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Set theory
 Set theory is regarded as the foundation of mathematical thought.
 All mathematical objects can be defined in terms of sets

everyday objects too

 Let S denote a set:

a S means that a is an element of S core of set theory

Example: 1 ∈ {1,2,3}, 3 ∈ {1,2,3}

a S means that a is not an element of S
Example: 4 ∉ {1,2,3}

 If S is a set and P(x) is a property that elements of S may or may not 
satisfy: 

{x S | P(x)} is the set of all elements x of S such that P(x)
set comprehension/former/builder2



Subsets: proof and disproof
 A is a subset of B

A B  x, if x A then x B 

(it is a formal universal conditional statement)

 Negation: 

A B  x such that x A and x B

 A is a proper subset of B

A B (1) A B    and

(2) there is at least one element in B that is not in A

 Examples:
{1} {1} {1} {1, {1}}
{1} {1, 2} {1} {1, {1}}
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Element argument
 Element argument:

The basic method for proving that one set is a subset of another

Let sets A and B be given.

To prove A B
1. suppose x is a particular but arbitrarily chosen element of A,
2. show x is also an element of  B.

Simpler: 
take any x in A, and show x in B
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Element argument: example 1
 Example:  A B ?

A = {m Z|m = 6r + 12 for some r Z}
B = {n Z | n = 3s for some s Z}

To prove A B:
 Suppose x is a particular but arbitrarily chosen element of A.

[We must show that x B.]
 By definition of A, there is an integer r such that x = 6r + 12,

that is, x = 3(2r + 4)
 s = 2r + 4 is an integer because products and sums of integers 

are integers. 
 So x = 3s for integer s. By definition of B, x is an element of B.   
 Thus, A B.
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Element argument: example 2
 Example:

A = {m Z|m = 6r + 12 for some r Z}
B = {n Z | n = 3s for some s Z}

To disprove B A:  that is B A is false, that is B A
 We must find an element of B (x=3s) that is not an element of A 

(x=6r+12).
 Let x = 3 = 3 * 1  3 B
 3 A? Assume by contradiction r Z, such that: 6r+12=3 

(assumption) 2r + 4 = 12r = -3r=-3/2
r=-3/2 is not an integer, r Z. Thus, contradiction 3 A.

 3 B and 3 A, so B A.
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Set equality
 A = B, if, and only if, every element of A is in B and every element 

of B is in A.

A = B    A B and B A

 Example:
A = {m Z | m = 2a for some integer a}
B = {n Z | n = 2b − 2 for some integer b}
Proof  Part 1: A B
Suppose x is a particular but arbitrarily chosen element of A.
By definition of A, there is an integer a such that x = 2a
Let b = a + 1, 2b − 2 = 2(a + 1) − 2 = 2a + 2 − 2 = 2a = x
Thus, x B.
Proof  Part 2: B A (proved in similar manner)
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Venn diagrams
 A B: 2 cases

 A B: 3 cases
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Relations among sets of numbers
 Z, Q, and R denote the sets of integers, rational numbers, and real 

numbers

Z Q because every integer is rational (any integer n = n/1)
Z is a proper subset of Q

because there are rationals that are not integers (e.g., 1/2)

Q R because every rational is real
Q is a proper subset of R

because there are real numbers that are not rational (e.g., √2)
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Operations on sets
 Let A and B be subsets of a universal set U.
 union of A and B:                                                                     

the set of all elements that are in at least one of A or B:

A ∪ B = {x ∈ U | x ∈A or x ∈ B}
 intersection of A and B:                                                               

set of all elements that are common to both A and B.

A ∩ B = {x ∈ U | x ∈A and x ∈ B}
 difference of B minus A (relative complement of A in B): 

B−A (or B\A) is the set of all elements that are in B and not A.

B − A = {x ∈ U | x ∈ B and x ∉A}
 complement of A:                                                                      

Ac is the set of all elements in U that are not in A.

