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Sequences

® A sequence is a function whose domain is

® An explicit formu]a or general formu]a for a sequence is a rule that

-

e all the integers between two given integers m and n

am’ a'm-i—l’ am+27'"7 an
e 3ll the integers greater than or equal to a given integer m

a_,a L, s,
a, is a term in the sequence
kis the subscript or index
m is the subscript of the initial term

n is the subscript of the last term (m < n)

shows how the values of a, depend on k

/
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Sequences: examples

Qy =2k isthe sequence 2,4,8,16, 32, 64, 128,.

-----n-n

Term 128 256
a, = k/k + 1, for all integers k 2 1: b, = i-1/1, for all integers i = 2:
l 1 2 —1 1
a1=—=— b2=—=_
l+1 2 2 2
2 2 3—1 2
» _— = — bg——:—
24+1 3 3 3
3 3 . 4—1 3
BE31 T g YTy T

® g for k 2 1 is the same sequence as b, for i = 2

L
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Seqguences: one more example

An altemating sequence:

c; = (—1)J for all integers j > 0:

o= (1)’ =1
¢, = (-1l =-1
¢, = (1)’ =1
c; = (—1) =—1
¢, = (D=1
cs = (—1)y=-1




-

©

Find an explicit formula for a sequence

® The initial terms of a sequence are:

l I I
I,

1 1
4 9 160 25 36

® g, is the general term of the sequence, a, is the first element

® observe that the denominator of each term is a perfect square

o= 1 (=D

| (—1)
12’ 22 7 32° 42 52° 62
0 0 0 0 0 0
8 %) (3 (y (s (g
+ 1
® observe that the numerator equals *1: @ = e
° alternating sequence with -1 when k is even:
(_ | )k—l—l
ay = = for all integers kK > 1

~
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Find an explicit formula for a sequence

© Continuing from previous slide

® Result sequence:

(_ | )F;+l
d = 12

for all integers k > 1

® Alternative sequence:
(=D
T (k+1)2

A for all integers k > 0

~
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Summation notation

® If m and n are integers and m < n, the summation from k
H

equals mton ofa, Y @, is the sum of all the terms a_,
k=m

n

§ Ay =dm +dpyy +Apya + - -+ dy

k=m

k is the index of the summation
m is the lower limit of the summation

n is the upper limit of the summation




Summation notation: examples

a,=—2, a,=—1, a;=0, a,=1, a;,=2

5
Zﬂk=a1+ﬂz+a3+a4+a5=(—2)+(—1)+0+l+2=0
k=1

2
E ay = dr = —1
k=2

2
Zﬂzk =g t+mor=t+as=—-14+1=0
k=1




4 N

Summation notation: more forms

¢ Summation notation with formulas:

5
Zk2= 12 4+22 4324+ 424+ 52 =55
k=1

° Changing from Summation Notation to Expanded Form:

— 1! —1)? —1)3 —1)"
(=D (—1) (—=1) '”+( )

—~ (=" (=1)°
) - + +
41 T 041 L+1 2+1 341 n+ 1
1 (=1 (—1) (—1)"
172 +%+7fﬁ_ o
| l+1 l+ 4}—W
273 4 T a4+
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Summation notation: from expanded

° Changing from Expanded Form to Summation Notation:

| 2 3 n-+ 1
~ + +o
n n -+ 1 n-+2 2n
: : k + 1
The general term of this summation can be expressed as y:
n+k
for integers k from O to n
1 2 3 n+ 1 L k+1
;+J'I+1+FI—|—2+”.+ 2n _;I?+k
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Summation: evaluation for small n

® Evaluating expression for given limits:

1 1 1 1
to—et et

1.2 2.3 3.4 n-(n+1)
| 1
n=1 ﬁ=i
1 I 1 1 2
n=2 127323727673
I ] ] 1 1 I 3
n=3 12337 aT2Ts T

~




Summation: recursive definition

® Recursive definition:

m n n—1
E ap = dpy, and E ay = E ar + a, for all integers n > m
k=m k=m k=m

° Examples:

+
1 1 I
® Separating off final term Z 2 Z 2 T (n+ 1)2
i=1 i=1

n—+1

n
° Writing summation ok ni-1 k
E + 2 = E 2
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Summation: successive cancellation

® Transtorm sum into telescoping sums, then into a simple expression
n

® | le: I
xample kzz;k(k_l_l)

o Use I =(k+l)—k= 1
kK k+1 k(k+1) k(k+1)

1 y‘ 'l' Lf‘ 1 f y‘ ] 7 ‘}',‘ 1‘ l
- (-2)*(z-8)+ (G-3) -+ (G -0) + G-a)
]
= 1 —
n-+ 1

~
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Product notation

® The product from k equals m to n of q,, ﬁ ar , for integers

k=m
m and n with m < n, is the product of all the terms

a_ , d

m?

