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 A sequence is a function whose domain is 
 all the integers between two given integers m and n

am, am+1, am+2,..., an

 all the integers greater than or equal to a given integer m
am, am+1, am+2,...

ak is a term in the sequence
k is the subscript or index

m is the subscript of the initial term

n is the subscript of the last term (m ≤ n)

 An explicit formula or general formula for a sequence is a rule that 
shows how the values of ak depend on k
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Sequences



Sequences: examples

ak = 2k is the sequence     2, 4, 8, 16, 32, 64, 128,...

ak = k/k + 1, for all integers k ≥ 1:        bi = i-1/i, for all integers i ≥ 2:

 ak for k ≥ 1 is the same sequence as bi for i ≥ 2
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Index 1 2 3 4 5 6 7 8

Term 2 4 8 16 32 64 128 256



An alternating sequence:

c j = (−1) j for all integers j ≥ 0:
c0 = (−1)0 = 1
c1 = (−1)1 = −1
c2 = (−1)2 = 1
c3 = (−1)3 = −1
c4 = (−1)4 = 1
c5 = (−1)5 = −1
…
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Sequences: one more example



Find an explicit formula for a sequence

 The initial terms of a sequence are:

 ak is the general term of the sequence, a1 is the first element
 observe that the denominator of each term is a perfect square

 observe that the numerator equals ±1:  
 alternating sequence with -1 when k is even: 
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Find an explicit formula for a sequence

 Continuing from previous slide

 Result sequence: 

 Alternative sequence:
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Summation notation

 If m and n are integers and m ≤ n, the summation from k 
equals m to n of ak,          , is the sum of all the terms am, 
am+1, am+2,..., an

k is the index of the summation

m is the lower limit of the summation

n is the upper limit of the summation
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Summation notation: examples

a1 = −2,    a2 = −1,   a3 = 0,   a4 = 1,   a5 = 2
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Summation notation: more forms

 Summation notation with formulas:

 Changing from Summation Notation to Expanded Form:
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Summation notation: from expanded

 Changing from Expanded Form to Summation Notation:

The general term of this summation can be expressed as

for integers k from 0 to n
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Summation: evaluation for small n

 Evaluating expression for given limits:
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Summation: recursive definition

 Recursive definition:

 Examples:

 Separating off final term

 Writing summation
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Summation: successive cancellation

 Transform sum into telescoping sums, then into a simple expression

 Example:

 Use
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Product notation

 The product from k equals m to n of ak,           , for integers 

m and n with m ≤ n, is the product of all the terms 

am, am+1, am+2,..., an

 Examples: 
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Product notation: recursive definition

 Recursive definition:
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Summation and product properties

 If am, am+1, am+2,... and bm, bm+1, bm+2,... are sequences of real 
numbers:

 Generalized distributive law: if c is any real number:
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Summation and product properties

 Example: using properties of summation and product
ak = k + 1 bk = k − 1
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Summation and product properties

 Another example: using properties of summation and product
ak = k + 1 bk = k − 1
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Sequences: change of variables

 Examples:

change of variable

k=j-1
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Factorial notation

 The quantity n factorial, n!, is defined to be the product of all 
the integers from 1 to n:

n! = n · (n − 1) · · · 3·2·1

0! is defined to be 1:   0! = 1

0! =1 1! = 1

2! = 2·1 =2 3! = 3·2·1 = 6

4! = 4·3·2·1 = 24 5! = 5·4·3·2·1 = 120

6! = 6·5·4·3·2·1 = 720    

7! = 7·6·5·4·3·2·1 = 5,040

8! = 8·7·6·5·4·3·2·1 = 40,320

9! = 9·8·7·6·5·4·3·2·1 = 362,880
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Factorial notation: recursive definition

 Recursive definition for factorial:

 Examples: computing with factorials
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n choose r
 n choose r,        , represents the number of subsets of size r

that can be chosen from a set with n elements, for integers

n and r with 0 ≤ r ≤ n

Combination: number of r-combinations from a set of n elements

 Examples:
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n choose r

 Example: 4 choose 2 =  4! /(2!2!)  = 6

 Let S = {1,2,3,4}
 The 6 subsets of S with 2 elements are:

{1,2}
{1,3}
{1,4}
{2,3}
{2,4}
{3,4}
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Sequences in computer programming

