CE; C - E), R,=(AL; L-A),

R;=(EL; E- L)

57

Synthesizing a 3NF schema (con't)

* step 4: If no R isasuperkey of R, add schema R, =

(Ro,{}) where Ry isakey of R.
— Ry=(BGH, {})
* R, might be needed when not al attributes are necessarily contained
inR,0OR, ...0OR,
— A missing attribute, A, must be part of all keys

(sinceit'snotin any FD of U, deriving akey constraint from U
involves the augmentation axiom)

* R, might be needed even if dl attributes are accounted for in R,OR,

...0R,
— Example: (ABCD; {A>B, C>D}).

Step 3 decomposition: R, = (AB; {A>B}), R,=(CD; {C->D}).
Lossy! Need to add (AC; { }), for losslessness
— Step 4 guarantees lossless decomposition.

29

BCNF Design Strategy

 Theresulting decomposition, R, Ry, ... R, is
— Dependency preserving (sinceevery FD in U isaFD of
some schema)
— Lossless (although this is not obvious)
— In 3NF (although this is not obvious)

» Strategy for decomposing arelation
— Use 3NF decomposition first to get lossless,
dependency preserving decomposition
— If any resulting schema is not in BCNF, split it using
the BCNF algorithm (but this may yield a non-
dependency preserving result)

59

Normali zation Drawbadks

* By limiting redundancy, normalizaion helps
maintain consistency and saves gace

» But performance of querying can suffer because
related information that was dored in asingle
relation is now distributed among several

* Example: A joinisrequired to get the names and
grades of all students taking CS305in S2002.

SELECT S.Name, T.Grade
FROM Student S, Transcript T
WHERE S.Id =T.Sudld AND
T.CrsCode="'CS305° AND T.Semester = ‘S2002

60

30

Denormalization

» Tradeoff: Judiciously introduce redundancy to improve
performance of certain queries

* Example: Add attribute Name to Transcript

SELECT T.Name, T.Grade
FROM Transcript' T
WHERE T.CrsCode=‘CS305 AND T.Semester = ‘S2002’

— Join is avoided

— If queries are asked more frequently than Transcript
Is modified, added redundancy might improve
average performance

— But, Transcript' is no longer in BCNF since key is
(Sudid, CrsCode, Semester) and Sudld — Name

61

Fourth Normal Form

SSN Phonel ChildSSN

7l 111111 1234444 222222
| 111111 1234444 333333 Person

ATIIIIT 3215855, 222222
| 111111 321-5555 - 333333

222222 987-6666 444444
22022 TI7-T777 444444

| 202222, 987-6666 555555
| 222222 7T7-7777 555555 |

« Relation has redundant data
* Yetitisin BCNF (since there are no non-trivial FDs)

* Redundancy is due to set valued attributes (in the E-R
sense), not because of the FDs

62

31

Multi-Valued Dependency

* Problem: multi-valued (or binary join) dependency

— Definition: If every instance of schemaR can be (losslessly)
decomposed using attribute sets (X, Y) such that:

F=1my(r) D my(r)

then a multi-valued dependency
R=my(R) DX my(R)
holdsinr

EX: Person= gy ponen (PErsoN) DI 7T gy chitassy (Person)

Fourth Normal Form (4NF)

* A schemaisin fourth normal form (4NF) if
for every multi-valued dependency
R=XX Y
in that schema, ether:
-XOYorYDOX (trivial case); or
-Xn Yisasuperkey of R (i.e, Xn Y- R)

32

Fourth Normal Form (Cont’d)

* Intuition: if X n Y- R, thereisaunique row
inrelation r for each value of X n Y (hence
no redundancy)

— Ex: SN does not uniquely determine PhoneN or
ChildSH, thus Person is not in 4NF.
» Solution: Decompose Rinto X and Y

— Decomposition is lossless — but not necessarily
dependency preserving (since 4ANF implies BCNF
— next)

65

ANF Implies BCNF

» SupposeRisin4NFand X - Yisan FD.
— R1= XY, R2= R-Yisalossless decomposition of R
— Thus R has the multi-valued dependency:

R=R, < R,

— Since Risin 4NF, one of the following must hold :
— XYOOR-Y (an impossibility)
— R-YO XY (i.e., R= XY and X is asuperkey)
— XYn R=-Y (= X) isasuperkey

— Hence X - Y satisfies BCNF condition

33