® Examplesz

m+1? am-i-Z”"’ an

n

]_[ Ak = Uy Ay - Ay - -

k=m

5

1_[ dp = dydrdzdyds
k=1

5
]1&:L2345=1m
k=1

* (IJH
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Product notation: recursive definition

® Recursive definition:

m n n—1
H Ay = Ay, and 1_[ ay = 1_[ ag | -a, ftorall integers n > m
k=m

k:m k:m
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Summation and product properties

°Ita ,a ., a, ,,...andb b ., b ., ... aresequences of real

numbers:
i Iy i
Zak — Z by = Z(ak + by)
k=m k=m k=m

(]_[ak) . (1_[ bk) = H(ak'bk)
k=m k=m k=m

® (Generalized distributive law: if ¢ is any real number:

n

n
C- E d = E C-dg
k=m

k=m

o
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Summation and product properties

® Exarnple: using properties of summation and product
a, =k + I b=k~ I

k=m k=m

—Z(k+|)+22 (k — 1)

k=m

=Z((k+1)+2-(k—l))

k=m

= Zn:(?sk — 1)
k=m
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Summation and product properties

® Another example: using properties of summation and product

ak:k-l-l bk:]g—l
(]_[cu;) - (l_[bk) = (]_[(kJrl)) : (]_[(k 1))
k=m k=m k=m k=m
=[[&k+D-Gk—1)
k=m
=[]« -1
k=m
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Sequences: change of variables

® Examples:

4
Y G-D=Q-D+3 -1 +¢@d-1)

j=2
=174+2"4+3

3
_ Z 2 change of variable
k=1 k=j-1

6

I
- 1 change of variable: ] =k + 1
k=0 1 I 1

k+1 (—D+1

k=0, j=k+1=0+1=1 i;=i

k=6, j=k+1=6+1=17 k1

o
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Factorial notation

® The quantity n factorial, n!, is defined to be the product of all

the integers from 1 to n:
nl=n-m—1)---32-1
0! is defined tobe 1: 0! =1
0! =1 11=1
21 =2-1=2 31=3-2.1 =6
4! =4-3-2-1 = 24 5! =5-4-3-2-1 =120
6! =6:54:3-2-1 =720
7' =76'5-4-3-2-1 = 5,040
8! =8-7-6'5-4-3-2-1 = 40,320
9'=9-8-7-6'5-4-3-2-1 = 362,880
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Factorial notation: recursive definition

® Recursive definition for factorial:

L itn =0
o n-n—=1D! ifn>1.

® Examples: computing with factorials
3! 8. N
N
5! 5-4.31 5.4

8

20.31 2131 2.1
(n+ 1)! (n+|)/-m
”! = }r( =M —I— l
! n=1)--(n=2)-(n—73)!
1l =n (n )-(n _) (n ) =1 —2)
(n — 3)! (n—3)1!
—n’ —3n% 4+ 2n

10
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Nn choose r

® n chooserr, (H) , represents the number of subsets of size r
,

that can be chosen from a set with n elements, for integers

nand rwith0<r<n

ny _ n!
r r'(n —r)!

Combination: number of r-combinations from a set of n elements

® Examplesz

(8)_ 8! 8.7-6-5.4.3-2°T
5) 518=5)!  (5-4-3-2-1)-(:3-27T)

(r1+l)_ (n+ 1)! _(n+|)!_(::+|)-rﬂ_”+1
n o) al(m+1)—n)  alll nt N
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Nn choose r

* Example: 4 choose 2 = 4! /(212]) =6

° LetS={1,2,3,4}
® The 6 subsets of S with 2 elements are:
11,2}
11,3}
11,4}
12,3}
12,4}
13,4}
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Sequences in computer programming

® Array: a[l], a[2], ..., A[50] a=[7,4,25,9] listinpy/da

o fori :=1ton for i in range(1,n+1): ints(1,n) da
print a|i |

print (a[i])
next /
® Summation
s = all] s = a[l]
kor: 3= Z-tom forkin ...
s .= 5§ + alk]
next k

s = sum(a[k] for k in range(1,n+1))
s = sumof(a[k], k in ints(1,n)) da

o y
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Example algorithm with arrays