 Array: a[1], a[2], …, A[50] a = [7,4,25,9]   list in py/da

 for i in range(1,n+1): ints(1,n)  da

print (a[i])

 Summation

s = a[1]

for k in …

s = sum(a[k] for k in range(1,n+1))

s = sumof(a[k], k in ints(1,n)) da
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Example algorithm with arrays

 Convert from base 10 to base 2:
38 = 19·2 + 0

= (9·2 + 1) ·2 + 0              = 9·2·2 + 1·2 + 0
= (4·2 + 1) ·22 + 1·2 + 0  = 4·23 + 1·22 + 1·2 + 0
= (2·2 + 0) ·23 + 1·22 + 1·2 + 0
= 2·24 + 0·23 + 1·22 + 1·2 + 0
= (1·2 + 0) ·24 + 0·23 + 1·22 + 1·2 + 0
= 1·25 + 0·24 + 0·23 + 1·22 + 1·2 + 0
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Convert from base 10 to base 2

Input: n [a nonnegative integer]

Algorithm Body:

q := n, i := 0

while (i = 0 or q = 0)

r[i] := q mod 2

q := q div 2

i := i + 1

end while

Output: r[0], r[1], r[2], . . . , r[i − 1] [a sequence of integers]
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Mathematical induction

Principle of mathematical induction:

Let P(n) be a property that is defined for integers n, and let a be a 
fixed integer. Suppose the following two statements are true:

1. P(a) is true.

2. For all integers k ≥ a, if P(k) is true then P(k + 1) is true.

Then the statement “for all integers n ≥ a, P(n)” is true.

That is:

P(a) is true.
P(k)  P(k + 1), k ≥ a

P(n) is true, n ≥ a
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Mathematical induction: proof method
Method of proof by mathematical induction:

To prove a statement of the form: 

“For all integers n≥a, a property P(n) is true.”

Step 1. Base step:  Show that P(a) is true.

Step 2. Inductive step:  Show that for all integers k ≥ a, 

if P(k) is true then P(k + 1) is true: 
 Inductive hypothesis: suppose that P(k) is true, where k is any 

particular but arbitrarily chosen integer with k ≥ a.
 Then show that P(k + 1) is true.
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Mathematical induction: example 1
For all integers n ≥ 8, n¢ can be obtained using 3¢ and 5¢ coins

Base step: P(8) is true because 8¢  = one 3¢ coin and one 5¢ coin

Inductive step: for all integers k ≥ 8, if P(k) is true then P(k+1) is true

Inductive hypothesis: suppose k is any integer with k ≥ 8: 

P(k): k¢ can be obtained using 3¢ and 5¢ coins

We must show P(k+1): (k+1)¢ can be obtained using 3¢ and 5¢ coins

Case 1. There is a 5¢ coin among those used to make up the k¢: 

Replace the 5¢ coin by two 3¢ coins; the result will be (k + 1)¢.

Case 2.There is not a 5¢ coin among those used to make up the k¢:          

Because k ≥ 8, at least three 3¢ coins must have been used.     

Remove three 3¢ coins (9¢) and replace them by two 5¢ coins(10¢);

the result will be (k + 1)¢
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Mathematical induction: example 2
Sum of the first n integers:

Base step: P(1): 

Inductive step: 

Inductive hypo: P(k) is true, for a particular but arbitrarily   
chosen integer k ≥ 1:

Prove P(k+1):
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Sum of the first n integers

 A formula in closed form represents a sum with a variable 
number of terms without an ellipsis or a summation symbol.

 Examples: apply the formula for the sum of the first n Integers:
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Mathematical induction: example 3

Sum of geometric sequence:  each term is obtained from the 
preceding one by multiplying by a constant: if the first term is 1 
and the constant is r: 1, r, r2, r3,..., rn,...

