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Set theory

® Set theory is regarded as the foundation of mathematical thought.
® All mathematical objects can be defined in terms of sets

everyday objects too

® [et S denote a set:

a € S means that a is an element of S core of set theory
Example: 1 € {1,2,3},3 € {1,2,3}

a & S means that a is not an element of S
Example: 4 € {1,2,3}

* If Sis a set and P(x) is a property that elements of S may or may not
satisty:
{x €S | P(x)} is the set of all elements x of S such that P(x)
N set comprehension/former/builder /
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Subsets: proof and disproof

* Aisasubsetof B
ACB & Vx,if x EA thenx €EB
(it is a formal universal conditional statement)
® Negation:
AZB & dxsuchthatx EAand x € B
® Aisa proper subset of B
ACB & (1)ACB and
(2) there is at least one element in B that is not in A
* Examples:
(1< (1S4, 41}
Uy &L, 25 Uy E LAy

L
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Element argument

e Element argument:

The basic method for proving that one set is a subset of another
Let sets A and B be given.

To prove A& B
1. suppose x is a particular but arbitrarily chosen element of A,

2. show x is also an element of B.

Sirnpler:

take any x in A, and show x in B
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Element argument: example 1

°* Example: AS B?

A={mEZ|m=6r + 12 for somer € Z}

B={n€Z | n=3sfor somes€Z}

To prove A & B:

® Suppose x is a particular but arbitrarily chosen clement of A.
[We must show that x € B.]

® By definition of A, there is an integer r such that x = 6r + 12,
that is, x = 3(2r + 4)

® s = 2r + 4 is an integer because products and sums of integers
are integers.

® So x = 3s for integer s. By definition of B, x is an element of B.

® Thus, A & B.

© y
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Element argument: example 2

* Example:
A={mEZ|m=6r+ 12 for somer € Z}
B={n€Z | n=3sforsomesE€Z}

To disprove B € A: thatis B € A is false, thatis B Z A

®* We must find an element of B (x=3s) that is not an element of A
(x=6rt+12).

°eletx=3=3*1=»3€EB

® 3 € A? Assume by contradiction dr € Z, such that: 6r+12=3
(assumption) "= 2r + 4 = 1=P2r = -3=Pr=-3/2
r=-3/2 is not an integer, r & Z. Thus, contradiction=® 3€A.

® 3 EBand 3¢A,so BZA.

L
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Set equality
* A =B, if, and only if, every element of A is in B and every element
of BisinA.
A=B & ACBandBCEA
* Example:
A= {m EZ | m = 2afor some integer a}
B={n€Z|n=2b— 2for some integer b}
Proof Part 1: A S B
Suppose x is a particular but arbitrarily chosen element of A.
By definition of A, there is an integer a such that x = 2a
Letb=a+1,2b—2=2Ga+1)—2=2a+2—-2=2a=x
Thus, x € B.
Proof” Part 2: B € A (proved in similar manner)
L




-
Venn diagrams

e A C B: 2 cases
Q
e A & B: 3 cases

OO @ (o
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Relations among sets of numbers

* Z,Q, and R denote the sets of integers, rational numbers, and real

—

numbers gt e

—
?”\\ ;

;Q'R'
x\,/ /

\\_____,,/

7. < Q because every integer is rational (any integer n = n/1)

Z is a proper subset of Q

because there are rationals that are not integers (e.g., 1/2)

Q € R because every rational is real

Q is a proper subset of R

° because there are real numbers that are not rational (e.g., \/2)

~
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Operations on sets

® [et A and B be subsets of a universal set U.

¢ union of A and B:
the set of all elements that are in at least one of A or B:

AUB={x€U | x€EAorx€E€B}

e intersection of A and B:

0

set of all elements that are common to both A and B.

[/A B |
ANB={x€U | xEAandx EB} \,SZ J/

* difference of B minus A (relative complement of A in B):
B—A (or B\A) is the set of all elements that are in B and not A.