® Convert from base 10 to base 2:
38 =192 + 0

=(92+1)-2+0 =922+ 12 +0
=424+ 1) 241240 =425+ 1224+ 12+0
= (2240) 2 +122+12+0
=024+ 0-23+ 122+ 1240
=(12+0) 24+ 02+ 122+ 1-2+ 0
=1-22+02*+02°+1-22+1-2+0

a =2 r[k14+ 25 k=114 + 2% 2] + 28 r[1] 4+ 2°-7[0]

ay = (rlklrlk = 1]---r[2]r[1]r[0]),

o




Convert from base 10 to base 2

Input: n [a nonnegative integer]|

Algorithm Body:

q:=n,i:=0

while (i = 0 or q = 0)
r[i] := qmod 2
q:= qdiv 2
=it

end while

Output: r[0], r[1], r[2], . . ., r[i — 1] [a sequence of integers]
©

/
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Mathematical induction

Principle of mathematical induction:

Let P(n) be a property that is defined for integers n, and let a be a

fixed integer. Suppose the following two statements are true:

1. P(a) is true.
2. For all integers k 2 a, if P(k) is true then P(k + 1) is true.
Then the statement “for all integers n = a, P(n)” is true.
That is:

P(a) is true.

Pk)=>» Pk +1),Vk>a

s P(n) is true, V n 2 a
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Mathematical induction: proof method

Method of proof by mathematical induction:
To prove a statement of the form:

“For all integers n=2a, a property P(n) is true.”
Step 1. Base step: Show that P(a) is true.

Step 2. Inductive step: Show that for all integers k 2> a,
if P(k) is true then P(k + 1) is true:
® Inductive hypothesis: suppose that P(k) is true, where k is any

particular but arbitrarily chosen integer with k 2 a.
® Then show that P(k + 1) is true.

©
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Mathematical induction: example 1

For all integers n 2 8, n¢ can be obtained using 3¢ and 5¢ coins
Base step: P(8) is true because 8¢ = one 3¢ coin and one 5¢ coin
Inductive step: for all integers k 2 8, it P(k) is true then P(k+1) is true
Inductive hypothesis: suppose k is any integer with k = 8:
P(k): k¢ can be obtained using 3¢ and 5¢ coins
We must show P(k+1): (k+1)¢ can be obtained using 3¢ and 5¢ coins
Case 1.There is a 5¢ coin among those used to make up the k¢:
Replace the 5¢ coin by two 3¢ coins; the result will be (k + 1)¢.
Case 2. There is not a 5¢ coin among those used to make up the k¢:
Because k 2 8, at least three 3¢ coins must have been used.
Remove three 3¢ coins (9¢) and replace them by two 5¢ coins(10¢);
the result will be (k + 1)¢

o y
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Mathematical induction: example 2

Sum of the first n integers:

1(n + 1
1+2+...+H=F(rj) for all integers n > 1

d—

Base step: P(1): 1= 1(1; D

Inductive step:

Inductive hypo: P(k) is true, for a particular but arbitrarily

chosen integer k 2 1: 1+2+...+k=k(k+1)
2
k+ 1)(k+2
Prove P(k+1): 1+2+---+(k+l)=( + )2( + 2)
k(k+1) k4 1)(k+2)
(I+2+--+h+k+1)=—7 +(k+l)=( )2(

-
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Sum of the first n integers

® A formula in closed form represents a sum with a variable

number of terms without an ellipsis Oor a summation symbol.

* Examples: apply the formula for the sum of the first n Integers:

24+444+64+---4+500=2-(1+2434+---4+250)

5 250-251
=2. 5

= 62,750.

5464+7+8+---+50=(14+2+3+---4+50)—(1+243+4)

©
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Mathematical induction: example 3

Sum of geometl‘ic sequence: each term is obtained from the

preceding one by multiplying by a constant: if the first term is 1

and the constantisr: 1,r, r’, r°,..., ,...

n+1 1

]
r— 1

n
l+r+r2+---+r”= Zf‘f =
i=0

0 041
Base step: Prove P(0): Z 1=

=0

— 1
1 &P1=1 (Proved)

j"' —
Inductive step:

Inductive hypothesis:

K k+1
ot =1
P(k) is true for k = O: =
suppose P(k) is true for ;f m—
k+1 . Fk_‘_z—l
P Pk + 1): =
rove P( ) ;f p—




