Sequences and Mathematical Induction

CSE 215: Foundations of Computer Science
Stony Brook University
http:/ / www.cs.stonybrook.edu/~liu/ cse215

Sequences

- A sequence is a function whose domain is
- all the integers between two given integers m and n $a_{m}, a_{m+1}, a_{m+2}, \ldots, a_{n}$
- all the integers greater than or equal to a given integer m $a_{m}, a_{m+1}, a_{m+2}, \ldots$
a_{k} is a term in the sequence
k is the subscript or index
m is the subscript of the initial term
n is the subscript of the last term $(\mathrm{m} \leq \mathrm{n})$
- An explicit formula or general formula for a sequence is a rule that shows how the values of a_{k} depend on k

Sequences: examples

$a_{k}=2^{k} \quad$ is the sequence $\quad 2,4,8,16,32,64,128, \ldots$

Index	1	2	3	4	5	6	7	8
Term	2	4	8	16	32	64	128	256

$a_{\mathrm{k}}=\mathrm{k} / \mathrm{k}+1$, for all integers $\mathrm{k} \geq 1: \quad b_{\mathrm{i}}=\mathrm{i}-1 / \mathrm{i}$, for all integers $\mathrm{i} \geq 2$:

$$
\begin{array}{ll}
a_{1}=\frac{1}{1+1}=\frac{1}{2} & b_{2}=\frac{2-1}{2}=\frac{1}{2} \\
a_{2}=\frac{2}{2+1}=\frac{2}{3} & b_{3}=\frac{3-1}{3}=\frac{2}{3} \\
a_{3}=\frac{3}{3+1}=\frac{3}{4} & b_{4}=\frac{4-1}{4}=\frac{3}{4}
\end{array}
$$

- a_{k} for $\mathrm{k} \geq 1$ is the same sequence as b_{i} for $\mathrm{i} \geq 2$

Sequences: one more example

An alternating sequence:

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{j}}=(-1)^{\mathrm{j}} \text { for all integers } \mathrm{j} \geq 0 \\
& \mathrm{c}_{0}=(-1)^{0}=1 \\
& \mathrm{c}_{1}=(-1)^{1}=-1 \\
& \mathrm{c}_{2}=(-1)^{2}=1 \\
& \mathrm{c}_{3}=(-1)^{3}=-1 \\
& \mathrm{c}_{4}=(-1)^{4}=1 \\
& \mathrm{c}_{5}=(-1)^{5}=-1
\end{aligned}
$$

Find an explicit formula for a sequence

- The initial terms of a sequence are:

$$
1, \quad-\frac{1}{4}, \quad \frac{1}{9}, \quad-\frac{1}{16}, \quad \frac{1}{25}, \quad-\frac{1}{36}
$$

- a_{k} is the general term of the sequence, a_{1} is the first element
- observe that the denominator of each term is a perfect square

$$
\begin{array}{cccccc}
\frac{1}{1^{2}} & \frac{(-1)}{2^{2}}, & \frac{1}{3^{2}}, & \frac{(-1)}{4^{2}}, & \frac{1}{5^{2}}, & \frac{(-1)}{6^{2}} \\
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6}
\end{array}
$$

- observe that the numerator equals $\pm 1: \quad a_{k}=\frac{ \pm 1}{k^{2}}$
- alternating sequence with -1 when k is even:

$$
a_{k}=\frac{(-1)^{k+1}}{k^{2}} \quad \text { for all integers } k \geq 1
$$

Find an explicit formula for a sequence

- Continuing from previous slide
- Result sequence:

$$
a_{k}=\frac{(-1)^{k+1}}{k^{2}} \quad \text { for all integers } k \geq 1
$$

- Alternative sequence:

$$
a_{k}=\frac{(-1)^{k}}{(k+1)^{2}} \quad \text { for all integers } k \geq 0
$$

Summation notation

- If m and n are integers and $\mathrm{m} \leq \mathrm{n}$, the summation from k equals m to n of $\mathrm{a}_{\mathrm{k}}, \sum_{k=m}^{n} a_{k}$, is the sum of all the terms a_{m}, $\mathrm{a}_{\mathrm{m}+1}, \mathrm{a}_{\mathrm{m}+2}, \ldots, \mathrm{a}_{\mathrm{n}}$

$$
\sum_{k=m}^{n} a_{k}=a_{m}+a_{m+1}+a_{m+2}+\cdots+a_{n}
$$

k is the index of the summation m is the lower limit of the summation n is the upper limit of the summation

Summation notation: examples

$$
\begin{aligned}
& a_{1}=-2, \quad a_{2}=-1, \quad a_{3}=0, \quad a_{4}=1, \quad a_{5}=2 \\
& \sum_{k=1}^{5} a_{k}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=(-2)+(-1)+0+1+2=0 \\
& \sum_{k=2}^{2} a_{k}=a_{2}=-1 \\
& \sum_{k=1}^{2} a_{2 k}=a_{2 \cdot 1}+a_{2} \cdot 2=a_{2}+a_{4}=-1+1=0
\end{aligned}
$$

Summation notation: more forms

- Summation notation with formulas:

$$
\sum_{k=1}^{5} k^{2}=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=55
$$

- Changing from Summation Notation to Expanded Form:

$$
\begin{aligned}
\sum_{i=0}^{n} \frac{(-1)^{i}}{i+1} & =\frac{(-1)^{0}}{0+1}+\frac{(-1)^{1}}{1+1}+\frac{(-1)^{2}}{2+1}+\frac{(-1)^{3}}{3+1}+\cdots+\frac{(-1)^{n}}{n+1} \\
& =\frac{1}{1}+\frac{(-1)}{2}+\frac{1}{3}+\frac{(-1)}{4}+\cdots+\frac{(-1)^{n}}{n+1} \\
& =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{(-1)^{n}}{n+1}
\end{aligned}
$$

Summation notation: from expanded

- Changing from Expanded Form to Summation Notation:

$$
\frac{1}{n}+\frac{2}{n+1}+\frac{3}{n+2}+\cdots+\frac{n+1}{2 n}
$$

The general term of this summation can be expressed as $\frac{k+1}{n+k}$ for integers k from 0 to n

$$
\frac{1}{n}+\frac{2}{n+1}+\frac{3}{n+2}+\cdots+\frac{n+1}{2 n}=\sum_{k=0}^{n} \frac{k+1}{n+k}
$$

Summation: evaluation for small n

- Evaluating expression for given limits:

$$
\begin{aligned}
& \quad \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n \cdot(n+1)} \\
& n=1 \quad \frac{1}{1 \cdot 2}=\frac{1}{2} \\
& n=2 \quad \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}=\frac{1}{2}+\frac{1}{6}=\frac{2}{3} \\
& n=3 \quad \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}=\frac{3}{4}
\end{aligned}
$$

Summation: recursive definition

- Recursive definition:

$$
\sum_{k=m}^{m} a_{k}=a_{m} \quad \text { and } \quad \sum_{k=m}^{n} a_{k}=\sum_{k=m}^{n-1} a_{k}+a_{n} \quad \text { for all integers } n>m
$$

- Examples:
- Separating off final term

$$
\sum_{i=1}^{n+1} \frac{1}{i^{2}}=\sum_{i=1}^{n} \frac{1}{i^{2}}+\frac{1}{(n+1)^{2}}
$$