Base step:  Prove P(0):                              1 = 1 (Proved)

Inductive step: 

Inductive hypothesis:  

suppose P(k) is true for k ≥ 0: 

Prove P(k + 1):
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Sum of geometric sequence
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Continued:
Prove P(k +1):



Sum of geometric sequence: examples
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Proving a divisibility property:

P(n): for all integers n ≥ 0,  22n − 1 is divisible by 3

Basic step: P(0): 22·0 − 1 = 0 is divisible by 3

Inductive step:

Induction hypothesis: 

suppose P(k) is true: 22k − 1 is divisible by 3

Prove P(k+1): 22(k+1) − 1 is divisible by 3
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Mathematical induction: example 4



Continued:

Prove P(k+1): 22(k+1) − 1 is divisible by 3

22k + r is an integer because integers are closed under 
multiplication and summation

so, 22(k+1) − 1 is divisible by 336

Proving a divisibility property



Mathematical induction: example 5

Proving an inequality:

P(n):   for all integers n ≥ 3,  2n + 1 < 2n

Base step: Prove P(3): 2·3 + 1 < 23

7 < 8 (true)

Inductive step: 

Inductive hypo: suppose for k ≥ 3, P(k) is true: 2k + 1 < 2k

Show P(k+1): 2(k+1) + 1 < 2k+1  

That is:        2k + 3 < 2k+1

2k + 3 = (2k + 1) + 2 < 2k + 2k = 2k+1

because 2k + 1 < 2k by the inductive hypothesis

and because 2 < 2k for all integers k ≥ 3
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Mathematical induction: example 6

A sequence: a1 = 2 and ak = 5ak-1 for all integers k ≥ 2

Prove: an = 2·5n −1 for all integers n ≥ 1 

Proof  by induction: P(n): an = 2·5n −1 for all integers n ≥ 1 

Base step: P(1):  a1 = 2·51 −1. 2·51 −1 =2·50 = 2·1 = 2 = a1

Inductive step: Inductive hypo: suppose P(k) is true: ak = 2·5k −1

Show P(k+1): ak+1 = 2·5(k+1) −1 = 2·5k

ak+1 = 5a(k+1)-1 by definition of a1, a2, a3,...

= 5·ak since (k + 1) − 1 = k

= 5·2·5k −1 by inductive hypothesis

= 2·(5·5k −1) by regrouping

= 2·5k by the laws of exponents
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Mathematical induction: example 7

A problem with trominoes (Tetris):

For any integer n ≥ 1, if one square is removed from a 2n × 2n

checkerboard, the remaining squares can be completely 
covered by L-shaped trominoes

Base step: a 2 × 2 checkerboard can be

covered by 1 L-shaped tromino
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A problem with trominoes

Continued: Inductive step: 

Inductive hypothesis: for k ≥ 1: P(k): 

if one square is removed from a 2k × 2k checkerboard, the 
remaining squares can be completely covered by L-shaped 
trominoes

Proof P(k+1): 

40

if one square is removed from a 2k+1 × 2k+1

checkerboard, the remaining squares can be 
completely covered by L-shaped trominoes



Strong mathematical induction

Principle of strong mathematical induction:

P(n) is a property that is defined for integers n, and a and b are 
fixed integers with a ≤ b.

Base step: P(a), P(a + 1), . . . , and P(b) are all true

Inductive step:

Inductive hypothesis: for any integer k ≥ b, if P(i) is true for all 
integers i from a through k

then P(k + 1) is true

Then the statement  “for all integers n ≥ a, P(n)” is true.

That is: P(a), P(a+1),…, P(b-1), P(b) are true.
k ≥ b, ( a ≤ i ≤ k, P(i))  P(k + 1)

P(n) is true, n ≥ a41



Strong mathematical induction

Any statement that can be proved with 
ordinary mathematical induction 
can be proved with strong mathematical    
induction (and vice versa).
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Strong induction: example 1

Divisibility by a prime:

Any integer greater than 1 is divisible by a prime number

P(n): n is divisible by a prime number

Base step: P(2): 2 is divisible by a prime number

2 is divisible by 2 and 2 is a prime number

Inductive step:

Inductive hypothesis: Let k be any integer with k ≥ 2

suppose P(i) is true for all integers i from 2 through k,

that is, i is divisible by a prime number for int i from 2 to k

Show P(k + 1): k + 1 is divisible by a prime number
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Strong induction: example 1 (cont’d)

Show P(k + 1): k + 1 is divisible by a prime number

Case 1 (k + 1 is prime): In this case k + 1 is divisible by itself 

(a prime number): k+1 = 1*(k+1)

Case 2 (k + 1 is not prime): k + 1 = a*b 

where a and b are integers with 1<a<k+1 and 1<b<k+1.

From k + 1 = a*b,   k + 1 is divisible by a.

By inductive hypothesis, a is divisible by a prime number p.

By transitivity of divisibility, k + 1 is divisible by p.