Sum of geometric sequence

Continued: ,
Prove Pk +1): 3,1 — 1]
rove +1): T
R 3=

k+1

Zr“= L7424+ o

i=0
k+1

_ r I L e
r— 1
rk—l—Z —1

r—1
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Sum of geometric sequence: examples

3{m—2}—|—1 —1

| +34+3+---+3"° =

3—1
3m—1_1

3243 43 4 43" =32 (14343 +---4+3™2) by factoring out 32

3=t
=0. >




Mathematical induction: example 4

Proving a divisibility property:
P(n): for all integersn =20, 2*" — 1 is divisible by 3

Basic step: P(0): 2°° — 1 = 0 is divisible by 3
Inductive step:
Induction hypothesis:

suppose P(k) is true: 22 — 1 is divisible by 3

Prove P(k+1): 22(H1) — 1 5 divisible by 3




Proving a divisibility property

Continued:
Prove P(k+1): 22(H1) — 1 s divisible by 3

22[.’(4—1] ] = 22&4—2 —

=2%k.0%2 _ | by the laws of exponents
=241

=2%3+1)— |

= 22k 34 (22}:: — 1) by the laws of algebra
= 2%.3 + 3r by inductive hypothesis
= 3(22k +r) by factoring out the 3.

22k + ris an integer because integers are closed under

multiplication and summation

@ s0, 227D — 1 i divisible by 3 -




Mathematical induction: example 5

Proving an inequality:
P(n): forall integersn=2>3, 2n+ 1 <2"
Base step: Prove P(3): 2-3 + 1 <2?
7 <8 (true)
Inductive step:
Inductive hypo: suppose for k = 3, P(k) is true: 2k + 1 < 2k
Show P(k+1): 2(k+1) + 1 < 2k*!
Thatis: 2k + 3 <2~

Ok + 3= 2k + 1) + 2 < 2k+ ok = )kl
because 2k + 1 < 2k by the inductive hypothesis

and because 2 < 2k for all integers k>3




/

Mathematical induction: example 6

A sequence: a, — 2 and a, = 5a_, for all integers k = 2

Prove:a, = 2-5" ! for all integers n > 1

Proof by induction: P(n): a, = 2-5" ! for all integers n = 1

Base step: P(1): a, = 2-5' 71, 2:517172:50=2-1 =2 =4,

Inductive step: Inductive hypo: suppose P(k) is true: a, = 2-5"
Show P(k+1):a,,, = 2-5&FD 1 = 2.5k

Qg = Sy by definition of a,, a,, a;,...
= 5-a, since (k +1) — 1=k
= 5-2-5k71 by inductive hypothesis

= 2-(5-5k71 by regrouping
= -5k by the laws of exponents

~




Mathematical induction: example 7

A problem with trominoes (Tetris):

straight and L-shaped

For any integer n 2 1, if one square is removed from a 2" X 2*
checkerboard, the remaining squares can be completely

covered by L—shaped trominoes

Base step: a 2 X 2 checkerboard can be

covered by 1 L-shaped tromino
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A problem with trominoes

Continued: Inductive step:
Inductive hypothesis: for k 2 1: P(k):

if one square is removed from a 2k X 2k checkerboard, the

remaining squares can be completely covered by L-shaped

trominoes ok 4 ok — ok+1
A
' h
Proot P(k+1): ok ok
K+ K+ % 7
if one square is removed from a 257! X 2k [ ALl )
checkerboard, the remaining squares can be [

completely covered by L-shaped trominoes
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Strong mathematical induction

Principle of strong mathematical induction:

P(n) is a property that is defined for integers n, and a and b are
fixed integers with a <b.

Base step: P(a), P(a + 1), .. ., and P(b) are all true
Inductive step:

Inductive hypothesis: for any integer k 2 b, if P(i) is true for all

integers i from a through k
then P(k + 1) is true
Then the statement “for all integers n = a, P(n)” is true.
That is: P(a), P(at1),..., P(b-1), P(b) are true.
Vk=b, (Va<i<k,P@G)) = Pk + 1)

@ S P(n) is true, Vn=2a
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Strong mathematical induction

Any statement that can be proved with

ordinary mathematical induction
can be proved with strong mathematical

induction (and vice versa).