- Writing summation

$$
\sum_{k=0}^{n} 2^{k}+2^{n+1}=\sum_{k=0}^{n+1} 2^{k}
$$

Summation: successive cancellation

- Transform sum into telescoping sums, then into a simple expression
- Example: $\sum_{k=1}^{n} \frac{1}{k(k+1)}$
- Use $\frac{1}{k}-\frac{1}{k+1}=\frac{(k+1)-k}{k(k+1)}=\frac{1}{k(k+1)}$

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{1}{k(k+1)}=\sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right) \\
& \quad=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right)+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& \quad=1-\frac{1}{n+1}
\end{aligned}
$$

Product notation

- The product from k equals m to n of $a_{k}, \prod_{k=m}^{n} a_{k}$, for integers m and n with $m \leq n$, is the product of all the terms
$a_{m}, a_{m+1}, a_{m+2}, \ldots, a_{n}$

$$
\prod_{k=m}^{n} a_{k}=a_{m} \cdot a_{m+1} \cdot a_{m+2} \cdots a_{n}
$$

- Examples: $\quad \prod_{k=1}^{5} a_{k}=a_{1} a_{2} a_{3} a_{4} a_{5}$

$$
\prod_{k=1}^{5} k=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=120
$$

Product notation: recursive definition

- Recursive definition:

$$
\prod_{k=m}^{m} a_{k}=a_{m} \quad \text { and } \quad \prod_{k=m}^{n} a_{k}=\left(\prod_{k=m}^{n-1} a_{k}\right) \cdot a_{n} \quad \text { for all integers } n>m
$$

Summation and product properties

- If $a_{m}, a_{m+1}, a_{m+2}, \ldots$ and $b_{m}, b_{m+1}, b_{m+2}, \ldots$ are sequences of real numbers:

$$
\begin{aligned}
& \sum_{k=m}^{n} a_{k}+\sum_{k=m}^{n} b_{k}=\sum_{k=m}^{n}\left(a_{k}+b_{k}\right) \\
& \left(\prod_{k=m}^{n} a_{k}\right) \cdot\left(\prod_{k=m}^{n} b_{k}\right)=\prod_{k=m}^{n}\left(a_{k} \cdot b_{k}\right)
\end{aligned}
$$

- Generalized distributive law: if c is any real number:

$$
c \cdot \sum_{k=m}^{n} a_{k}=\sum_{k=m}^{n} c \cdot a_{k}
$$

Summation and product properties

- Example: using properties of summation and product

$$
\begin{array}{ll}
a_{k}=k+1 & b_{k}=k-1 \\
\sum_{k=m}^{n} a_{k}+2 \cdot \sum_{k=m}^{n} b_{k} & =\sum_{k=m}^{n}(k+1)+2 \cdot \sum_{k=m}^{n}(k-1) \\
& =\sum_{k=m}^{n}(k+1)+\sum_{k=m}^{n} 2 \cdot(k-1) \\
& =\sum_{k=m}^{n}((k+1)+2 \cdot(k-1)) \\
& =\sum_{k=m}^{n}(3 k-1)
\end{array}
$$

Summation and product properties

- Another example: using properties of summation and product

$$
\begin{aligned}
a_{k}=k+1 & b_{k}=k-1 \\
\left(\prod_{k=m}^{n} a_{k}\right) \cdot\left(\prod_{k=m}^{n} b_{k}\right) & =\left(\prod_{k=m}^{n}(k+1)\right) \cdot\left(\prod_{k=m}^{n}(k-1)\right) \\
& =\prod_{k=m}^{n}(k+1) \cdot(k-1) \\
& =\prod_{k=m}^{n}\left(k^{2}-1\right)
\end{aligned}
$$

Sequences: change of variables

- Examples:

$$
\begin{aligned}
\sum_{j=2}^{4}(j-1)^{2} & =(2-1)^{2}+(3-1)^{2}+(4-1)^{2} \\
& =1^{2}+2^{2}+3^{2}
\end{aligned}
$$

$$
=\sum_{k=1}^{3} k^{2} .
$$

change of variable
$k=j-1$

$$
\begin{aligned}
& \sum_{k=0}^{6} \frac{1}{k+1} \quad \text { change of variable: } j=k+1 \\
& \frac{1}{k+1}=\frac{1}{(j-1)+1}=\frac{1}{j}
\end{aligned}
$$

$$
\begin{array}{ll}
k=0, & j=k+1=0+1=1 \\
k=6, & j=k+1=6+1=7
\end{array} \quad \sum_{k=0}^{6} \frac{1}{k+1}=\sum_{i=1}^{7} \frac{1}{j}
$$

Factorial notation

- The quantity n factorial, n !, is defined to be the product of all the integers from 1 to n :

$$
\mathrm{n}!=\mathrm{n} \cdot(\mathrm{n}-1) \cdot \cdots 3 \cdot 2 \cdot 1
$$

$0!$ is defined to be $1: 0!=1$

$$
\begin{array}{ll}
0!=1 & 1!=1 \\
2!=2 \cdot 1=2 & 3!=3 \cdot 2 \cdot 1=6 \\
4!=4 \cdot 3 \cdot 2 \cdot 1=24 \quad 5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120 \\
6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720 \\
7!=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5,040 \\
8!=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=40,320 \\
9!=9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=362,880
\end{array}
$$

Factorial notation: recursive definition

- Recursive definition for factorial:

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { if } n \geq 1\end{cases}
$$

- Examples: computing with factorials

$$
\begin{aligned}
\frac{8!}{7!} & =\frac{8 \cdot 7!}{7!}=8 \\
\frac{5!}{2!\cdot 3!} & =\frac{5 \cdot 4 \cdot 3!}{2!\cdot 3!}=\frac{5 \cdot 4}{2 \cdot 1}=10 \\
\frac{(n+1)!}{n!} & =\frac{(n+1) \cdot n!}{n!}=n+1 \\
\frac{n!}{(n-3)!} & =\frac{n \cdot(n-1) \cdot(n-2) \cdot(n-3)!}{(n-3)!}=n \cdot(n-1) \cdot(n-2) \\
& =n^{3}-3 n^{2}+2 n
\end{aligned}
$$

n choose r

- n choose $r,\binom{n}{r}$, represents the number of subsets of size r that can be chosen from a set with n elements, for integers n and r with $0 \leq r \leq n$

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

Combination: number of r-combinations from a set of n elements

- Examples:

$$
\begin{aligned}
\binom{8}{5} & =\frac{8!}{5!(8-5)!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(5 \cdot 4 \cdot 5 \cdot 2 \cdot 1) \cdot(\cdot 3 \cdot 2 \cdot 1)}=56 \\
\binom{n+1}{n} & =\frac{(n+1)!}{n!((n+1)-n)!}=\frac{(n+1)!}{n!1!}=\frac{(n+1) \cdot n!}{n!}=n+1
\end{aligned}
$$

n choose r

- Example: 4 choose $2=4!/(2!2!)=6$
- Let $S=\{1,2,3,4\}$
- The 6 subsets of S with 2 elements are:

$$
\begin{aligned}
& \{1,2\} \\
& \{1,3\} \\
& \{1,4\} \\
& \{2,3\} \\
& \{2,4\} \\
& \{3,4\}
\end{aligned}
$$

Sequences in computer programming

- Array: a[1], a[2], ..., A[50] $a=[7,4,25,9]$ list in py/da
- for $i:=1$ to n print $a[i]$
next i
- Summation
$s:=a[1]$
for $k:=2$ to n

$$
s:=s+a[k]
$$

next k

$$
\begin{aligned}
& \mathrm{s}=\operatorname{sum}(\mathrm{a}[\mathrm{k}] \text { for } \mathrm{k} \text { in } \operatorname{range}(1, \mathrm{n}+1)) \\
& \mathrm{s}=\operatorname{sumof}(\mathrm{a}[\mathrm{k}], \mathrm{k} \text { in } \operatorname{ints}(1, \mathrm{n})) \mathrm{da}
\end{aligned}
$$