B—AZ{XEH|XEBandXEA}

° complement of A:

A€ is the set of all elements in U that are not in A, U
c=ixelU A —
{(xEU | xEA] )
([ 4()e )
-’

(- .
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Operations on sets: examples

® Let U= {a,b,c,d,e,f, gl
A= {a,c,e,g}
B = {d,e,f,g}
*AUB={a,cd,ef g
*ANB={e, g}

eB—A={d,f

e A<= (b, d, f}
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Subsets of real numbers

® Given real numbers a and b with a < b:
°*(a,b)={xE€R | a<x<b}
®(a,b]={xER | a<x<b}
°[la,b)={xER | a<x<b}
°[a,b]= {xE€R | a<x<b}

o The symbols 00 and —o0 are used to indicate intervals that are

unbounded either on the right or on the left:
® (a,0)={x ER | a <x}

®[a,00) ={x ER | a<x}

® (—oo,b)={x ER | x <b}

® (—oo,b]={x €ER | x<b}

o
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Subsets of real numbers: examples

*Let A=(—1,0] = {xER|—1 <x=0} - E '] -
B= [0,1)={x€R| 0= x<1} S o
;
e AUB={xER|xE(—1,0]or x €0, 1)}
= (xER[xE€(-L, D} = (-1,1) <ot
e ANB={xER|xE(—1,0]and x €0, 1)} Lo
= {0} Tt
*B—A={xER|x€E[0,1)and x & (—1, 0]} o
= (0, 1) D T G
* A°={xER| x€&(—1,0]} Do o s
= (—o0, —1] U (0, o) X

© y
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Indexed collection of sets

¢ Unions and intersections of an indexed collection of sets
Given sets Ay, A, A,,... that are subsets of a universal set U and

given a nonnegative integer n (set sequence)

"ll.

o UA—{XEU|XEA for atleast onei =0, 1, 2,...,n}

i=0
o !1 A; = {x €U |x EA, for at least one nonnegative integer i |
o [lA={xeU|x€EAforali=0,1,2,...,n]
e ' A= {x€U | x €A, for all nonnegative integers i |
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Indexed sets: examples

® For each positive integer 1,

A = {x€ER| —1/i<x<1/i} =(—1/i, 1/i)

* A, UA, UA, ={x € R|xisin at least one of the intervals
(—1,1), (—1/2,1/2), (=1/3,1/3) } = (=1, 1)
e A, MNA, NA; ={x € R|xis in all of the intervals
(—1,1), (—1/2,1/2),(=1/3,1/3) } = (=1/3,1/3)

o U A, ={x € R|x is in at least one of the intervals (—1/i,1/1)

where iis a positive integer} = (—1, 1)

={x € R|x isin all of the intervals (=1/i,1/1),

where i is a positive 1nteger} = {0}

O
|I38

-




~
The empty set

® The empty set Q= {} is a set that has no elements
® Examplesz
° {1,2} N {3,4} = ")

* (xER|3<x<2}=0
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Partitions of sets

® A and B are disjoint & A NB=0

® the sets A and B have no elements in common

® SetsA,, A,, A;,... are mutually disjoint (pairwise disjoint
or non-overlapping) & Vij = 1,23 ... i#] eAi M Aj =0Q

® no two sets A; and A, (i # j) have any elements in common

® A finite or infinite collection of nonempty sets{A,A,, A;,...}

is a partition of asetA & A
0.0

A=UA b
i=1
2.A,A,, A,... are mutually disjoint

o
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Partitions of sets: example

° A=1{1,2,3,4,5,6}
AL AS B4 A= (5.6
{A;,A,, A;}is a partition of A, because
1.A=A, UA, UA,
2.A,A, and A, are mutually disjoint:
ANA=ANA=ANA=0

°* T, = {n € Z| n = 3k, for some integer k}
T,={n €Z| n=3k + 1, for some integer k}
T, = {n €Z| n = 3k + 2, for some integer k}
{T,,T,, T;}is a partition of Z

o
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Power set

® (Given a setA,

the power set of A, P(A), is the set of all subsets of A

* Examples:
° P({x,y}) =10, {x}, iy}, X, ¥}
* P©)= {0}

° P({2}) = {0, {92}

o
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Cartesian product

* An ordered n-tuple (x,,x,,...,x,) consists of the elements
Xy,X,,...,X, together with the ordering: first x,, then x,, and so forth
up to x|