Ac = {x ∈ U | x ∉A}

10



Operations on sets: examples
 Let U = {a, b, c, d, e, f, g} 

A = {a, c, e, g} 

B = {d, e, f, g}

 A B = {a, c, d, e, f, g}

 A ∩ B = {e, g}

 B − A = {d, f}

 Ac = {b, d, f}
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Subsets of real numbers
 Given real numbers a and b with a ≤ b:
 (a, b) = {x R | a < x < b} 
 (a, b] = {x R | a < x ≤ b} 
 [a, b) = {x R | a ≤ x < b}
 [a, b] = {x R | a ≤ x ≤ b}

 The symbols ∞ and −∞ are used to indicate intervals that are 
unbounded either on the right or on the left:
 (a,∞)={x R | a < x} 
 [a,∞) ={x R | a ≤ x}
 (−∞, b)={x R | x < b} 
 (−∞, b]={x R | x ≤ b}
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Subsets of real numbers: examples
 Let  A = (−1, 0] = {x R|−1 < x ≤ 0} 

B =    [0, 1) = {x R|   0 ≤  x < 1}

 A ∪ B = {x ∈ R| x ∈ (−1, 0] or  x ∈ [0, 1)} 
= {x ∈ R| x ∈ (−1, 1)} = (−1, 1)

 A ∩ B = {x ∈ R| x ∈ (−1, 0] and x ∈ [0, 1)}
= {0}

 B − A = {x ∈ R| x ∈ [0, 1) and x ∉ (−1, 0]}
=  (0, 1)

 Ac = {x ∈ R|  x ∉ (−1, 0]} 
= (−∞, −1] ∪ (0, ∞)
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Indexed collection of sets
 Unions and intersections of an indexed collection of sets

Given sets A0, A1, A2,... that are subsets of a universal set U and 
given a nonnegative integer n (set sequence)

 Ai = {x ∈ U | x ∈Ai for at least one i = 0, 1, 2,..., n}

 Ai = {x ∈ U |x ∈Ai for at least one nonnegative integer i }

 Ai = {x ∈ U | x ∈Ai for all i = 0, 1, 2, . . . , n}

 Ai = {x ∈ U | x ∈Ai for all nonnegative integers i }
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Indexed sets: examples
 For each positive integer i, 

Ai = {x R| −1/i <x< 1/i} = (−1/i , 1/i)

 A1 ∪A2 ∪A3 ={x ∈ R|x is in at least one of the intervals 
(−1,1), (−1/2, 1/2), (−1/3, 1/3) } = (−1, 1)

 A1 ∩A2 ∩A3 ={x ∈ R|x is in all of the intervals 
(−1,1), (−1/2,1/2), (−1/3, 1/3) } = (−1/3, 1/3)

 Ai ={x ∈ R|x is in at least one of the intervals (−1/i,1/i) 
where i is a positive integer} = (−1, 1)

 Ai ={x ∈ R|x is in all of the intervals (−1/i,1/i), 
where i is a positive integer} = {0}
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The empty set
 The empty set = {} is a set that has no elements

 Examples: 

 {1,2} ∩ {3,4}= 

 {x R| 3 < x < 2} = 
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Partitions of sets
 A and B are disjoint A ∩ B = 
 the sets A and B have no elements in common

 Sets A1, A2, A3,... are mutually disjoint (pairwise disjoint 
or non-overlapping) i,j = 1,2,3,..., i ≠ j Ai ∩Aj = 
 no two sets Ai and Aj (i ≠ j) have any elements in common

 A finite or infinite collection of nonempty sets{A1,A2, A3,...} 
is a partition of a set A 

1.A =      Ai

2.A1,A2, A3,... are mutually disjoint
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Partitions of sets: example
 A = {1, 2, 3, 4, 5, 6}

A1 = {1, 2} A2= {3, 4} A3 = {5, 6}
{A1,A2, A3}is a partition of A, because

1. A = A1 A2 A3

2. A1,A2 and A3 are mutually disjoint: 
A1∩A2 = A1∩A3 = A2∩A3 =  

 T1 = {n Z| n = 3k, for some integer k}

T2 = {n Z| n = 3k + 1, for some integer k}

T3 = {n Z| n = 3k + 2, for some integer k}

{T1,T2, T3}is a partition of Z
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Power set
 Given a set A, 

the power set of A, P(A), is the set of all subsets of A

 Examples: 