Strong induction: example 1

Divisibility by a prime:
Any integer greater than 1 is divisible by a prime number
P(n): n is divisible by a prime number
Base step: P(2): 2 is divisible by a prime number
2 is divisible by 2 and 2 is a prime number
Inductive step:
Inductive hypothesis: Let k be any integer with k = 2
suppose P(i) is true for all integers i from 2 through k,

that is, i is divisible by a prime number for inti from 2 to k

Show P(k + 1): k + 1 is divisible by a prime number




Strong induction: example 1 (cont’d)

Show P(k + 1): k + 1 is divisible by a prime number

Case 1 (k + 1is prime): In this case k + 1 is divisible by itself
(a prime number): k+1 = 1*(k+1)

Case 2 (k + T isnot prime): k + 1 = a*b
where a and b are integers with 1<a<k+1 and 1<b<k+1.
From k + 1 = a*b, k + 1 is divisible by a.
By inductive hypothesis, a is divisible by a prime number p.
By transitivity of divisibility, k + 1 is divisible by p.
Therefore, k+1 is divisible by a prime number p. u




Strong induction: example 2

A sequence s, S;, S,,...
5o=0, s, =4, 5,=6s,_,—5s,, for all integers k = 2
s, = 6s; — 55, = 64 — 5-0 = 24,
s; =68, =55, =624 —54=144 —-20=124
Prove:s = 5"—1
Base step: P(0) and P(1) are true:
P(0):s,=5'—-1=1—1=0
P(1):s,=5'-1=5—-1=4
Inductive step: Inductive hypo: Let k be any integer with k 2 1,
s,=5'—1 for all integers i with 0 <i<k

o
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Strong induction: example 2 (cont’d)

Show P(k + 1) is true: s, ; = 571 — 1

S — 68, — 581, by definition of s, s, s,,...

= 6(5% — 1) — 5(5! — 1) by induction hypothesis

= 6:5k—6—5k+5 by multiplying out and applying
a law of exponents

= (6 — 1)5k—1 by factoring out 6 and arithmetic

= 5.5k — 1 by arithmetic

= Sk+l —1 by applying a law of exponents g

o
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Strong induction: example 3

The number of multiplications needed to multiply n
numbers 1s (n—l).
P(n): If x,, x,,..., x, are n numbers, then no matter how parentheses

are inserted into their product, the number of multiplications used to

compute the product isn— 1.

Base case: P(1): The number of multiplications needed to compute
the product of x;is 1 —1 =10

Inductive case:

Inductive hypothesis: Let k by any integer with k = 1 and for all
integers i from 1 through k, if x,, x,,..., x;are numbers, then no

matter how parentheses are inserted into their product, the

@number of multiplications used to compute the product isi— 1.

/
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Strong induction: example 3 (cont’d)

We must show P(k + 1): It x,, x,,..., X, are k + 1 numbers, then
no matter how parentheses are inserted into their product, the

number of multiplications used to compute the product is (k + 1)
— 1=k
When parentheses are inserted in order to compute the product x,
X,... X4 1, some multiplication is the final one:
let L be the product of the left-hand 1 factors (numbers) and
R be the product of the right-hand r factors: 1 + r =k + 1
By inductive hypothesis, evaluating L takes | — 1 multiplications

and evaluating R takesr — 1 multiplications

I-DH+@E—-—DH+1=1+r)—-1=(k+1)—-1=k -

~
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Strong induction: example 4

Existence and uniqueness of binary integer
representations:

any positive integer n has a unique representation in the form
n=c-2" +c 271 ++c, 22+ ¢;-2 + ¢, P(n)
where ris a nonnegative integer, c,.— 1, and
cj:O or 1 for j=0,..., r—1
Proof of existence:
Base step: P(1): 1 = ¢, -2° where ¢, = 1, r=0.
Inductive hypothesis: k 2 1 is an integer and for all integers i from
I through k: P(i):i=c¢ 2"+ ¢ ;-2"' +--+c, -2 + ¢;-2 + ¢,

We must show that k + 1 can be written in the required form.