Example algorithm with arrays

- Convert from base 10 to base 2:

$$
\begin{aligned}
38 & =19 \cdot 2+0 \\
& =(9 \cdot 2+1) \cdot 2+0 \quad=9 \cdot 2 \cdot 2+1 \cdot 2+0 \\
& =(4 \cdot 2+1) \cdot 2^{2}+1 \cdot 2+0=4 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2+0 \\
& =(2 \cdot 2+0) \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2+0 \\
& =2 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2+0 \\
& =(1 \cdot 2+0) \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2+0 \\
& =1 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2+0 \\
a & =2^{k} \cdot r[k]+2^{k-1} \cdot r[k-1]+\cdots+2^{2} \cdot r[2]+2^{1} \cdot r[1]+2^{0} \cdot r[0] \\
a_{10} & =(r[k] r[k-1] \cdots r[2] r[1] r[0])_{2}
\end{aligned}
$$

Convert from base 10 to base 2

Input: n [a nonnegative integer]

Algorithm Body:
$\mathrm{q}:=\mathrm{n}, \mathrm{i}:=0$
while ($\mathrm{i}=0$ or $\mathrm{q}=0$)
$\mathrm{r}[\mathrm{i}]:=\mathrm{q} \bmod 2$
$\mathrm{q}:=\mathrm{q} \operatorname{div} 2$
i:= i + 1
end while

Output: $\mathrm{r}[0], \mathrm{r}[1], \mathrm{r}[2], \ldots, r[\mathrm{i}-1]$ [a sequence of integers]

Mathematical induction

Principle of mathematical induction:

Let $\mathrm{P}(\mathrm{n})$ be a property that is defined for integers n , and let a be a fixed integer. Suppose the following two statements are true:

1. $\mathrm{P}(\mathrm{a})$ is true.
2. For all integers $k \geq a$, if $P(k)$ is true then $P(k+1)$ is true.

Then the statement "for all integers $n \geq a, P(n)$ " is true.
That is:

$$
\begin{aligned}
& \mathrm{P}(a) \text { is true. } \\
& \mathrm{P}(\mathrm{k}) \Rightarrow \mathrm{P}(\mathrm{k}+1), \forall \mathrm{k} \geq a \\
& \therefore \mathrm{P}(\mathrm{n}) \text { is true, } \forall \mathrm{n} \geq a
\end{aligned}
$$

Mathematical induction: proof method

Method of proof by mathematical induction:

To prove a statement of the form:
"For all integers $\mathrm{n} \geq$ a, a property $\mathrm{P}(\mathrm{n})$ is true."

Step 1. Base step: Show that $\mathbf{P (a)}$ is true.

Step 2. Inductive step: Show that for all integers $\mathbf{k} \geq \mathbf{a}$, if $P(k)$ is true then $P(k+1)$ is true:

- Inductive hypothesis: suppose that $\mathrm{P}(\mathrm{k})$ is true, where k is any particular but arbitrarily chosen integer with $\mathrm{k} \geq \mathrm{a}$.
- Then show that $\mathrm{P}(\mathrm{k}+1)$ is true.

Mathematical induction: example 1

For all integers $n \geq 8$, $n ¢$ can be obtained using 3ϕ and 5ϕ coins
Base step: $\mathrm{P}(8)$ is true because $8 \phi=$ one $3 \not \subset$ coin and one $5 \notin$ coin
Inductive step: for all integers $\mathrm{k} \geq 8$, if $\mathrm{P}(\mathrm{k})$ is true then $\mathrm{P}(\mathrm{k}+1)$ is true Inductive hypothesis: suppose k is any integer with $\mathrm{k} \geq 8$:
$\mathrm{P}(\mathrm{k})$: $\mathrm{k} \not \subset$ can be obtained using $3 ¢$ and $5 ¢$ coins
We must show $P(k+1):(k+1) ¢$ can be obtained using $3 ¢$ and $5 ¢$ coins
Case 1 . There is a $5 ¢$ coin among those used to make up the $k \phi$:
Replace the $5 ¢$ coin by two $3 ¢$ coins; the result will be $(\mathrm{k}+1) ¢$.
Case 2. There is not a 5 c coin among those used to make up the $\mathrm{k} \phi$:
Because $\mathrm{k} \geq 8$, at least three $3 ¢$ coins must have been used.
Remove three $3 ¢$ coins (9ϕ) and replace them by two $5 ¢ \operatorname{coins}(10 ¢)$; the result will be $(\mathrm{k}+1) \mathrm{d}$

Mathematical induction: example 2

Sum of the first \mathbf{n} integers:

$$
1+2+\cdots+n=\frac{n(n+1)}{2} \quad \text { for all integers } n \geq 1
$$

Base step: $\mathrm{P}(1): \quad 1=\frac{1(1+1)}{2}$
Inductive step:
Inductive hypo: $\mathrm{P}(\mathrm{k})$ is true, for a particular but arbitrarily chosen integer $\mathrm{k} \geq 1: \quad 1+2+\cdots+k=\frac{k(k+1)}{2}$
Prove $\mathrm{P}(\mathrm{k}+1): \quad 1+2+\cdots+(k+1)=\frac{(k+1)(k+2)}{2}$

$$
(1+2+\cdots+k)+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{(k+1)(k+2)}{2}
$$

Sum of the first n integers

- A formula in closed form represents a sum with a variable number of terms without an ellipsis or a summation symbol.
- Examples: apply the formula for the sum of the first n Integers:

$$
\begin{aligned}
2+4+6+\cdots+500 & =2 \cdot(1+2+3+\cdots+250) \\
& =2 \cdot\left(\frac{250 \cdot 251}{2}\right) \\
& =62,750 . \\
5+6+7+8+\cdots+50 & =(1+2+3+\cdots+50)-(1+2+3+4)
\end{aligned}
$$

Mathematical induction: example 3

Sum of geometric sequence: each term is obtained from the preceding one by multiplying by a constant: if the first term is 1 and the constant is $\mathrm{r}: 1, r, r^{2}, r^{3}, \ldots, r^{\mathrm{n}}, \ldots$

$$
1+r+r^{2}+\cdots+r^{n}=\sum_{i=0}^{n} r^{i}=\frac{r^{n+1}-1}{r-1}
$$

Base step: Prove $\mathrm{P}(0): \sum_{i=0}^{0} r^{i}=\frac{r^{0+1}-1}{r-1} \Leftrightarrow 1=1$ (Proved) Inductive step:

Inductive hypothesis:

$$
\text { suppose } \mathrm{P}(\mathrm{k}) \text { is true for } k \geq 0: \quad \sum_{i=0}^{k} r^{i}=\frac{r^{k+1}-1}{r-1}
$$

$$
\text { Prove } \mathrm{P}(\mathrm{k}+1): \sum_{i=0}^{k+1} r^{i}=\frac{r^{k+2}-1}{r-1}
$$

Sum of geometric sequence

Continued:

$$
\begin{gathered}
\text { Prove } \mathrm{P}(\mathrm{k}+1): \sum_{i=0}^{k+1} r^{i}=\frac{r^{k+2}-1}{r-1} \\
\begin{array}{c}
\sum_{i=0}^{k+1} r^{i}= \\
= \\
= \\
\frac{r^{k+1}-1}{r-1}+r^{k+1} \\
=
\end{array}
\end{gathered}
$$