 P({x, y}) = {∅, {x}, {y}, {x, y}}

 P(∅) = {∅}

 P({∅}) = {∅, {∅}}
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Cartesian product
 An ordered n-tuple (x1,x2,...,xn) consists of the elements 

x1,x2,...,xn together with the ordering: first x1, then x2, and so forth 
up to xn

 Two ordered n-tuples (x1,x2,...,xn) and (y1,y2,...,yn) are equal:

(x1,x2,...,xn)=(y1,y2,...,yn)  x1=y1 and x2=y2 and ... xn=yn

 The Cartesian product of A1,A2,...,An:    

A1×A2×... ×An={(a1, a2,..., an) | a1 A1, a2 A2,..., an An}

 Example: A={1,2}, B={3,4}

A×B ={(1,3), (1,4), (2,3), (2,4)}
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Cartesian product: more examples
 Example: A = {x, y}   B = {1, 2, 3}   C = {a, b}

A × B × C = {(u,v,w) | u A, v B, and w C}

= {(x, 1, a), (x, 2, a), (x, 3, a), (y, 1, a), (y, 2, a),  (y, 3, a), 

(x, 1, b), (x, 2, b), (x, 3, b), (y, 1, b),(y, 2, b), (y, 3, b)}

(A × B) × C = {(u,v) | u A × B and v C}

= {((x, 1), a), ((x, 2), a), ((x, 3), a), ((y, 1), a),((y, 2), a), ((y, 3), a),

((x, 1), b), ((x, 2), b), ((x, 3), b),((y, 1), b),((y, 2), b),((y, 3), b)}
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Supplemental: Algorithm to check subset
 Input: m, n [positive integers], A,B [one-dimensional arrays]

Algorithm body:
i := 1,     answer := “A ⊆ B”
while (i ≤ m    and   answer = “A ⊆ B”)

j := 1,    found := “no”
while (j ≤ n   and   found = “no”)

if a[i] = b[j] then found := “yes”
j := j + 1 complicated

end while and inefficient too
if found = “no” then answer := “A ⊈ B”
i := i + 1

end while
Output: answer [a string]: “A ⊆ B” or “A ⊈ B”

each(x in A, has=x in B) da
answer = “A ⊆ B” if … else “A ⊈ B” all( x in B  for x in A) da/py

each x in A  has x in B  abc
forall x in A |  x in B  setl22



Properties of sets
 Inclusion of intersection:  A ∩ B A    and A ∩ B B

 Inclusion in union:            A A B    and B A B

 Transitivity of subset:       A B and B C A C

 Set operations: logical definitions (textbook calls them procedural)
 x A B x A or x B
 x A ∩ B x A and x B                              in given file sets.da

 x B − A x B and x A
 x Ac x A
 (x, y) A × B x A and y B

setof(x, x in A, x in B) da

{x for x in A if x in B} da/py
{x: x in A, x in B} da ideal23



Example proof: 
inclusion of intersection

 For all sets A and B, A ∩ B A

 The statement to be proved is universal: 
sets A and B, A ∩ B A

 Suppose A and B are any two particular but arbitrarily chosen sets.
 To show A ∩ B A, we must show x, x A ∩ B  x A
 Suppose x is any particular but arbitrarily chosen element in A ∩ B
 By definition of A ∩ B, x ∈A and x ∈ B.
 Therefore, x ∈A 

Q.E.D.
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Set identities
 For all sets A, B, and C:
 Commutativity:            A ∪ B = B ∪A and A ∩ B = B ∩A
 Associativity:  (A∪B) ∪ C=A ∪ (B∪C) and (A∩B) ∩C=A∩ (B∩C)
 Distributivity:  A∪(B∩C)=(A∪B)∩(A∪C), A∩(B∪C)=(A∩B)∪(A∩C)
 Identity laws:               A ∪ ∅ = A and A ∩ U = A
 Complement laws:      A ∪Ac = U and A ∩Ac = ∅
 Double complement:  (Ac)c = A

 Idempotent laws:         A ∪A  = A and A ∩A = A
 Universal bound laws: A ∪ U = U and A ∩ ∅ = ∅
 De Morgan’s laws:      (A ∪ B)c = Ac ∩ Bc and (A∩B)c = Ac ∪ Bc

 Absorption laws:         A ∪ (A ∩ B) = A and A ∩ (A ∪ B) = A
 Complements of U and ∅: Uc = ∅ and ∅c = U
 Set difference law:      A − B = A ∩ Bc
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Example proof: distributivity
 For all sets A, B, and C, A (B∩C) = (A B)∩(A C)

 Suppose A, B, and C are arbitrarily chosen sets.