-

Strong induction: example 4 (cont’d)

Case 1.k + 1iseven: (k + 1)/2 is an integer
By inductive hypothesis:
k+1)/2=c-2"+c -2+ Fc, 22+ ;2 + ¢
k+1= cr'21’Jr1 +c 20+t 23 + 01'22 T ¢y 2
=c 2"+ ¢ 2" +te, 23+ ¢ 27+ 20 +0-2°
Case 2.k + 1is odd: k is even, so k/2 is an integer
By inductive hypothesis:
k/72=c 2"+ cr_l'Zr‘1 +-tc, 22 + c;"2 + ¢,
k = cr'2rJr1 +c 2"+, 23 + c1°22 + ¢, 2
k+1= cr'ZrJr1 +c 2"+, 23 + c1°22 + ¢,2 1
— Cr°2r+1 + Cr-1'2r _|_..._|_C2 .23 + C1.22 + C0.21 _|_1.2O
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Strong induction: example 4 (cont’d)

Proof of uniqueness:

Proof by contradiction: suppose there is an integer n with two

different representations as a sum of nonnegative integer powers of

2:
2+ 2Nt o2t e, =25+ d 25 e+ d 2+ d
r and s are nonnegative integers, and each ¢; and d; equal O or 1.
Assume: 1 < s
By geometric sequence:
2 ¢ 2 e o2 g ST 2T ek 2+ ] = 0 — (<D
2+ 27+t o2+ <264 d 28T+t d 2+ d

Contradiction
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Well-ordering principle for integers

® [ et S be aset of integers Containing one or more integers
all of which are greater than some fixed integer. Then S

has a least element.

e The Well—ordering principle is equivalent to both ordinary

and strong mathematical induction.
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Well-ordering principle: examples

Why is the Well—ordering principle not violated in these sets?
® The set of all positive real numbers.
® The set of all nonnegative integers n such that n2 <n.

® The set of all nonnegative integers of the form 46 - 7k,

where k is an inte ger.

Solution:

* Not a set of integers

® Empty set

° {4,11,18,25, ...} where 4 is the least element
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Defining sequences recursively

® A sequence can be defined in 3 ways:
® enumeration: -2,3,-4,5,...
® general pattern: a,2=(-1)"(n+t1), for all integers n 2 1
® recursion: a,=-2 and a =(-1)*!a_, +(-1)
define one or more initial values for the sequence AND

define each later term in the sequence by reference to earlier terms

* A recurrence relation for a sequence a, a;, a,,... is a formula that
relates each term a, to certain of its predecessors a,_, a, ,,..., a_;,

where i is an integer with k—i =20

® The 1nitial conditions for a recurrence relation specify the values of

3y, A1, Ay,..., 3, 1, if 1 is a fixed integer, OR

3y, ay,..., 4, where m is an integer with m 2 0, if i depends on k.

o y
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* Example:

c,=c, t2c¢ t1
=2+21+1
=5

c;=¢,t3c t1
=5+3-2+1
=12

c,—cy;t4c t1
=12+ 45+ 1
=33

-

Recursion: example 1

° Computing terms of a recursively defined sequence

Initial conditions: c, = 1 and c, =2

Recurrence relation: ¢, = ¢ | + k* ¢, + 1, for all integers k=2

by substituting k = 2 into the recurrence relation

since ¢, = 2 and ¢, = 1 by the initial conditions

by substituting k = 3 into the recurrence relation

since ¢, = 5 and c, =2

by substituting k = 4 into the recurrence relation

since c; = 12and ¢, = 5
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Recursion: example 2

© Writing a recurrence relation in more than one way

* Example:
Initial condition: s, = 1
Recurrence relation 1:s, = 3s, ; - 1, for all integers k 2 1

Recurrence relation 2: s, | = 3s, - 1, for all integers k 20




/
Recursion: example 3

* Sequences that satisfy the same recurrence relation

* Example:
Initial conditions: a, =2 and b, =1

Recurrence relations: ai = 3a;_; and b, = 3b,_, for all integers k = 2

a,=3a, =32=6 b, =3b, =31=3
a, = 3a, =36 =18 b,=3b,=33=9
a, = 3a, = 318 = 54 b, =3b, =3-9=127
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Recursion: example 4

e Fibonacci numbers

1.
2.

We have one pair of rabbits (male and female) at the beginning of a year.

Rabbit pairs are not fertile during their first month of life but thereafter give

birth to one new male & female pair at the end of every month.

the number the number the number |
of rabbit of rabbit of rabbit
pairs alive = | pairs alive + | pairs born
at the end at the end at the end
3 of month k ) ] of month k — 1 ) i of month & |
 the number | [ the number h
of rabbit of rabbit
= | pairs alive + | pairs alive
at the end at the end
_Dfmonthk—l | _ofmonthk—Z_
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Recursion: example 4 (continued)

* Fibonacci numbers
The initial number of rabbit pairs: F, =1
F, : the number of rabbit pairs at the end of month n, for each integer n 2 1
F.=F, , tF,,forall integersn =2
F, = 1, because the first pair of rabbits is not fertile until the second month

How many rabbit pairs are at the end of one year?