Sum of geometric sequence: examples

$$
\begin{aligned}
1+3+3^{2}+\cdots+3^{m-2} & =\frac{3^{(m-2)+1}-1}{3-1} \\
& =\frac{3^{m-1}-1}{2} \\
3^{2}+3^{3}+3^{4}+\cdots+3^{m} & =3^{2} \cdot\left(1+3+3^{2}+\cdots+3^{m-2}\right) \quad \text { by factoring out } 3^{2} \\
& =9 \cdot\left(\frac{3^{m-1}-1}{2}\right)
\end{aligned}
$$

Mathematical induction: example 4

Proving a divisibility property:

$P(n)$: for all integers $n \geq 0,2^{2 n}-1$ is divisible by 3

Basic step: $P(0): 2^{2 \cdot 0}-1=0$ is divisible by 3

Inductive step:
Induction hypothesis:
suppose $P(k)$ is true: $2^{2 k}-1$ is divisible by 3

Prove $P(k+1): 2^{2(k+1)}-1$ is divisible by 3

Proving a divisibility property

Continued:

$$
\begin{aligned}
& \text { Prove } \mathrm{P}(\mathrm{k}
\end{aligned} \begin{array}{rlrl}
\left.2^{2(k+1)}-1\right): 2^{2(\mathrm{k}+1)}-1 \text { is divisible by } 3 \\
& =2^{2 k+2}-1 & & \\
& =2^{2 k} \cdot 2^{2}-1 & & \\
& =2^{2 k} \cdot 4-1 & & \\
& =2^{2 k}(3+1)-1 & & \\
& =2^{2 k} \cdot 3+\left(2^{2 k}-1\right) \\
& =2^{2 k} \cdot 3+3 r & & \text { by the laws of exponents of algebra } \\
& =3\left(2^{2 k}+r\right) & & \text { by inductive hypothesis }
\end{array}
$$

$2^{2 k}+r$ is an integer because integers are closed under multiplication and summation

Mathematical induction: example 5

Proving an inequality:

$\mathrm{P}(\mathrm{n})$: for all integers $\mathrm{n} \geq 3,2 \mathrm{n}+1<2^{\mathrm{n}}$
Base step: Prove $P(3): 2 \cdot 3+1<2^{3}$

$$
7<8 \quad \text { (true) }
$$

Inductive step:

Inductive hypo: suppose for $\mathrm{k} \geq 3, \mathrm{P}(\mathrm{k})$ is true: $2 \mathrm{k}+1<2^{\mathrm{k}}$
Show $P(k+1): 2(k+1)+1<2^{k+1}$
That is: $\quad 2 \mathrm{k}+3<2^{\mathrm{k}+1}$

$$
2 \mathrm{k}+3=(2 \mathrm{k}+1)+2<2^{\mathrm{k}}+2^{\mathrm{k}}=2^{\mathrm{k}+1}
$$

because $2 \mathrm{k}+1<2^{\mathrm{k}}$ by the inductive hypothesis and because $2<2^{\mathrm{k}}$ for all integers $\mathrm{k} \geq 3$

Mathematical induction: example 6

A sequence: $\mathrm{a}_{1}=2$ and $\mathrm{a}_{\mathrm{k}}=5 \mathrm{a}_{\mathrm{k}-1}$ for all integers $\mathrm{k} \geq 2$
Prove: $a_{n}=2 \cdot 5^{\mathbf{n - 1}}$ for all integers $\mathbf{n} \geq 1$
Proof by induction: $\mathrm{P}(\mathrm{n}): \mathrm{a}_{\mathrm{n}}=2 \cdot 5^{\mathrm{n}-1}$ for all integers $\mathrm{n} \geq 1$
Base step: $P(1): a_{1}=2 \cdot 5^{1-1} . \quad 2 \cdot 5^{1-1}=2 \cdot 5^{0}=2 \cdot 1=2=a_{1}$
Inductive step: Inductive hypo: suppose $\mathrm{P}(\mathrm{k})$ is true: $\mathrm{a}_{\mathrm{k}}=2 \cdot 5^{\mathrm{k}-1}$

$$
\begin{array}{lrl}
\text { Show } P(k+1): a_{k+1}=2 \cdot 5^{(k+1)-1}=2 \cdot 5^{k} \\
\begin{aligned}
a_{k+1} & =5 a_{(k+1)-1} & & \text { by definition of } a_{1}, a_{2}, a_{3}, \ldots \\
& =5 \cdot a_{k} & & \text { since }(k+1)-1=k \\
& =5 \cdot 2 \cdot 5^{k-1} & & \text { by inductive hypothesis } \\
& =2 \cdot\left(5 \cdot 5^{k-1}\right) & & \text { by regrouping } \\
& =2 \cdot 5^{k} & & \text { by the laws of exponents }
\end{aligned}
\end{array}
$$

Mathematical induction: example 7

A problem with trominoes (Tetris):

For any integer $n \geq 1$, if one square is removed from a $2^{n} \times 2^{n}$ checkerboard, the remaining squares can be completely covered by L-shaped trominoes
Base step: a 2×2 checkerboard can be covered by 1 L -shaped tromino

A problem with trominoes

Continued: Inductive step:

Inductive hypothesis: for $\mathrm{k} \geq 1$: $\mathrm{P}(\mathrm{k})$:
if one square is removed from a $2^{\mathrm{k}} \times 2^{\mathrm{k}}$ checkerboard, the remaining squares can be completely covered by L -shaped trominoes

Proof $\mathrm{P}(\mathrm{k}+1)$:

if one square is removed from a $2^{k+1} \times 2^{k+1}$ checkerboard, the remaining squares can be completely covered by L-shaped trominoes

Strong mathematical induction

Principle of strong mathematical induction:

$\mathrm{P}(\mathrm{n})$ is a property that is defined for integers n , and a and b are fixed integers with $\mathrm{a} \leq \mathrm{b}$.
Base step: $\mathrm{P}(\mathrm{a}), \mathrm{P}(\mathrm{a}+1), \ldots$, and $\mathrm{P}(\mathrm{b})$ are all true
Inductive step:
Inductive hypothesis: for any integer $\mathrm{k} \geq \mathrm{b}$, if $\mathrm{P}(\mathrm{i})$ is true for all integers ifrom a through k
then $\mathrm{P}(\mathrm{k}+1)$ is true
Then the statement "for all integers $n \geq a, P(n)$ " is true.
That is:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{a}), \mathrm{P}(\mathrm{a}+1), \ldots, \mathrm{P}(\mathrm{~b}-1), \mathrm{P}(\mathrm{~b}) \text { are true. } \\
& \forall \mathrm{k} \geq \mathrm{b},(\forall \mathrm{a} \leq \mathrm{i} \leq \mathrm{k}, \mathrm{P}(\mathrm{i})) \rightarrow \mathrm{P}(\mathrm{k}+1)
\end{aligned}
$$

$\therefore \mathrm{P}(\mathrm{n})$ is true, $\forall \mathrm{n} \geq a$

Strong mathematical induction

Any statement that can be proved with ordinary mathematical induction can be proved with strong mathematical induction (and vice versa).

