Set Theory

CSE 215, Foundations of Computer Science
Stony Brook University
http:/ / www.cs.stonybrook.edu/~liu/ cse215

Set theory

- Set theory is regarded as the foundation of mathematical thought.
- All mathematical objects can be defined in terms of sets
everyday objects too
- Let S denote a set:
$a \in S$ means that a is an element of S
Example: $1 \in\{1,2,3\}, 3 \in\{1,2,3\}$
a $\notin S$ means that a is not an element of S
Example: $4 \notin\{1,2,3\}$
- If S is a set and $\mathrm{P}(\mathrm{x})$ is a property that elements of S may or may not satisfy:
$\{\mathrm{x} \in \mathrm{S} \mid \mathrm{P}(\mathrm{x})\}$ is the set of all elements x of S such that $\mathrm{P}(\mathrm{x})$

Subsets: proof and disproof

- A is a subset of B

$$
A \subseteq B \Leftrightarrow \forall x \text {, if } x \in A \text { then } x \in B
$$

(it is a formal universal conditional statement)

- Negation:
$\mathrm{A} \nsubseteq \mathrm{B} \Leftrightarrow \exists \mathrm{x}$ such that $\mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \notin \mathrm{B}$
- A is a proper subset of B
$A \subset B \Leftrightarrow(1) A \subseteq B$ and
(2) there is at least one element in B that is not in A
- Examples:

```
{1}\subseteq{1}
{1}\subseteq{1,{1}}
{1}\subset{1,2}
{1}\subset{1,{1}}
```


Element argument

- Element argument:

The basic method for proving that one set is a subset of another

Let sets A and B be given.

To prove A \subseteq B

1. suppose x is a particular but arbitrarily chosen element of A,
2. show x is also an element of B.

Simpler:
take any x in A , and show x in B

Element argument: example 1

- Example: A \subseteq B ?
$A=\{m \in Z \mid m=6 r+12$ for some $r \in Z\}$
$B=\{n \in Z \mid n=3 s$ for some $s \in Z\}$

To prove A \subseteq B:

- Suppose x is a particular but arbitrarily chosen element of A. [We must show that $x \in B$.]
- By definition of A, there is an integer r such that $x=6 r+12$, that is, $\mathrm{x}=3(2 \mathrm{r}+4)$
- $\mathrm{s}=2 \mathrm{r}+4$ is an integer because products and sums of integers are integers.
- So $\mathrm{x}=3 \mathrm{~s}$ for integer s . By definition of B, x is an element of B .
- Thus, $\mathrm{A} \subseteq \mathrm{B}$.

Element argument: example 2

- Example:
$A=\{m \in \mathbf{Z} \mid m=6 r+12$ for some $r \in \mathbf{Z}\}$
$B=\{n \in \mathbf{Z} \mid n=3 \mathrm{~s}$ for some $\mathrm{s} \in \mathbf{Z}\}$

To disprove $\mathrm{B} \subseteq \mathrm{A}$: that is $\mathrm{B} \subseteq \mathrm{A}$ is false, that is $\mathrm{B} \nsubseteq \mathrm{A}$

- We must find an element of $B(x=3 s)$ that is not an element of A ($\mathrm{x}=6 \mathrm{r}+12$).
- Let $\mathrm{x}=3=3 * 1 \rightarrow 3 \in \mathrm{~B}$
- $3 \in$ A Assume by contradiction $\exists r \in \mathbb{Z}$, such that: $6 \mathrm{r}+12=3$ (assumption) $\boldsymbol{\rightarrow} 2 \mathrm{r}+4=1 \boldsymbol{\rightarrow} 2 \mathrm{r}=-3 \boldsymbol{\mathrm { r }}=-3 / 2$
$\mathrm{r}=-3 / 2$ is not an integer, $\mathrm{r} \notin \mathbb{Z}$. Thus, contradiction $\boldsymbol{\longrightarrow}$. $\ddagger \mathrm{A}$.
- $3 \in \mathrm{~B}$ and $3 \notin \mathrm{~A}$, so $\mathrm{B} \nsubseteq \mathrm{A}$.

Set equality

- $\mathbf{A}=\mathbf{B}$, if, and only if, every element of A is in B and every element of B is in A.

$$
A=B \quad \Leftrightarrow \quad A \subseteq B \text { and } B \subseteq A
$$

- Example:
$A=\{m \in Z \mid m=2 a$ for some integer $a\}$
$B=\{n \in Z \mid n=2 b-2$ for some integer $b\}$

Proof Part 1: A \subseteq B

Suppose x is a particular but arbitrarily chosen element of A .
By definition of A, there is an integer a such that $x=2 a$
Let $\mathrm{b}=\mathrm{a}+1,2 \mathrm{~b}-2=2(\mathrm{a}+1)-2=2 \mathrm{a}+2-2=2 \mathrm{a}=\mathrm{x}$
Thus, $x \in B$.
Proof Part 2: $\mathrm{B} \subseteq \mathrm{A}$ (proved in similar manner)