January 1°: F, = 1 September 1°: Fg=F,+F =21+13=34

February 1°: F, = 1 October 1% : Fg=F¢+F,=34+21=55

March 1*: F, = F, + F, = 1+1=2 November 1**: F,;=F,+F;=55+34=89

April 1**: F; =F, + F, = 2+1=3 December 1%
F,,=F,,tFy=89+55=144

May 1*: F, = F; + F, = 3+2=5 January 1**: F,,=F,,+F,,=144+89=233

June 1**: F. = F, + F; = 5+3=8
]uly 1*:F,=F.+F, =8+5=13
August 1**:F,=F, +F = 13+8= 21

/
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Recursion: example 5

° Compound interest

® A deposit of $100,000 in a bank account earning 4% interest
compounded annually:
the amount in the account at the end of any particular year
= the amount in the account at the end of the previous year +
the interest earned on the account during the year
= the amount in the account at the end of the previous year +
0.04 - the amount in the account at the end of the previous year
A, = $100,000
A=A, +(0.04) A, =1.04-A,,, for each integer k = 1
A, =1.04-A,= $104,000
A,=1.04-A =1.04-$104,000 = $108,160

-,
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Recursion: example 6

° Compound interest with compounding several times
a year

® An annual interest rate of i is compounded m times per year:
the interest rate paid per each period is i/m
P, is sum of amount at the end of the (k—1)-th period
and interest earned during k-th period

Py =P + P i/m=P - (I1i/m)

® It 3% annual interest is compounded quarterly, then the

interest rate paid per quarter is 0.03/4 = 0.0075

o




/

Compound interest: examples
Example: deposit of $10,000 at 3% compounded quarterly

For each integern 2 1,

P_ = the amount on deposit after n consecutive quarters.
P, =1.0075 - P,
P, = $10,000
P, =1.0075- P, = 1.0075 - $10,000 = $10, 075.00
P, =1.0075- P, = (1.0075) -$10, 075.00 = $10, 150.56
P, =1.0075- P, = (1.0075) -$10, 150.56 = $10, 226.69
P, =1.0075- P, = (1.0075) -$10, 226.69 = $10, 303.39

The annual percentage rate (APR) is the percentage increase in the

value of the account over a one-year period:

APR = (10303.39 — 10000)/ 10000 = 0.03034 = 3.034%
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Recursion: example 7

Towers of Hanoi: n disks piled in order of decreasing size on

one pole in a row of three

Want to move all the disks one by
one from one pole to another,

never placing a larger disk on top

of a smaller one

How many moves arce required to A B ¢

move the disks from pole A to C?

HW 4 extra-credit programming: even generate all moves in 2 lines

A best way to solve this problem is to think recursively!
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Recursion: example 7 (continued)

® Moves must include going from initial position (a) to (b) to (c) to (d).

® For k2 1, let mj, benumber of moves to move a tower of k disks

from one pole to another.
® (a) to (b) needs My _q1 moves, (b) to (¢) 1 move, (c) to (d) My _4

m, = Mp_1+1+my_; = 2my_1+1
* Simplest case:1 disk, so move from pole A to C in one move
mq = 1

® m2=2m1+1=21+1=3,

my=2m,+1=2-3+1=7,

@ my=2mg+1=2-7+1=15,
. /
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Recursive definitions of sum and product

® The summation from i=1 ton of a sequence is defined using

recursion:
1 n n—1
Za,;:al and Za,-:(ZﬂI)Jraﬂ, ifn=>1
i=1 i=1 i=1
f(1) = ai f(n) = f(n-1) + an

® The product from i=1 to n of a sequence is defined using

recursion:

1 n n—1
]_[a,-=a1 and Ha;=(na5) d,, 1fn=>1.
i=1 i=1 i=1
@ >—> 11 +—>- -
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Sum of sums: recursion and induction

® For any positive integer n, if a;,a,,...,a, and b;,b,,...,b_are real

numbers, then

Y (ai+b) =Y ai+y b
i=1 i=1 i=1
* Proof by induction (using recursive definition of sum):

n n n
Z(ﬂg—be):Zﬂj—l—be. «~ P(n)