Strong induction: example 1

Divisibility by a prime:

Any integer greater than 1 is divisible by a prime number
$\mathrm{P}(\mathrm{n}): \mathrm{n}$ is divisible by a prime number
Base step: $\mathrm{P}(2): 2$ is divisible by a prime number
2 is divisible by 2 and 2 is a prime number Inductive step:
Inductive hypothesis: Let k be any integer with $\mathrm{k} \geq 2$
suppose $\mathrm{P}(\mathrm{i})$ is true for all integers ifrom 2 through k , that is, i is divisible by a prime number for int i from 2 to k
Show $\mathrm{P}(\mathrm{k}+1): \mathrm{k}+1$ is divisible by a prime number

Strong induction: example 1 (cont'd)

Show $\mathrm{P}(\mathrm{k}+1)$: $\mathrm{k}+1$ is divisible by a prime number

Case $1(\mathrm{k}+1$ is prime): In this case $\mathrm{k}+1$ is divisible by itself (a prime number): $\mathrm{k}+1=1 *(\mathrm{k}+1)$

Case $2(k+1$ is not prime): $k+1=a * b$ where a and b are integers with $1<\mathrm{a}<\mathrm{k}+1$ and $1<\mathrm{b}<\mathrm{k}+1$.
From $k+1=a * b, \quad k+1$ is divisible by a.
By inductive hypothesis, a is divisible by a prime number p . By transitivity of divisibility, $k+1$ is divisible by p . Therefore, $\mathrm{k}+1$ is divisible by a prime number p .

Strong induction: example 2

A sequence $\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \ldots$

$$
\begin{aligned}
& s_{0}=0, s_{1}=4, s_{k}=6 s_{k-1}-5 s_{k-2} \text { for all integers } k \geq 2 \\
& s_{2}=6 s_{1}-5 s_{0}=6 \cdot 4-5 \cdot 0=24, \\
& s_{3}=6 s_{2}-5 s_{1}=6 \cdot 24-5 \cdot 4=144-20=124
\end{aligned}
$$

Prove: $\mathrm{s}_{\mathrm{n}}=\mathbf{5}^{\mathbf{n}} \mathbf{- 1}$
Base step: $\mathrm{P}(0)$ and $\mathrm{P}(1)$ are true:

$$
\begin{aligned}
& P(0): s_{0}=5^{0}-1=1-1=0 \\
& P(1): s_{1}=5^{1}-1=5-1=4
\end{aligned}
$$

Inductive step: Inductive hypo: Let k be any integer with $\mathrm{k} \geq 1$, $s_{i}=5^{i}-1$ for all integers i with $0 \leq i \leq k$

Strong induction: example 2 (cont'd)

$$
\begin{aligned}
& \text { Show } P(k+1) \text { is true: } s_{k+1}=5^{k+1}-1 \\
& \begin{array}{rlrl}
s_{k+1} & =6 s_{k}-5 s_{k-1} & & \text { by definition of } \mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \ldots \\
& =6\left(5^{\mathrm{k}}-1\right)-5\left(5^{\mathrm{k}-1}-1\right) & \text { by induction hypothesis } \\
& =6 \cdot 5^{\mathrm{k}}-6-5^{\mathrm{k}}+5 & & \text { by multiplying out and applying } \\
& =(6-1) 5^{\mathrm{k}}-1 & & \text { a law of exponents factoring out } 6 \text { and arithmetic } \\
& =5 \cdot 5^{\mathrm{k}}-1 & & \text { by arithmetic } \\
& =5^{\mathrm{k}+1}-1 & & \text { by applying a law of exponents }
\end{array}
\end{aligned}
$$

Strong induction: example 3

The number of multiplications needed to multiply n numbers is ($\mathrm{n}-1$).

$P(n)$: If $x_{1}, x_{2}, \ldots, x_{n}$ are n numbers, then no matter how parentheses are inserted into their product, the number of multiplications used to compute the product is $n-1$.

Base case: $\mathrm{P}(1)$: The number of multiplications needed to compute the product of x_{1} is $1-1=0$
Inductive case:
Inductive hypothesis: Let k by any integer with $\mathrm{k} \geq 1$ and for all integers ifrom 1 through k, if $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{i}}$ are numbers, then no matter how parentheses are inserted into their product, the
47 number of multiplications used to compute the product is $\mathrm{i}-1$.

Strong induction: example 3 (cont'd)

We must show $\mathrm{P}(\mathrm{k}+1)$: If $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}+1}$ are $\mathrm{k}+1$ numbers, then no matter how parentheses are inserted into their product, the number of multiplications used to compute the product is $(\mathrm{k}+1)$
$-1=\mathrm{k}$.
When parentheses are inserted in order to compute the product x_{1} $\mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{k}+1}$, some multiplication is the final one:
let L be the product of the left-hand l factors (numbers) and
R be the product of the right-hand r factors: $\mathrm{l}+\mathrm{r}=\mathrm{k}+1$
By inductive hypothesis, evaluating L takes $l-1$ multiplications and evaluating R takes $r-1$ multiplications
$(\mathrm{l}-1)+(\mathrm{r}-1)+1=(\mathrm{l}+\mathrm{r})-1=(\mathrm{k}+1)-1=\mathrm{k}$

Strong induction: example 4

Existence and uniqueness of binary integer representations:

any positive integer n has a unique representation in the form

$$
\begin{equation*}
\mathrm{n}=\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\cdots+\mathrm{c}_{2} \cdot 2^{2}+\mathrm{c}_{1} \cdot 2+\mathrm{c}_{0} \tag{n}
\end{equation*}
$$

where r is a nonnegative integer, $\mathrm{c}_{\mathrm{r}}=1$, and

$$
c_{j}=0 \text { or } 1 \text { for } j=0, \ldots, r-1
$$

Proof of existence:

Base step: $\mathrm{P}(1): 1=\mathrm{c}_{0} \cdot 2^{0}$ where $\mathrm{c}_{0}=1, \mathrm{r}=0$.
Inductive hypothesis: $\mathrm{k} \geq 1$ is an integer and for all integers ifrom
1 through k: $\mathrm{P}(\mathrm{i}): \mathrm{i}=\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\cdots+\mathrm{c}_{2} \cdot 2^{2}+\mathrm{c}_{1} \cdot 2+\mathrm{c}_{0}$
We must show that $\mathrm{k}+1$ can be written in the required form.

Strong induction: example 4 (cont'd)

Case $1 . \mathrm{k}+1$ is even: $(\mathrm{k}+1) / 2$ is an integer
By inductive hypothesis:

$$
\begin{aligned}
(\mathrm{k}+1) / 2 & =\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\cdots+\mathrm{c}_{2} \cdot 2^{2}+\mathrm{c}_{1} \cdot 2+\mathrm{c}_{0} \\
\mathrm{k}+1 & ={\mathrm{c}_{\mathrm{r}}} \cdot 2^{\mathrm{r}+1}+{ }_{\mathrm{c}_{\mathrm{r}-1}} \cdot 2^{\mathrm{r}}+\cdots+\mathrm{c}_{2} \cdot 2^{3}+\mathrm{c}_{1} \cdot 2^{2}+\mathrm{c}_{0} \cdot 2 \\
& =\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}+1}+{ }_{\mathrm{c}_{\mathrm{r}-1}} \cdot 2^{\mathrm{r}}+\cdots+\mathrm{c}_{2} \cdot 2^{3}+\mathrm{c}_{1} \cdot 2^{2}+\mathrm{c}_{0} \cdot 2^{1}+0 \cdot 2^{0}
\end{aligned}
$$