Therefore, k+1 is divisible by a prime number p.
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Strong induction: example 2

A sequence s0, s1, s2,...

s0=0, s1=4, sk=6sk-1−5sk-2 for all integers k ≥ 2

s2 = 6s1 − 5s0 = 6·4 − 5·0 = 24,

s3 = 6s2 − 5s1 = 6·24 − 5·4 = 144 − 20 = 124

Prove: sn= 5n−1

Base step: P(0) and P(1) are true:

P(0): s0=50−1 = 1 − 1 = 0

P(1): s1= 51−1 = 5 − 1 = 4

Inductive step: Inductive hypo: Let k be any integer with k ≥ 1, 

si=5i−1 for all integers i with 0 ≤ i ≤ k
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Strong induction: example 2 (cont’d)

Show P(k + 1) is true: sk+1 = 5k+1 − 1

sk+1= 6sk − 5sk-1 by definition of s0, s1, s2,...

= 6(5k − 1) − 5(5k-1 − 1) by induction hypothesis

= 6·5k − 6 − 5k + 5 by multiplying out and applying

a law of exponents

= (6 − 1)5k − 1 by factoring out 6 and arithmetic

= 5·5k − 1 by arithmetic

= 5k+1 − 1 by applying a law of exponents
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Strong induction: example 3

The number of multiplications needed to multiply n 
numbers is (n-1).

P(n): If x1, x2,..., xn are n numbers, then no matter how parentheses 
are inserted into their product, the number of multiplications used to 
compute the product is n − 1.

Base case: P(1): The number of multiplications needed to compute 
the product of x1 is 1 − 1 = 0

Inductive case:

Inductive hypothesis: Let k by any integer with k ≥ 1 and for all 
integers i from 1 through k, if x1, x2,..., xi are numbers, then no 
matter how parentheses are inserted into their product, the 
number of multiplications used to compute the product is i − 1.47



Strong induction: example 3 (cont’d)

We must show P(k + 1): If x1, x2,..., xk+1 are k + 1 numbers, then 
no matter how parentheses are inserted into their product, the 
number of multiplications used to compute the product is (k + 1) 
− 1 = k.

When parentheses are inserted in order to compute the product x1

x2... xk+1, some multiplication is the final one: 

let L be the product of the left-hand l factors (numbers) and 

R be the product of the right-hand r factors: l + r = k + 1

By inductive hypothesis, evaluating L takes l − 1 multiplications 
and evaluating R takes r − 1 multiplications

(l − 1) + (r − 1) + 1 = (l + r ) − 1 = (k + 1) − 1 = k
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Strong induction: example 4

Existence and uniqueness of binary integer 
representations:  

any positive integer n has a unique representation in the form

n = cr·2r + cr-1·2r-1 +···+c2 ·22 + c1·2 + c0 P(n)

where r is a nonnegative integer, cr=1, and 
cj=0 or 1 for j=0,..., r−1

Proof of existence:

Base step: P(1): 1 = c0 ·20 where c0 = 1, r=0.

Inductive hypothesis: k ≥ 1 is an integer and for all integers i from 
1 through k: P(i): i = cr·2r + cr-1·2r-1 +···+c2 ·22 + c1·2 + c0

We must show that k + 1 can be written in the required form.
49



Strong induction: example 4 (cont’d)

Case 1. k + 1 is even: (k + 1)/2 is an integer

By inductive hypothesis: 

(k + 1)/2 = cr·2r + cr-1·2r-1 +···+c2 ·22 + c1·2 + c0

k + 1 = cr·2r+1 + cr-1·2r +···+c2 ·23 + c1·22 + c0·2

= cr·2r+1 + cr-1·2r +···+c2 ·23 + c1·22 + c0·21 +0·20

Case 2. k + 1 is odd: k is even, so k/2 is an integer

By inductive hypothesis: 

k/2 = cr·2r + cr-1·2r-1 +···+c2 ·22 + c1·2 + c0

k = cr·2r+1 + cr-1·2r +···+c2 ·23 + c1·22 + c0·2 

k + 1 = cr·2r+1 + cr-1·2r +···+c2 ·23 + c1·22 + c0·2 +1

= cr·2r+1 + cr-1·2r +···+c2 ·23 + c1·22 + c0·21 +1·20
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Strong induction: example 4 (cont’d)

Proof of uniqueness:

Proof by contradiction: suppose there is an integer n with two 
different representations as a sum of nonnegative integer powers of 
2:

2r + cr-1·2r-1 +···+ c1·2 + c0  = 2s + ds-1·2s-1 +···+ d1·2 + d0

r and s are nonnegative integers, and each ci and di equal 0 or 1.