® Two ordered n-tuples (x,,x,,...,x,) and (y,,y,,...,y,) are equal:

(X15X55 X)) =(Y Y25 Vn) & X7V, and X,=Y, and ... X, =V,

® The Cartesian product of A,A,,... A :
A XA, X XA ={(a,, a,,...,a) | a,EA,,a,EA,,...,a EA }

* Example: A={1,2}, B={3,4}
AXB ={(1,3), (1,4), (2,3), 2,4)}

o y
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Cartesian product: more examples

° Example: A = {x,y} B={1,2,3} C={a, b}

AXBXC={(uvw) | u€A,vEB,andw € C}

= {(x, 1,2), (x, 2,2), (x,3,2), (y, 1,2), (y, 2,2), (¥, 3, a),
(x, 1, b)a (x, 2, b)a (x, 3, b)a (}'a 1, b)a(ya 2, b)a (ya 3, b)}

(AXB)yXC={(uv) | u€AXBandv EC}
= {((x, 1), ), ((x, 2),2), ((x, 3),2), ((}, 1), 2),((y; 2), ), ((> 3), ),
((x, 1), b), ((x, 2), b), ((x, 3), b),((y> 1), b),((y, 2), b),((y, 3), b)

© y
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Supplemental: Algorithm to check subset

* Input: m, n [positive integers], A,B [one-dimensional arrays]
Algorithm body:
i:=1, answer:=“ACDB
while i<£m and answer =“A & B”)
j:= 1, tound :=*“no”
while <n and found =“no”)

if a[i] = bl[j] then found := “yes”

j:i=j+1 complicated
end while and inefficient too
if found = “no” then answer :=“A & B”
1:=1+1

end while

Output: answer [a string]: “A € B” or “A & B”
each(x in A, has=x in B) da
da/py

@ each x in A has x in B abc
\ forall x in A | x in B setl /
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Properties of sets

Inclusion of intersection: ANBCA and AMNBCB
Inclusion in union: ACSCAUB and BEAUB
Transitivity of subset: ACBandBESEC=2>ACC

Set operations: logical definitions (textbook calls them procedural)

exEAUBe=xEAorx€B
exEANNBS xEAandx EB
exEB—ASXxEBandx €A
®*x EAC S xEA

in given file sets.da

°*(x,y) EAXB&xEAandyEB

setof(x, x in A, x in B) da

da/py
{x: x in A, x in B} da ideal

/
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Example proof:

Inclusion of intersection
® Forall setsAand B, A1 BES A

® The statement to be proved is universal:

VsetsAand BLAMNBCEA

® Suppose A and B are any two particular but arbitrarily chosen sets.

® To show A N B € A, we must show Vx, x EA B2 x €EA
Suppose x is any particular but arbitrarily chosen element in A (1 B
By definition of A (1 B, x € A and x € B.
Therefore, x €A

.E.D.
@ Q
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® For all sets A, B, and C:

° Commutativity:

® Identity laws:

* Complement laws:

® Double complement:
® Idempotent laws:

® Universal bound laws:
® De Morgan’s laws:

* Absorption laws:

e Set difference law:
(-,

Set identities

* Complements of U and D:

AUB=BUAandANB=BMNA

* Associativity: (AUB) U C=A U (BUC) and (AMNB) NC=AMN (BNC)
e Distributivity: AUBNC)=(AUB)N(AUC), AN(BUC)=(ANB)U(ANC)

AUP=AandANU=A
AUA°=UandANA =0

(A=A

AUA =AandANA=A
AUU=UandANP=0

(A U B)=AcN B¢and (ANB)¢ =AU B¢
AUMANB)=AandA N (AUB)=A
Uc=@ and @< =U

A—B=ANB°
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Example proof: distributivity

® Forall sets A, B, and C, AU(BINC) = (AUB)((AUC)