Case $2 . \mathrm{k}+1$ is odd: k is even, so $\mathrm{k} / 2$ is an integer
By inductive hypothesis:

$$
\begin{aligned}
\mathrm{k} / 2 & =\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\cdots+\mathrm{c}_{2} \cdot 2^{2}+\mathrm{c}_{1} \cdot 2+\mathrm{c}_{0} \\
\mathrm{k} & =\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}+1}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}}+\cdots+\mathrm{c}_{2} \cdot 2^{3}+\mathrm{c}_{1} \cdot 2^{2}+\mathrm{c}_{0} \cdot 2 \\
\mathrm{k}+1 & =\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}+1}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}}+\cdots+\mathrm{c}_{2} \cdot 2^{3}+\mathrm{c}_{1} \cdot 2^{2}+\mathrm{c}_{0} \cdot 2+1 \\
& =\mathrm{c}_{\mathrm{r}} \cdot 2^{\mathrm{r}+1}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}}+\cdots+\mathrm{c}_{2} \cdot 2^{3}+\mathrm{c}_{1} \cdot 2^{2}+\mathrm{c}_{0} \cdot 2^{1}+1 \cdot 2^{0}
\end{aligned}
$$

Strong induction: example 4 (cont'd)

Proof of uniqueness:

Proof by contradiction: suppose there is an integer n with two different representations as a sum of nonnegative integer powers of 2:

$$
2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\cdots+\mathrm{c}_{1} \cdot 2+\mathrm{c}_{0}=2^{\mathrm{s}}+\mathrm{d}_{\mathrm{s}-1} \cdot 2^{\mathrm{s}-1}+\cdots+\mathrm{d}_{1} \cdot 2+\mathrm{d}_{0}
$$ r and s are nonnegative integers, and each c_{i} and d_{i} equal 0 or 1 . Assume: $\mathrm{r}<\mathrm{s}$

By geometric sequence:

$$
2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\cdots+\mathrm{c}_{1} \cdot 2+\mathrm{c}_{0} \leq 2^{\mathrm{r}}+2^{\mathrm{r}-1}+\cdots+2+1=2^{\mathrm{r}+1}-1<2^{\mathrm{s}}
$$

$$
2^{\mathrm{r}}+\mathrm{c}_{\mathrm{r}-1} \cdot 2^{\mathrm{r}-1}+\cdots+\mathrm{c}_{1} \cdot 2+\mathrm{c}_{0}<2^{\mathrm{s}}+\mathrm{d}_{\mathrm{s}-1} \cdot 2^{\mathrm{s}-1}+\cdots+\mathrm{d}_{1} \cdot 2+\mathrm{d}_{0}
$$

Contradiction

Well-ordering principle for integers

- Let S be a set of integers containing one or more integers all of which are greater than some fixed integer. Then S has a least element.
- The well-ordering principle is equivalent to both ordinary and strong mathematical induction.

Well-ordering principle: examples

Why is the well-ordering principle not violated in these sets?

- The set of all positive real numbers.
- The set of all nonnegative integers n such that $\mathrm{n}^{\wedge} 2<\mathrm{n}$.
- The set of all nonnegative integers of the form 46-7k, where k is an integer.

Solution:

- Not a set of integers
- Empty set
- $\{4,11,18,25, \ldots\}$ where 4 is the least element

Defining sequences recursively

- A sequence can be defined in 3 ways:
- enumeration: -2,3,-4,5,...
- general pattern: $\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}}(\mathrm{n}+1)$, for all integers $\mathrm{n} \geq 1$
- recursion: $\mathrm{a}_{1}=-2$ and $\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}-1} \mathrm{a}_{\mathrm{n}-1}+(-1)^{\mathrm{n}}$
- define one or more initial values for the sequence AND
- define each later term in the sequence by reference to earlier terms
- A recurrence relation for a sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a formula that relates each term a_{k} to certain of its predecessors $\mathrm{a}_{\mathrm{k}-1}, \mathrm{a}_{\mathrm{k}-2}, \ldots, \mathrm{a}_{\mathrm{k}-\mathrm{i}}$, where i is an integer with $\mathrm{k}-\mathrm{i} \geq 0$
- The initial conditions for a recurrence relation specify the values of $a_{0}, a_{1}, a_{2}, \ldots, a_{i-1}$, if i is a fixed integer, OR $a_{0}, a_{1}, \ldots, a_{m}$, where m is an integer with $m \geq 0$, if i depends on k.

Recursion: example 1

- Computing terms of a recursively defined sequence
- Example:

Initial conditions: $\mathrm{c}_{0}=1$ and $\mathrm{c}_{1}=2$
Recurrence relation: $\mathrm{c}_{\mathrm{k}}=\mathrm{c}_{\mathrm{k}-1}+\mathrm{k} * \mathrm{c}_{\mathrm{k}-2}+1$, for all integers $\mathrm{k} \geq 2$

$$
\begin{array}{rlrl}
\mathrm{c}_{2} & =\mathrm{c}_{1}+2 \mathrm{c}_{0}+1 & & \text { by substituting } \mathrm{k}=2 \text { into the recurrence relation } \\
& =2+2 \cdot 1+1 & & \text { since } \mathrm{c}_{1}=2 \text { and } \mathrm{c}_{0}=1 \text { by the initial conditions } \\
& =5 & & \\
\mathrm{c}_{3} & =\mathrm{c}_{2}+3 \mathrm{c}_{1}+1 & & \text { by substituting } \mathrm{k}=3 \text { into the recurrence relation } \\
& =5+3 \cdot 2+1 & & \text { since } \mathrm{c}_{2}=5 \text { and } \mathrm{c}_{1}=2 \\
& =12 &
\end{array}
$$

$$
\mathrm{c}_{4}=\mathrm{c}_{3}+4 \mathrm{c}_{2}+1 \quad \text { by substituting } \mathrm{k}=4 \text { into the recurrence relation }
$$

$$
=12+4 \cdot 5+1 \quad \text { since } \mathrm{c}_{3}=12 \text { and } \mathrm{c}_{2}=5
$$

$=33$

Recursion: example 2

- Writing a recurrence relation in more than one way
- Example:

Initial condition: $\mathrm{s}_{0}=1$
Recurrence relation 1: $s_{k}=3 s_{k-1}-1$, for all integers $k \geq 1$
Recurrence relation 2: $\mathrm{s}_{\mathrm{k}+1}=3 \mathrm{~s}_{\mathrm{k}}$ - 1 , for all integers $\mathrm{k} \geq 0$

Recursion: example 3

- Sequences that satisfy the same recurrence relation
- Example:

Initial conditions: $\quad a_{1}=2$ and $b_{1}=1$
Recurrence relations: $a_{k}=3 a_{k-1}$ and $b_{k}=3 b_{k-1}$ for all integers $k \geq 2$

$$
\begin{array}{ll}
a_{2}=3 a_{1}=3 \cdot 2=6 & b_{2}=3 b_{1}=3 \cdot 1=3 \\
a_{3}=3 a_{2}=3 \cdot 6=18 & b_{3}=3 b_{2}=3 \cdot 3=9 \\
a_{4}=3 a_{3}=3 \cdot 18=54 & b_{4}=3 b_{3}=3 \cdot 9=27
\end{array}
$$

Recursion: example 4

- Fibonacci numbers

1. We have one pair of rabbits (male and female) at the beginning of a year.
2. Rabbit pairs are not fertile during their first month of life but thereafter give birth to one new male \& female pair at the end of every month.