Assume: r < s

By geometric sequence: 

2r + cr-1·2r-1 +···+ c1·2 + c0  ≤ 2r + 2r-1 +···+ 2 + 1 = 2r+1 − 1< 2s

2r + cr-1·2r-1 +···+ c1·2 + c0  < 2s + ds-1·2s-1 +···+ d1·2 + d0

Contradiction
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Well-ordering principle for integers

 Let S be a set of integers containing one or more integers 
all of which are greater than some fixed integer.  Then S 
has a least element.

 The well-ordering principle is equivalent to both ordinary 
and strong mathematical induction.
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Well-ordering principle: examples

Why is the well-ordering principle not violated in these sets?

 The set of all positive real numbers.

 The set of all nonnegative integers n such that n^2 < n.

 The set of all nonnegative integers of the form 46 - 7k, 
where k is an integer.

Solution:

 Not a set of integers

 Empty set

 {4, 11, 18, 25, …} where 4 is the least element
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Defining sequences recursively
 A sequence can be defined in 3 ways:
 enumeration: -2,3,-4,5,...
 general pattern: an=(-1)n(n+1), for all integers n ≥ 1
 recursion: a1=-2 and an=(-1)n-1 an-1 +(-1)n

 define one or more initial values for the sequence AND
 define each later term in the sequence by reference to earlier terms

 A recurrence relation for a sequence a0, a1, a2,... is a formula that 
relates each term ak to certain of its predecessors ak-1, ak-2,..., ak-i, 
where i is an integer with k−i ≥ 0

 The initial conditions for a recurrence relation specify the values of 
a0, a1, a2,..., ai-1, if i is a fixed integer, OR 

a0, a1,..., am, where m is an integer with m ≥ 0, if i depends on k.
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Recursion: example 1
 Computing terms of a recursively defined sequence

 Example:
Initial conditions: c0 = 1 and c1 = 2

Recurrence relation: ck = ck-1 + k * ck-2 + 1, for all integers k≥2

c2 = c1 + 2 c0 + 1 by substituting k = 2 into the recurrence relation

= 2 + 2·1 + 1 since c1 = 2 and c0 = 1 by the initial conditions

= 5

c3 = c2 + 3 c1 + 1 by substituting k = 3 into the recurrence relation

= 5 + 3·2 + 1 since c2 = 5 and c1 = 2

= 12

c4 = c3 + 4 c2 + 1 by substituting k = 4 into the recurrence relation

= 12 + 4·5 + 1 since c3 = 12 and c2 = 5

= 33
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Recursion: example 2
 Writing a recurrence relation in more than one way

 Example:
Initial condition: s0 = 1 
Recurrence relation 1: sk = 3sk-1 - 1, for all integers k ≥ 1
Recurrence relation 2: sk+1 = 3sk - 1, for all integers k ≥ 0

56



Recursion: example 3
 Sequences that satisfy the same recurrence relation

 Example:
Initial conditions:        a1 = 2      and  b1 = 1 
Recurrence relations: ak = 3ak-1 and  bk = 3bk-1 for all integers k ≥ 2

a2 = 3a1 = 3·2 = 6 b2 = 3b1 = 3·1 = 3
a3 = 3a2 = 3·6 = 18 b3 = 3b2 = 3·3 = 9
a4 = 3a3 = 3·18 = 54 b4 = 3b3 = 3·9 = 27
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Recursion: example 4
 Fibonacci numbers

1. We have one pair of rabbits (male and female) at the beginning of a year.

2. Rabbit pairs are not fertile during their first month of life but thereafter give 
birth to one new male & female pair at the end of every month.
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Recursion: example 4 (continued)
 Fibonacci numbers

The initial number of rabbit pairs:   F0 = 1

Fn : the number of rabbit pairs at the end of month n, for each integer n ≥ 1

Fn = Fn-1 + Fn-2 , for all integers n ≥ 2

F1 = 1 , because the first pair of rabbits is not fertile until the second month

How many rabbit pairs are at the end of one year?