® Suppose A, B, and C are arbitrarily chosen sets.
e Part 1. AU(BMC) € (AUB)N(AUC)
To show: Vx, if x € AU(BMC) then x € (AUB)N(AUC)
Suppose x € AU(B(C), arbitrarily chosen.
Then by definition of union, x € A or x € BNC
Case 1: x € A. By definition of union, x€EAUB and x€EAUC
By definition of intersection: x € (AUB)[(AUC) (*)
Case 2: x € BM1C. By definition of intersection: x€EB and x€C
By definition of union: x€EAUB and x€EAUC. So (*) again

@ e Part 2. (AUB)(AUC) € AU(BNC) (proved in similar manner)

. /
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Example proof: De Morgan’s law

® For all sets A and B: (A U B)° = A“[] B¢

L

® Suppose A and B are arbitrarily chosen sets.
e (=) Suppose x E(A U B)° .
By definition of complement: x € A U B
That is, it is false that (x isin A or x is in B)
By De Morgan’s laws of logic: x is not in A and x is not in B
Thatis, x €A and x € B
By definition of complement: x € A° and x € B¢
By definition of intersection: x € A° [ B¢

o (€) Proved in similar manner.
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Intersection and union with a subset

* For any sets A and B, if A © B, then A [1 B=A and A U B=B

ANB=A< (1)ANBC A and (2) A CANB

(1) AMB € A is true by the inclusion of intersection property

(2) Suppose x € A (arbitrary chosen)
From A € B, then x € B (by definition of subset relation)
From x € A and x € B, thus x € A [ B (by definition of )
So, A € ANB

AUB=B& (3)AUB&E Band (4) B&E AUB
(3) and (4) are proved in similar manner to (1) and (2)

© y
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The empty set: two properties

* A set with no elements is a subset of every set
If E is a set with no elements and A is any set, then E & A

Proof (by contradiction):

Suppose there is a set E with no elements and a set A such that E € A.

By definition of &: there is an element of E (x € E) that is not an
element of A (x € A). Contradiction with E has no element.

SoE € A.

° Hniqueness of the empty set
There is only one set with no elements.

Proof: Suppose E, and E, are both sets with no elements.

@ By the above property: E,&E, and E,EFE, -=> E,=E,

Q.E.D.

Q.E.D.

/
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Element method for proving @

* To prove a set X = @, prove X has no elements by contradiction

® suppose X has an element and derive a contradiction.
* Example: For any setA, A (] D =0.

Proof: Let A be a particular but arbitrarily chosen set.
ANO=0 & AN O hasno elements

Proof by contradiction: suppose there is x such that x € ANQ.

By definition of intersection, x € A and x € @

Contradiction with @ having no elements. Q.E.D.
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Element method: example 2

* Example: For all sets A, B, and C,
if A € Band B € C¢, thenA N C = Q.

Proof: Suppose A, B, and C are any sets such that
AC Band B € C
Proof by contradiction: Suppose there is an element x €A (1 C.
By definition of intersection, x € A and x € C.
From x € A and A € B, by definition of subset, x € B.

From x € Band B & C¢, by definition of subset, x € C°.

By definition of complement x & C. Contradiction with x € C.
Q.E.D.
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More proofs

* Disproving an alleged set property amounts to finding a
counterexample for which the property is false.

* Example: Disprove that for all sets A,B, and C,

(A-B)UB-C) =  A-C

There are sets A, B, and C for which the equality does not hn]d
Counterexample 1: A={1,2,45} B={2,3,5,6},C={4,5,6,7} A -/
(A-B)UB—C)={1,4YU{2,31={1,2,3,4} # {1,21=A—C ~/* "¢

Counterexample 2: A=0 B={1},C=0 T ) s

o

n) 1t X
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Cardinality of a set

® The Cardinality of a set A:

N(A) or| A | is a measure of the "number of elements of the set”
° Example: | {2,4,6}| =3

® For any sets A and B,

|AUB| + |[ANB| =|A|+|B]
* It A and B are disjoint sets, then

[AUB| = [A[+]B]

©
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Number of subsets of a set

* For all integer n 2 0, X has n elements > P(X) has 2" elements

Proof (by mathematical induction): Q(n): Any set with n elements has 2" subsets.
Base step: Q(0): Any set with O elements has 2° subsets:
The power set of the empty set @ is the set P(Q) = {D}.
P(®) has 1=2° element: the empty set @.
Induction step: For all integers k 2 0, if Q(k) is true then Q(k+1) is also true.
Induction hypothesis: Q(k): Any set with k elements has 2 subsets.
We show Q(k+1): Any set with k +1elements has 2! subsets.
Let X be a set with k+1 elements and z € X (since X has at least one element).
X—{z} has k elements, so P(X—{z}) has 2* elements.
Any subset A of X—{z} is a subset of X: A € P(X).
Any subset A of X—{z}, can also be matched up with {z}: AU {z} € P(X)
@ All subsets A and AU {z} are all the subsets of X = P(X) has 2%¥2k=2k*1 elements
.