$\left[\begin{array}{l}\text { the number } \\ \text { of rabbit } \\ \text { pairs alive } \\ \text { at the end } \\ \text { of month } k\end{array}\right]=$	$\left[\begin{array}{l}\text { the number } \\ \text { of rabbit } \\ \text { pairs alive } \\ \text { at the end } \\ \text { of month } k-1\end{array}\right]+\left[\begin{array}{l}\text { the number } \\ \text { of rabbit } \\ \text { pairs born } \\ \text { at the end } \\ \text { of month } k\end{array}\right]$
$=$	$\left[\begin{array}{l}\text { the number } \\ \text { of rabbit } \\ \text { pairs alive } \\ \text { at the end } \\ \text { of month } k-1\end{array}\right]+\left[\begin{array}{l}\text { the number } \\ \text { of rabbit } \\ \text { pairs alive } \\ \text { at the end } \\ \text { of month } k-2\end{array}\right]$

Recursion: example 4 (continued)

- Fibonacci numbers

The initial number of rabbit pairs: $F_{0}=1$
F_{n} : the number of rabbit pairs at the end of month n, for each integer $n \geq 1$
$F_{n}=F_{n-1}+F_{n-2}$, for all integers $n \geq 2$
$F_{1}=1$, because the first pair of rabbits is not fertile until the second month How many rabbit pairs are at the end of one year?

January $1^{\text {st }}: \mathrm{F}_{0}=1$
February $1^{\text {st }}$: $\mathrm{F}_{1}=1$
March 1 ${ }^{\text {st }}: \mathrm{F}_{2}=\mathrm{F}_{1}+\mathrm{F}_{0}=1+1=2$
April $1^{\text {st }}: \mathrm{F}_{3}=\mathrm{F}_{2}+\mathrm{F}_{1}=2+1=3$ $\mathrm{F}_{11}=\mathrm{F}_{10}+\mathrm{F}_{9}=89+55=144$
May $1^{\text {st }}: F_{4}=F_{3}+F_{2}=3+2=5$
June $1^{\text {st }}: \mathrm{F}_{5}=\mathrm{F}_{4}+\mathrm{F}_{3}=5+3=8$
July $1^{\text {st }}: \mathrm{F}_{6}=\mathrm{F}_{5}+\mathrm{F}_{4}=8+5=13$
August $1^{\text {st }}: \mathrm{F}_{7}=\mathrm{F}_{6}+\mathrm{F}_{5}=13+8=21$

September $1^{\text {st }}: \mathrm{F}_{8}=\mathrm{F}_{7}+\mathrm{F}_{6}=21+13=34$
October $1^{\text {st }}: \mathrm{F}_{9}=\mathrm{F}_{8}+\mathrm{F}_{7}=34+21=55$
November ${ }^{\text {st }}: \mathrm{F}_{10}=\mathrm{F}_{9}+\mathrm{F}_{8}=55+34=89$
December $1^{\text {st }}$:

January $1^{\text {st }}: \mathrm{F}_{12}=\mathrm{F}_{11}+\mathrm{F}_{10}=144+89=\mathbf{2 3 3}$

Recursion: example 5

- Compound interest
- A deposit of $\$ 100,000$ in a bank account earning 4% interest compounded annually:
the amount in the account at the end of any particular year
$=$ the amount in the account at the end of the previous year + the interest earned on the account during the year
$=$ the amount in the account at the end of the previous year +
0.04 the amount in the account at the end of the previous year
$\mathrm{A}_{0}=\$ 100,000$
$A_{k}=A_{k-1}+(0.04) \cdot A_{k-1}=1.04 \cdot A_{k-1}$, for each integer $k \geq 1$
$\mathrm{A}_{1}=1.04 \cdot \mathrm{~A}_{0}=\$ 104,000$
$\mathrm{A}_{2}=1.04 \cdot \mathrm{~A}_{1}=1.04 \cdot \$ 104,000=\$ 108,160$

Recursion: example 6

- Compound interest with compounding several times a year
- An annual interest rate of i is compounded m times per year: the interest rate paid per each period is i / m
P_{k} is sum of amount at the end of the $(k-1)$-th period and interest earned during k -th period

$$
P_{k}=P_{k-1}+P_{k-1} \cdot i / m=P_{k-1} \cdot(1+i / m)
$$

- If 3% annual interest is compounded quarterly, then the interest rate paid per quarter is $0.03 / 4=0.0075$

Compound interest: examples

Example: deposit of \$10,000 at 3\% compounded quarterly For each integer $\mathrm{n} \geq 1$,
$\mathrm{P}_{\mathrm{n}}=$ the amount on deposit after n consecutive quarters.
$\mathrm{P}_{\mathrm{k}}=1.0075 \cdot \mathrm{P}_{\mathrm{k}-1}$
$P_{0}=\$ 10,000$
$\mathrm{P}_{1}=1.0075 \cdot \mathrm{P}_{0}=1.0075 \cdot \$ 10,000=\$ 10,075.00$
$\mathrm{P}_{2}=1.0075 \cdot \mathrm{P}_{1}=(1.0075) \cdot \$ 10,075.00=\$ 10,150.56$
$\mathrm{P}_{3}=1.0075 \cdot \mathrm{P}_{2} \approx(1.0075) \cdot \$ 10,150.56=\$ 10,226.69$
$\mathrm{P}_{4}=1.0075 \cdot \mathrm{P}_{3} \approx(1.0075) \cdot \$ 10,226.69=\$ 10,303.39$
The annual percentage rate (APR) is the percentage increase in the value of the account over a one-year period:
$\operatorname{APR}=(10303.39-10000) / 10000=0.03034=3.034 \%$

Recursion: example 7

- Towers of Hanoi: n disks piled in order of decreasing size on one pole in a row of three
- Want to move all the disks one by one from one pole to another, never placing a larger disk on top of a smaller one
- How many moves are required to
 move the disks from pole A to C?

HW 4 extra-credit programming: even generate all moves in 2 lines

- A best way to solve this problem is to think recursively!

Recursion: example 7 (continued)

- Moves must include going from initial position (a) to (b) to (c) to (d).

- For $k \geq 1$, let m_{k} benumber of moves to move a tower of k disks from one pole to another.
- (a) to (b) needs m_{k-1} moves, (b) to (c) 1 move, (c) to (d) m_{k-1}

$$
m_{k}=m_{k-1}+1+m_{k-1}=2 m_{k-1}+1
$$

- Simplest case: 1 disk, so move from pole A to C in one move

$$
m_{1}=1
$$

- $m_{2}=2 m_{1}+1=2 \cdot 1+1=3$,

$$
\begin{aligned}
& m_{3}=2 m_{2}+1=2 \cdot 3+1=7 \\
& m_{4}=2 m_{3}+1=2 \cdot 7+1=15
\end{aligned}
$$

Recursive definitions of sum and product

- The summation from $\mathrm{i}=1$ to n of a sequence is defined using recursion:

$$
\begin{aligned}
& \sum_{i=1}^{1} a_{i}=a_{1} \quad \text { and } \sum_{i=1}^{n} a_{i}=\left(\sum_{i=1}^{n-1} a_{i}\right)+a_{n}, \quad \text { if } n>1 . \\
& \mathrm{f}(1)=\mathrm{a}_{1} \quad \mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n}-1)+\mathrm{a}_{\mathrm{n}}
\end{aligned}
$$