 Part 1. A∪(B∩C) ⊆ (A∪B)∩(A∪C)
To show: ∀x, if x ∈A∪(B∩C) then x ∈ (A∪B)∩(A∪C)

Suppose x ∈A∪(B∩C), arbitrarily chosen. 
Then by definition of union, x ∈A or x ∈ B∩C
Case 1: x ∈A. By definition of union, x∈A∪B and x∈A∪C

By definition of intersection: x ∈ (A∪B)∩(A∪C) (*)
Case 2: x ∈ B∩C. By definition of intersection: x∈B and x∈C

By definition of union: x∈A∪B and x∈A∪C.  So (*) again

 Part 2. (A∪B)∩(A∪C) ⊆A∪(B∩C) (proved in similar manner)
26



Example proof: De Morgan’s law
 For all sets A and B: (A B)c = Ac ∩ Bc

 Suppose A and B are arbitrarily chosen sets.

 () Suppose x ∈(A ∪ B)c .
By definition of complement: x ∉A ∪ B

That is,   it is false that (x is in A or x is in B)
By De Morgan’s laws of logic: x is not in A and x is not in B

That is, x ∉A and x ∉ B
By definition of complement: x ∈Ac and x ∈ Bc

By definition of intersection: x ∈Ac ∩ Bc

 () Proved in similar manner.
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Intersection and union with a subset
 For any sets A and B, if A B, then A ∩ B=A and A B=B

A ∩ B=A (1) A∩B A and (2) A A∩B
(1) A∩B A is true by the inclusion of intersection property
(2) Suppose x A (arbitrary chosen)

From A B, then x B (by definition of subset relation)
From x A and x B, thus x A ∩ B (by definition of ∩)
So, A A∩B 

A B = B (3) A B B and (4) B A B 

(3) and (4) are proved in similar manner to (1) and (2)
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The empty set: two properties
 A set with no elements is a subset of every set 

If E is a set with no elements and A is any set, then E A

Proof (by contradiction): 

Suppose there is a set E with no elements and a set A such that E A.

By definition of : there is an element of E (x E) that is not an 
element of A (x A).  Contradiction with E has no element. 

So E A.  Q.E.D.

 Uniqueness of the empty set 

There is only one set with no elements.

Proof: Suppose E1 and E2 are both sets with no elements.

By the above property: E1 E2 and E2 E1 E1=E2 Q.E.D.29



Element method for proving 
 To prove a set X = , prove X has no elements by contradiction
 suppose X has an element and derive a contradiction.

 Example:  For any set A,   A ∩ = .

Proof: Let A be a particular but arbitrarily chosen set.

A ∩ = A ∩ has no elements

Proof by contradiction: suppose there is  x such that x A∩ .

By definition of intersection, x A and x 

Contradiction with having no elements. Q.E.D.
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Element method: example 2
 Example: For all sets A, B, and C, 

if A B and B Cc, then A ∩ C = .

Proof: Suppose A, B, and C are any sets such that 

A B and B Cc

Proof by contradiction: Suppose there is an element x A ∩ C.

By definition of intersection, x A and x C.

From x A and A B, by definition of subset, x B.

From x B and B Cc , by definition of subset, x Cc.

By definition of complement x C.  Contradiction with x C.
Q.E.D.
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More proofs
 Disproving an alleged set property amounts to finding a 

counterexample for which the property is false.