/
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Algebraic proofs of set identities

* Algebraic proofs = Use of laws to prove new identities
e Commutativity: AUB=BUAandANB=BNA
e Associativity: (AUB) U C=A U (BUC) and (ANB) NC=AN (BNC)
e Distributivity: AU(BNC)=(AUB)N(AUC), AN(BUC)=(ANB)U(ANC)

® Identity laws: AUDP=AandANU=A
* Complement laws: AUA*=UandANA°=0
® Double complement: (A=A
* Idempotent laws: AUA =AandANA=A
® Universal bound laws: AUU=UandANOP=0
® De Morgan’s laws: (A U B)*=A° B®and (ANB)° = A°U B¢
* Absorption laws: AUANB)=AandAN (AUB)=A
® Complements of Uand @: U°= @ and @<= U
e Set difference law: A—B=AMNB°
- y




-
Algebraic proofs: example 1

® For all sets A, B, and C,

(AUB)-C=A—-C)UB - Q)

Proof:

(AUB)—C=(AUB) N Ce by set ditference law
= C*N (A UB) by commutative law for (1
= (C°MMA)U (C< N B) by distributive law
= (AN CHU BN C by commutative law for [
=(A—C)U B —C) by setdifterence law
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Algebraic proofs: example 2

® For all sets A and B,
A—(ANB)=A—B

Proof:

A—(ANB)=AMN(ANB) by set ditference law
=AM (A°U BY) by De Morgan’s laws
= (AN A U (AN B by distributive law
=@ U (AN B by complement law
=(ANBYUOD by commutative law for U
=ANB° by identity law for U
=A—B by set difference law
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Logical equivalences vs set identities

Logical Equivalences Set Properties
For all statement variables p, g, and r: For all sets A, B, and C:
apvg=qgvp a AUB=BUA
b.prg=gnrp bANB=BMNA
aprlgary=pa(gAar) a AJU(BUC)=AU(BUC)
b.pvigvry=pv(gwvr) b.AN(BNC)y=AN(BNC)
apArlgvr)=(parg)vi(pAar) a AN(BUC)=(ANBYUANC)
b.pvignar)=(pvg)A(pvr) bAU(BNC)=(AUB)N(AUC)
apve=p a AU =A
b.pat=p bANU=A
apv~p=t aAUA =U
b. pAn~p=c b.ANA =0
~(~p)=p (A" =A
apvp=p a AUA=A
b.pap=p bANA=A
apvt=t a AUU=U
b.pre=c bANWB=0
a ~(pvq)=—~pA~q a.(AUB) = AN B°
b. ~(p A qg) =~pV ~q b. (AN B) = AU B*
apviprqg)=p a AUANB)=A
b.pr(pvg)=p bAN(AUB)=A
a~t=c a. U =¢
b.~c =t b.@# =U /
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Boolean algebra

® Logic Vs sets

® V (or) corresponds to U (union)

* A (and) corresponds to [ (intersection)

® ~ (negation) corresponds to ¢ (complementation)
® t (a tautology) corresponds to U (a universal set)

® ¢ (a contradiction) corresponds to @ (the empty set)

* Logic and sets are special cases of the same general structure

Boolean algebra

o
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® A Boolean algebra is a set B together with two operations + and -,
such that, for all a and b in B, botha + b and a - b are in B and the
following properties hold:

o

Boolean algebra

® Commutativity: for all a and b in B, atb=b+a and a-b=b-a

® Associativity: for all a,b, cin B,
(at+b)*+c=a+(b+c) and  (a'b)-c=a‘(b0)