1 1 1
Z(ﬂ5+b;)=(£1+b] =Za£+zbi
i=1 i=1 i=1

Base step:

k k k
Inductive hypothesis: Z(ﬂf + b;) = Z a; + Z bi. < Pk
i=1 i=1 i—=1

© y




Sum of sums continued

We must show that:
k+1

Z(ﬂ'f + bl) = Zﬂ,‘ + Zb"
i=1 i=1 i=1

k+1

k k
= (Z a; + ) bf) + (ag+1 + Diy1)
= i1

k
=( ﬂf+ﬂk+1)+(
i=1

2

k41

i=1

k
Y (ai+bi) =) (ai +bi)+ (aks1 + brsr)

Y bi + bray

— P(k+1)

by definition of X

by inductive hypothesis

by the associative and cummutative

laws of algebra

by definition of X
Q.E.D.
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Solving recurrence relations

e Arithmetic sequence: there is a constant d such that

a, =a,_, T dforall integers k>1
It follows that,a, = a, + d - n for all integers n 2 0.
e Geometric sequence: there is a constant r such that
a, =1 a_, forall integers k>1

It follows that, a, = a, - 1" for all integers n 2 0.

©
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A general form of recurrence relation

e A second-order linear homogeneous recurrence relation

with constant coefficients is a recurrence relation of the form:
a, =A -a_, + B-a_, forallintegers k 2 some fixed integer

where A and B are fixed real numbers with B # 0.

® In general: given a sequence, Or a recurrence relation,

guess a closed-form formula, and prove by induction.

o y
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Applications:

correctness of algorithms

® A program is correct if it produces the output specified in its

documentation for each set of inputs
® initial state (inputs): pre-condition for the algorithm

® final state (outputs): post-condition for the algorithm

o Example:
Algorithm to compute a product of two nonnegative integers
pre-condition: input variables m and n are nonnegative integers

post—condition: output variable p equals m*n

L
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Correctness of algorithms

® The steps of an algorithm are divided into sections with

assertions about the current state of algorithm

[Assertion 1: pre-condition for the algorithm]
{Algorithm statements}
[Assertion 2]

{Algorithm statements}

[Assertion k — 1]
{Algorithm statements}

[Assertion k: post-condition for the algorithm]

©
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Correctness of algorithms

* Loop Invariants are used to prove correctness of a loop with

respect to pre- and post-conditions
[pre-condition for the loop]
while (G)
{Statements in the body of the loop}
end while

[post-condition for the loop]

A loop is correct with respect to its pre- and post-conditions
if, and only if,
whenever the algorithm variables satisty the pre-condition for the loop,

and the loop terminates after a finite number of steps,

the algorithm variables satisfy the post-condition for the loop.

/




Loop invariant

* Aloop invariant is a predicate with domain a set of integers,
satistying: for each iteration of the loop, (induction) if the
predicate is true before the iteration, then it is true after the

1teration.

® Furthermore, if the following two conditions hold

® before the first iteration of the loop,

the predicate is implied by the pre-condition for the loop,
* if the loop terminates after a finite number of iterations,

the predicate ensures the post-condition for the loop,

then the loop is with respect to its pre- and post—conditions.
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Loop invariant: example

e Correctness of a loop to compute a product

A loop to compute the product m*x for a nonnegative integer m
and a real number x, without using multiplication
[pre-condition: m is a nonnegative integer, x is a real number,
i =0, and product = 0]
while (i # m)
product := product + x
i:=i+1
end while

[post-condition: product = m*x]

Loop invariant I(n): [i =n A product = n*x]

Guard G: i#m

L




Loop invariant I(n): [i =n A product = n*x]  Guard G: i #m
Base property:

[I(0):i = 0 and product = 0-x =0 is true before first iteration]
Inductive property:

[If G AT (k) is true before an iteration (where k 2 0),
then [ (k+1) is true after the iteration]

Let k is a nonnegative integer such that G A I (k) is true, i.e.,
iZzm A i=k A product = k*x
Since i # m, the guard is passed and
product = product + x  =k¥x +x = (k+ 1)*x
i=i+1 =k +1
So I(k + 1):1i=k + 1 Aproduct = (k + 1)*x is true after the iteration
Eventual falsity of guard:

[After a finite number of iterations, G becomes false]

e After m iterations of the loop: i = m and G becomes false




Loop invariant I(n): [i =n A product = n*x]  Guard G: i #m

Correctness of the post-condition:
[If N is the least number of iterations after which G is false and
[ (N) is true, then the value of the algorithm variables will be as

specified in the post-condition of the loop]

I(N) is true at the end of the loop: i = N A product = N#*x
G becomes false after N iterations: i = m

SoN =1i=m

Post-condition product — m*x after execution of the loop is true.