 Example: Disprove that for all sets A,B, and C, 

(A−B) (B−C) =           A−C

There are sets A, B, and C for which the equality does not hold.
Counterexample 1: A={1,2,4,5},B={2,3,5,6},C={4,5,6,7}

(A−B)∪(B−C)={1,4}∪{2,3}={1,2,3,4} ≠ {1,2}=A−C

Counterexample 2: A=∅,B={1},C=∅
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Cardinality of a set
 The cardinality of a set A: 

N(A) or|A| is a measure of the "number of elements of the set“

 Example: |{2, 4, 6}| = 3

 For any sets A and B, 
|A B| + |A ∩ B| = |A|+|B|

 If A and B are disjoint sets, then 

|A B| = |A|+|B|
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Number of subsets of a set
 For all integer n ≥ 0, X has n elements  P(X) has 2n elements

Proof (by mathematical induction): Q(n): Any set with n elements has 2n subsets.

Base step: Q(0): Any set with 0 elements has 20 subsets:

The power set of the empty set ∅ is the set P(∅) = {∅}.

P(∅) has 1=20 element: the empty set ∅.

Induction step: For all integers k ≥ 0, if Q(k) is true then Q(k+1) is also true.

Induction hypothesis: Q(k): Any set with k elements has 2k subsets.

We show Q(k+1): Any set with k +1elements has 2k+1 subsets.

Let X be a set with k+1 elements and z ∈ X (since X has at least one element).

X−{z} has k elements, so P(X−{z}) has 2k elements.

Any subset A of X−{z} is a subset of X: A ∈ P(X).

Any subset A of X−{z}, can also be matched up with {z}: A∪{z} ∈ P(X)

All subsets A and A∪{z} are all the subsets of X  P(X) has 2*2k=2k+1 elements
34
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Algebraic proofs of set identities
 Algebraic proofs = Use of laws to prove new identities
 Commutativity:            A ∪ B = B ∪A and A ∩ B = B ∩A
 Associativity:  (A∪B) ∪ C=A ∪ (B∪C) and (A∩B) ∩C=A∩ (B∩C)
 Distributivity:  A∪(B∩C)=(A∪B)∩(A∪C), A∩(B∪C)=(A∩B)∪(A∩C)
 Identity laws:               A ∪ ∅ = A and A ∩ U = A
 Complement laws:      A ∪Ac = U and A ∩Ac = ∅
 Double complement:  (Ac)c = A

 Idempotent laws:         A ∪A  = A and A ∩A = A
 Universal bound laws: A ∪ U = U and A ∩ ∅ = ∅
 De Morgan’s laws:      (A ∪ B)c = Ac ∩ Bc and (A∩B)c = Ac ∪ Bc

 Absorption laws:         A ∪ (A ∩ B) = A and A ∩ (A ∪ B) = A
 Complements of U and ∅: Uc = ∅ and ∅c = U
 Set difference law:      A − B = A ∩ Bc



Algebraic proofs: example 1
 For all sets A, B, and C, 

(A B) − C = (A − C) (B − C)

Proof:

(A B) − C = (A B) ∩ Cc by set difference law

= Cc ∩ (A B) by commutative law for ∩
= (Cc ∩A) (Cc ∩ B)   by distributive law

= (A ∩ Cc) (B ∩ Cc)  by commutative law for ∩
= (A − C) (B − C) by set difference law
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Algebraic proofs: example 2
 For all sets A and B, 

A − (A ∩ B) = A − B

Proof:

A − (A ∩ B) = A ∩ (A ∩ B)c   by set difference law

= A ∩ (Ac Bc) by De Morgan’s laws

= (A ∩Ac) (A ∩ Bc)  by distributive law

= (A ∩ Bc)    by complement law

= (A ∩ Bc) by commutative law for 

= A ∩ Bc by identity law for 

= A − B by set difference law 

37



Logical equivalences vs set identities
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Boolean algebra
 Logic vs sets

 (or) corresponds to (union)
 (and) corresponds to ∩ (intersection)
 (negation) corresponds to c (complementation)
 t (a tautology) corresponds to U (a universal set)
 c (a contradiction) corresponds to (the empty set)

 Logic and sets are special cases of the same general structure 

Boolean algebra
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Boolean algebra
 A Boolean algebra is a set B together with two operations + and · , 

such that, for all a and b in B, both a + b and a · b are in B and the 
following properties hold:
 Commutativity: for all a and b in B, a+b=b+a and a·b=b·a
 Associativity: for all a,b, c in B, 