® Distributivity: for all a, b, and c in B,
at(b-c)=(atb)-(atc) and a:(b+tc)=(ab)+(a-c)

® Identity laws: there exist distinct elements O and 1 in B
such that for all ain B, at0=a and a-1=a

® Complement laws: for each a in B, there exists an element in B,

a, complement or negation of a, such that ata=1 and a-a=0

~
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Properties of a Boolean algebra

® Uniqueness of the complement law:
for all a and x in B, if a+x=1 and a-x=0 then x=a

® Uniqueness of 0 and 1:
if there exists x in B such that a+x=a for all a in B, then x=0, and
if there exists y in B such that a-y=a for all a in B, then y=1.

® Double complement law: for alla € B, (a) = a

® [dempotent law: for all a € B, ata=aand a-a=a.
® Universal bound law: foralla€B,at1=1and a0 = 0.

® De Morgan’s laws: for allaand b € B, atb=ab and a-b=a+b
® Absorption laws: for allaand b € B,(a+b)-a=a and (a-b)+a=a

® Complements ot 0 and 1: O0=1and1=0.
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Example proof

* Uniqueness of the complement law:
for all a and x in B, if at+x=1 and a-x=0 then x=a

Proof: Suppose a and x are particular arbitrarily chosen in B that
satisty the hypothesis: a+x=1 and a-x=0.
x =x-1 because 1 is an identity for -
=x-(at a_) by the complement law for +

=x-atx-a by the distributive law for - over +

—a'xXxtx-a by the commutative law for -

=0+x-a by hypothesis

—a-atx-a by the complement law for -

= (a-a) t (a - x) by the commutative law for -

= (a + x) by the distributive law for - over +
—a-l by hypothesis
a because 1 is an identity for -
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Russell’s paradox

® Most sets are not elements of themselves. A possible exception:
The set of all abstract ideas might be considered an abstract idea.

® Imagine a set A being an element of itself: A €E A.

® [ et S be the set of all sets that are not elements of themselves:

S={A|Aisasetand A € A}

® [s S an element of itself?
* If SES, then S does not satisfy the defining property for S, so SES.
o If S&S, then satisfies the defining property for S, so SES.

® |t cannot be either!

o
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Russell’'s paradox: the Barber puzzle

® In a town, there is a male barber who shaves all those men, and only

those men, who do not shave themselves.

® Does the barber shave himself?

® If the barber shaves himself, he is a member of the class of men who
shave themselves. The barber does not shave himself because he

doesn’t shave men who shave themselves.

® [f the barber does not shave himself, he is a member of the class of
men who do not shave themselves. The barber shaves every man in

this class, so the barber must shave himself.

® Both Yes & No derive contradiction.

o y




~
Russell’s paradox: one solution

® Except for power set, whose existence is guaranteed by an axiom,
whenever a set is defined using a predicate as a defining property,

the set is a subset of a known set. (elements are from a known set)

® Then, S from Russell’s Paradox is not a subset of a known set

S={A|Aisasetand A € A} (A’sare not from a known set)
AESS Aisasetand A €A
Ain S © Aisasetand A notin A

B shave A & A is a man and A not shave A

e Solution is good for practical examples:

S = {xin blocks |x is blue}
(-
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The halting problem

There is no computer algorithm that will accept any algorithm X
and data set D as input and then output “halts” or “loops forever” to
indicate whether or not X terminates in a finite number of steps

when X is run with data set D.

Proof sketch (by contradiction): Suppose there is an algorithm CheckHalt such that

for any input algorithm X and a data set D, it prints “halts” or “loops forever”.
A new algorithm Test(X):
loops forever if CheckHalt(X, X) prints “halts” or
stops if CheckHalt(X, X) prints “loops forever”.
Test(Test) = 7
* If Test(Test) terminates after a finite number of steps, then
CheckHalt(Test, Test) prints “halts”, so Test(Test) loops forever. Contradiction!
* If Test(Test) does not terminate after a finite number of steps, then
CheckHalt(Test, Test) prints “loops forever”, so Test(Test) terminates. Contradiction!
So, CheckHalt doesn’t exist.
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