January 1st: F0 = 1 September 1st : F8=F7+F6=21+13=34

February 1st: F1 = 1 October 1st : F9=F8+F7=34+21=55

March 1st : F2 = F1 + F0 = 1+1= 2 November 1st : F10=F9+F8=55+34=89

April 1st : F3 = F2 + F1 = 2+1= 3 December 1st : 
F11=F10+F9=89+55=144

May 1st : F4 = F3 + F2 = 3+2= 5 January 1st : F12=F11+F10=144+89=233
June 1st : F5 = F4 + F3 = 5+3= 8

July 1st : F6 = F5 + F4 = 8+5= 13

August 1st : F7 = F6 + F5 = 13+8= 2159



Recursion: example 5
 Compound interest

 A deposit of $100,000 in a bank account earning 4% interest 
compounded annually:
the amount in the account at the end of any particular year 
= the amount in the account at the end of the previous year +

the interest earned on the account during the year
= the amount in the account at the end of the previous year +

0.04 · the amount in the account at the end of the previous year
A0 = $100,000
Ak = Ak-1 + (0.04) · Ak-1 = 1.04 · Ak-1 , for each integer k ≥ 1

A1 = 1.04 · A0 = $104,000
A2 = 1.04 · A1 = 1.04 · $104,000 = $108,160
...
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Recursion: example 6
 Compound interest with compounding several times 

a year

 An annual interest rate of i is compounded m times per year:

the interest rate paid per each period is i/m

Pk is sum of amount at the end of the (k−1)-th period

and interest earned during k-th period

Pk = Pk-1 + Pk-1 · i/m = Pk-1 · (1+ i/m)

 If 3% annual interest is compounded quarterly, then the 
interest rate paid per quarter is 0.03/4 = 0.0075
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Compound interest: examples
Example: deposit of $10,000 at 3% compounded quarterly

For each integer n ≥ 1, 

Pn = the amount on deposit after n consecutive quarters.
Pk = 1.0075 · Pk-1

P0 = $10,000

P1 = 1.0075· P0 = 1.0075 · $10,000 = $10, 075.00

P2 = 1.0075· P1 = (1.0075) ·$10, 075.00 = $10, 150.56

P3 = 1.0075· P2 ≈ (1.0075) ·$10, 150.56 = $10, 226.69

P4 = 1.0075· P3 ≈ (1.0075) ·$10, 226.69 = $10, 303.39

The annual percentage rate (APR) is the percentage increase in the 
value of the account over a one-year period:

APR = (10303.39 − 10000)/ 10000 = 0.03034 = 3.034%
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Recursion: example 7
 Towers of Hanoi: n disks piled in order of decreasing size on 

one pole in a row of three

 Want to move all the disks one by
one from one pole to another, 
never placing a larger disk on top 
of a smaller one

 How many moves are required to 
move the disks from pole A to C?

HW 4 extra-credit programming: even generate all moves in 2 lines

 A best way to solve this problem is to think recursively!
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Recursion: example 7 (continued)
 Moves must include going from initial position (a) to (b) to (c) to (d).

 For k  1, let ௞ benumber of moves to move a tower of k disks 
from one pole to another.

 (a) to (b) needs 𝑚௞ିଵ moves, (b) to (c) 1 move, (c) to (d) 𝑚௞ିଵ
𝑚௞  ൌ   𝑚௞ିଵ ൅ 1 ൅ 𝑚௞ିଵ   ൌ   2𝑚௞ିଵ ൅ 1

 Simplest case:1 disk, so move from pole A to C in one move
𝑚ଵ ൌ 1

 𝑚ଶ ൌ 2𝑚ଵ ൅ 1 ൌ 2 ⋅ 1 ൅ 1 ൌ 3, 
𝑚ଷ ൌ 2𝑚ଶ ൅ 1 ൌ 2 ⋅ 3 ൅ 1 ൌ 7, 
𝑚ସ ൌ 2𝑚ଷ ൅ 1 ൌ 2 ⋅ 7 ൅ 1 ൌ 15,

(a) (b) (d)(c)
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Recursive definitions of sum and product

 The summation from i=1 to n of a sequence is defined using 
recursion:

f(1) = a1 f(n)  =  f(n-1)  + an

 The product from i=1 to n of a sequence is defined using 
recursion:
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Sum of sums: recursion and induction

 For any positive integer n, if a1,a2,...,an and b1,b2,...,bn are real 
numbers, then

 Proof by induction (using recursive definition of sum):

Base step: 

Inductive hypothesis: 
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Sum of sums continued

We must show that: 
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Q.E.D.