(a+b)+c=a+(b+c) and (a·b)·c=a·(b·c)
 Distributivity: for all a, b, and c in B,                     

a+(b·c)=(a+b)·(a+c) and      a·(b+c)=(a·b)+(a·c)
 Identity laws:  there exist distinct elements 0 and 1 in B         

such that for all a in B, a+0=a and a·1=a
 Complement laws: for each a in B, there exists an element in B, 

a, complement or negation of a, such that a+a=1 and a·a=0
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Properties of a Boolean algebra
 Uniqueness of the complement law: 

for all a and x in B, if a+x=1 and a·x=0 then x=a
 Uniqueness of 0 and 1: 

if there exists x in B such that a+x=a for all a in B, then x=0, and      
if there exists y in B such that a·y=a for all a in B, then y=1.

 Double complement law: for all a B, ( a ) = a
 Idempotent law: for all a B, a+a=a and a·a=a.
 Universal bound law: for all a B, a+1=1 and a·0 = 0.
 De Morgan’s laws:  for all a and b B, a+b=a·b and a·b=a+b
 Absorption laws: for all a and b B,(a+b)·a=a and (a·b)+a=a
 Complements of 0 and 1: 0 = 1 and 1 = 0.
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Example proof
 Uniqueness of the complement law: 

for all a and x in B, if a+x=1 and a·x=0 then x=a
Proof: Suppose a and x are particular arbitrarily chosen in B that 

satisfy the hypothesis: a+x=1 and a·x=0.
x = x ·1 because 1 is an identity for ·

= x · (a + a) by the complement law for +
= x · a + x · a by the distributive law for · over +
= a · x + x · a by the commutative law for ·
= 0 + x · a by hypothesis
= a · a + x · a by the complement law for ·
= (a · a) + (a · x) by the commutative law for ·
= a · (a + x) by the distributive law for · over +
= a ·1 by hypothesis
= a because 1 is an identity for ·42



Russell’s paradox
 Most sets are not elements of themselves.  A possible exception:

The set of all abstract ideas might be considered an abstract idea.

 Imagine a set A being an element of itself: A A.

 Let S be the set of all sets that are not elements of themselves:

S = {A | A is a set and A A}

 Is S an element of itself?
 If S S, then S does not satisfy the defining property for S, so S S.
 If S S, then satisfies the defining property for S, so S S.

 It cannot be either!
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Russell’s paradox: the Barber puzzle
 In a town, there is a male barber who shaves all those men, and only 

those men, who do not shave themselves.

 Does the barber shave himself?
 If the barber shaves himself, he is a member of the class of men who 

shave themselves. The barber does not shave himself because he 
doesn’t shave men who shave themselves.

 If the barber does not shave himself, he is a member of the class of 
men who do not shave themselves. The barber shaves every man in 
this class, so the barber must shave himself.

 Both  Yes & No derive contradiction.
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Russell’s paradox: one solution
 Except for power set, whose existence is guaranteed by an axiom, 

whenever a set is defined using a predicate as a defining property, 
the set is a subset of a known set. (elements are from a known set)

 Then, S from Russell’s Paradox is not a subset of a known set

S = {A | A is a set and A A} (A’s are not from a known set)
A ∈ S ⇔A is a set and A ∉A

A in S ⇔A is a set and A not in A

B shave A ⇔A is a man and A not shave A

 Solution is good for practical examples:

S = {x in blocks |x is blue}
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The halting problem
 There is no computer algorithm that will accept any algorithm X 

and data set D as input and then output “halts” or “loops forever” to 
indicate whether or not X terminates in a finite number of steps 
when X is run with data set D.
Proof sketch (by contradiction): Suppose there is an algorithm CheckHalt such that 

for any input algorithm X and a data set D, it prints “halts” or “loops forever”.

A new algorithm  Test(X):

loops forever if CheckHalt(X, X) prints “halts” or

stops if CheckHalt(X, X) prints “loops forever”.

Test(Test) = ?

 If  Test(Test) terminates after a finite number of steps, then 

CheckHalt(Test, Test) prints “halts”, so Test(Test) loops forever. Contradiction!

 If  Test(Test) does not terminate after a finite number of steps, then 

CheckHalt(Test, Test) prints “loops forever”, so Test(Test) terminates. Contradiction!

So, CheckHalt doesn’t exist.46