- The product from $\mathrm{i}=1$ to n of a sequence is defined using recursion:

$$
\prod_{i=1}^{1} a_{i}=a_{1} \quad \text { and } \prod_{i=1}^{n} a_{i}=\left(\prod_{i=1}^{n-1} a_{i}\right) \cdot a_{n}, \quad \text { if } n>1 .
$$

$$
\Sigma \longrightarrow \Pi
$$

$$
+\longrightarrow .
$$

Sum of sums: recursion and induction

- For any positive integer n, if $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are real numbers, then

$$
\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i} .
$$

- Proof by induction (using recursive definition of sum):

$$
\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i} . \quad \leftarrow P(n)
$$

Base step:

$$
\sum_{i=1}^{1}\left(a_{i}+b_{i}\right)=a_{1}+b_{1}=\sum_{i=1}^{1} a_{i}+\sum_{i=1}^{1} b_{i}
$$

Inductive hypothesis:

$$
\sum_{i=1}^{k}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{k} a_{i}+\sum_{i=1}^{k} b_{i} . \leftarrow P(k)
$$

Sum of sums continued

We must show that:

$$
\begin{array}{rlr}
\sum_{i=1}^{k+1}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{k+1} a_{i}+\sum_{i=1}^{k+1} b_{i} . & \leftarrow P(k+1) \\
\sum_{i=1}^{k+1}\left(a_{i}+b_{i}\right) & =\sum_{i=1}^{k}\left(a_{i}+b_{i}\right)+\left(a_{k+1}+b_{k+1}\right) & \\
=\left(\sum_{i=1}^{k} a_{i}+\sum_{i=1}^{k} b_{i}\right)+\left(a_{k+1}+b_{k+1}\right) & & \text { by definition of } \Sigma \\
& =\left(\sum_{i=1}^{k} a_{i}+a_{k+1}\right)+\left(\sum_{i=1}^{k} b_{i}+b_{k+1}\right) & \\
=\sum_{i=1}^{k+1} a_{i}+\sum_{i=1}^{k+1} b_{i} & & \text { by the the associve of algebra hypothesis and cummutative } \\
& & \text { by definition of } \Sigma
\end{array}
$$

Q.E.D.

Solving recurrence relations

- Arithmetic sequence: there is a constant d such that

$$
a_{k}=a_{k-1}+d \text { for all integers } k \geq 1
$$

It follows that, $a_{n}=a_{0}+d \cdot n$ for all integers $n \geq 0$.

- Geometric sequence: there is a constant r such that

$$
a_{k}=r \cdot a_{k-1} \text { for all integers } k \geq 1
$$

It follows that, $a_{n}=a_{0} \cdot r^{n}$ for all integers $n \geq 0$.

A general form of recurrence relation

- A second-order linear homogeneous recurrence relation with constant coefficients is a recurrence relation of the form:

$$
a_{k}=A \cdot a_{k-1}+B \cdot a_{k-2} \text { for all integers } k \geq \text { some fixed integer }
$$

where A and B are fixed real numbers with $\mathrm{B} \neq 0$.

- In general: given a sequence, or a recurrence relation, guess a closed-form formula, and prove by induction.

Applications: correctness of algorithms

- A program is correct if it produces the output specified in its documentation for each set of inputs
- initial state (inputs): pre-condition for the algorithm
- final state (outputs): post-condition for the algorithm
- Example:

Algorithm to compute a product of two nonnegative integers pre-condition: input variables m and n are nonnegative integers post-condition: output variable p equals $m *_{n}$

Correctness of algorithms

- The steps of an algorithm are divided into sections with assertions about the current state of algorithm
[Assertion 1: pre-condition for the algorithm]
\{Algorithm statements\}
[Assertion 2]
\{Algorithm statements\}
[Assertion k - 1]
\{Algorithm statements\}
[Assertion k: post-condition for the algorithm]

Correctness of algorithms

- Loop invariants are used to prove correctness of a loop with respect to pre- and post-conditions
[pre-condition for the loop]
while (G)
\{Statements in the body of the loop\}
end while
[post-condition for the loop]

A loop is correct with respect to its pre- and post-conditions if, and only if, whenever the algorithm variables satisfy the pre-condition for the loop, and the loop terminates after a finite number of steps, the algorithm variables satisfy the post-condition for the loop.

Loop invariant

- A loop invariant is a predicate with domain a set of integers, satisfying: for each iteration of the loop, (induction) if the predicate is true before the iteration, then it is true after the iteration.
- Furthermore, if the following two conditions hold
- before the first iteration of the loop, the predicate is implied by the pre-condition for the loop,
- if the loop terminates after a finite number of iterations, the predicate ensures the post-condition for the loop, then the loop is with respect to its pre- and post-conditions.

Loop invariant: example

- Correctness of a loop to compute a product

A loop to compute the product m * x for a nonnegative integer m and a real number x , without using multiplication
[pre-condition: m is a nonnegative integer, x is a real number, $\mathrm{i}=0$, and product $=0$]
while $(i \neq m)$
product := product +x
$\mathrm{i}:=\mathrm{i}+1$
end while
[post-condition: product $=\mathrm{m} * \mathrm{x}$]

Loop invariant I(n): $\quad[\mathrm{i}=\mathrm{n} \wedge$ product $=\mathrm{n} * \mathrm{x}]$
Guard G: i $\neq \mathrm{m}$

Loop invariant I(n$):[\mathrm{i}=\mathrm{n} \wedge$ product $=\mathrm{n} * \mathrm{x}] \quad$ Guard $\mathrm{G}: \mathrm{i} \neq \mathrm{m}$

Base property:

$[I(0): i=0$ and product $=0 \cdot x=0 \quad$ is true before first iteration $]$

Inductive property:

[If $\mathrm{G} \wedge \mathrm{I}(\mathrm{k})$ is true before an iteration (where $\mathrm{k} \geq 0)$, then $I(k+1)$ is true after the iteration]

Let k is a nonnegative integer such that $\mathrm{G} \wedge \mathrm{I}(\mathrm{k})$ is true, i.e.,

$$
\mathrm{i} \neq \mathrm{m} \wedge \mathrm{i}=\mathrm{k} \wedge \text { product }=\mathrm{k}^{*} \mathrm{x}
$$

Since $\mathrm{i} \neq \mathrm{m}$, the guard is passed and

$$
\begin{array}{ll}
\text { product }=\text { product }+\mathrm{x} & =\mathrm{k} * \mathrm{x}+\mathrm{x}=(\mathrm{k}+1) * \mathrm{x} \\
\mathrm{i}=\mathrm{i}+1 & =\mathrm{k}+1
\end{array}
$$

So $\mathrm{I}(\mathrm{k}+1): \mathrm{i}=\mathrm{k}+1 \wedge$ product $=(\mathrm{k}+1) *_{\mathrm{x}}$ is true after the iteration

Eventual falsity of guard:

[After a finite number of iterations, G becomes false]
After m iterations of the loop: $\mathrm{i}=\mathrm{m}$ and G becomes false

Loop invariant I n): $[\mathrm{i}=\mathrm{n} \wedge$ product $=\mathrm{n} * \mathrm{x}]$ Guard $\mathrm{G}: \mathrm{i} \neq \mathrm{m}$

Correctness of the post-condition:

[If N is the least number of iterations after which G is false and
I (N) is true, then the value of the algorithm variables will be as
specified in the post-condition of the loop]
$\mathrm{I}(\mathrm{N})$ is true at the end of the loop: $\mathrm{i}=\mathrm{N} \wedge$ product $=\mathrm{N}^{*}{ }_{\mathrm{x}}$
G becomes false after N iterations: $\mathrm{i}=\mathrm{m}$
So $N=i=m$

Post-condition product $=\mathrm{m}^{*} \mathrm{x}$ after execution of the loop is true.