Solving recurrence relations

 Arithmetic sequence: there is a constant d such that

ak = ak−1 + d for all integers k ≥ 1

It follows that, an = a0 + d · n for all integers n ≥ 0.

 Geometric sequence: there is a constant r such that

ak = r · ak−1 for all integers k ≥ 1

It follows that, an = a0 · rn for all integers n ≥ 0.
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A general form of recurrence relation

 A second-order linear homogeneous recurrence relation
with constant coefficients is a recurrence relation of the form:

ak = A · ak-1 + B · ak-2 for all integers k ≥ some fixed integer

where A and B are fixed real numbers with B ≠ 0.

 In general: given a sequence, or a recurrence relation,
guess a closed-form formula, and prove by induction.
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Applications: 
correctness of algorithms

 A program is correct if it produces the output specified in its 
documentation for each set of inputs
 initial state (inputs): pre-condition for the algorithm
 final state (outputs): post-condition for the algorithm

 Example:
Algorithm to compute a product of two nonnegative integers
pre-condition: input variables m and n are nonnegative integers
post-condition: output variable p equals m*n
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Correctness of algorithms

 The steps of an algorithm are divided into sections with 
assertions about the current state of algorithm

[Assertion 1: pre-condition for the algorithm]
{Algorithm statements}
[Assertion 2]
{Algorithm statements}
...
[Assertion k − 1]
{Algorithm statements}
[Assertion k: post-condition for the algorithm]
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Correctness of algorithms

 Loop invariants are used to prove correctness of a loop with 
respect to pre- and post-conditions

[pre-condition for the loop]
while (G)

{Statements in the body of the loop}
end while
[post-condition for the loop]

A loop is correct with respect to its pre- and post-conditions 
if, and only if, 

whenever the algorithm variables satisfy the pre-condition for the loop, 
and the loop terminates after a finite number of steps,                        
the algorithm variables satisfy the post-condition for the loop.72



Loop invariant

 A loop invariant is a predicate with domain a set of integers, 
satisfying: for each iteration of the loop, (induction) if the 
predicate is true before the iteration, then it is true after the 
iteration.

 Furthermore, if the following two conditions hold
 before the first iteration of the loop,                                                     

the predicate is implied by the pre-condition for the loop, 
 if the loop terminates after a finite number of iterations,

the predicate ensures the post-condition for the loop,

then the loop is with respect to its pre- and post-conditions.
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Loop invariant: example

 Correctness of a loop to compute a product

A loop to compute the product m*x for a nonnegative integer m 
and a real number x, without using multiplication

[pre-condition:  m is a nonnegative integer,  x is a real number, 
i = 0, and  product = 0]
while (i ≠m)

product := product + x
i := i + 1

end while
[post-condition:  product = m*x]

Loop invariant I(n):    [i = n  ∧ product = n*x]

Guard G:   i ≠ m 
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Loop invariant I(n):  [i = n ∧ product = n*x]      Guard G:  i ≠ m 

Base property:

[I(0): i = 0 and product = 0· x = 0 is true before first iteration]

Inductive property: 
[If G ∧ I (k) is true before an iteration (where k ≥ 0), 
then I (k+1) is true after the iteration]

Let k is a nonnegative integer such that G ∧ I (k) is true, i.e.,
i ≠ m   ∧ i = k  ∧ product = k*x

Since i ≠ m, the guard is passed and
product = product + x = k*x + x   = (k + 1)*x
i = i + 1 = k + 1

So I(k + 1): i = k + 1 ∧ product = (k + 1)*x is true after the iteration

Eventual falsity of guard: 

[After a finite number of iterations, G becomes false]

After m iterations of the loop: i = m and G becomes false
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Loop invariant I(n):  [i = n ∧ product = n*x]      Guard G:  i ≠ m

Correctness of the post-condition: 

[If N is the least number of iterations after which G is false and 

I (N) is true, then the value of the algorithm variables will be as      

specified in the post-condition of the loop]

I(N) is true at the end of the loop: i = N  ∧ product = N*x

G becomes false after N iterations: i = m

So N = i = m

Post-condition product = m*x after execution of the loop is true.
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