Venn diagrams

- $\mathrm{A} \subseteq \mathrm{B}: 2$ cases

- A $\nsubseteq \mathrm{B}: 3$ cases

Relations among sets of numbers

- \mathbf{Z}, \mathbf{Q}, and \mathbf{R} denote the sets of integers, rational numbers, and real numbers

$\mathrm{Z} \subseteq \mathrm{Q}$ because every integer is rational (any integer $\mathrm{n}=\mathrm{n} / 1$)
\mathbf{Z} is a proper subset of \mathbf{Q}
because there are rationals that are not integers (e.g., 1/2)
$\mathrm{Q} \subseteq \mathbf{R}$ because every rational is real
\mathbf{Q} is a proper subset of \mathbf{R}
because there are real numbers that are not rational (e.g., $\sqrt{2}$)

Operations on sets

- Let A and B be subsets of a universal set U.
- union of A and B :
the set of all elements that are in at least one of A or B :

$$
A \cup B=\{x \in U \mid x \in A \text { or } x \in B\}
$$

- intersection of A and B :
set of all elements that are common to both A and B .

$$
A \cap B=\{x \in U \mid x \in A \text { and } x \in B\}
$$

- difference of B minus A (relative complement of A in B): $B-A($ or $B \backslash A)$ is the set of all elements that are in B and not A.

$$
B-A=\{x \in U \mid x \in B \text { and } x \notin A\}
$$

- complement of A :
A^{c} is the set of all elements in U that are not in A.

$$
\mathbf{A}^{\mathbf{c}}=\{\mathbf{x} \in \mathbf{U} \mid \mathbf{x} \notin \mathbf{A}\}
$$

Operations on sets: examples

- Let $\mathrm{U}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$

$$
\begin{aligned}
A & =\{a, c, e, g\} \\
B & =\{d, e, f, g\}
\end{aligned}
$$

- $A \cup B=\{a, c, d, e, f, g\}$
- $A \cap B=\{e, g\}$
- $\mathrm{B}-\mathrm{A}=\{\mathrm{d}, \mathrm{f}\}$
- $A^{c}=\{b, d, f\}$

Subsets of real numbers

- Given real numbers a and b with $\mathrm{a} \leq \mathrm{b}$:
- $(\mathrm{a}, \mathrm{b})=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{a}<\mathrm{x}<\mathrm{b}\}$
- $(\mathrm{a}, \mathrm{b}]=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{a}<\mathrm{x} \leq \mathrm{b}\}$
- $[\mathrm{a}, \mathrm{b})=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{a} \leq \mathrm{x}<\mathrm{b}\}$
$\cdot[\mathrm{a}, \mathrm{b}]=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$
- The symbols ∞ and $-\infty$ are used to indicate intervals that are unbounded either on the right or on the left:
- $(a, \infty)=\{x \in R \mid a<x\}$
- $[\mathrm{a}, \infty)=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{a} \leq \mathrm{x}\}$
- $(-\infty, b)=\{x \in R \mid x<b\}$
- $(-\infty, b]=\{x \in R \mid x \leq b\}$

Subsets of real numbers: examples

- Let $\mathrm{A}=(-1,0]=\{\mathrm{x} \in \mathrm{R} \mid-1<\mathrm{x} \leq 0\}$

$$
B=[0,1)=\{x \in R \mid 0 \leq x<1\}
$$

- $A \cup B=\{x \in R \mid x \in(-1,0]$ or $x \in[0,1)\}$

$$
=\{x \in R \mid x \in(-1,1)\}=(-1,1)
$$

- $A \cap B=\{x \in R \mid x \in(-1,0]$ and $x \in[0,1)\}$

$$
=\{0\}
$$

- $\mathrm{B}-\mathrm{A}=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{x} \in[0,1)$ and $\mathrm{x} \notin(-1,0]\}$

$$
=(0,1)
$$

- $\quad A^{c}=\{x \in R \mid x \notin(-1,0]\}$

$$
=(-\infty,-1] \cup(0, \infty)
$$

Indexed collection of sets

- Unions and intersections of an indexed collection of sets

Given sets $A_{0}, A_{1}, A_{2}, \ldots$ that are subsets of a universal set U and given a nonnegative integer n (set sequence)

- $\bigcup_{i=0}^{n} A_{i}=\left\{x \in U \mid x \in A_{i}\right.$ for at least one $\left.i=0,1,2, \ldots, n\right\}$
- $\bigcup_{i=1}^{\infty} A_{i}=\left\{x \in U \mid x \in A_{i}\right.$ for at least one nonnegative integer $\left.i\right\}$
- $\bigcap_{i=0}^{n} A_{i}=\left\{x \in U \mid x \in A_{i}\right.$ for all $\left.i=0,1,2, \ldots, n\right\}$
- $\bigcap_{i=1}^{\infty} A_{i}=\left\{x \in U \mid x \in A_{i}\right.$ for all nonnegative integers $\left.i\right\}$

Indexed sets: examples

- For each positive integer i ,
$\mathrm{A}_{\mathrm{i}}=\{\mathrm{x} \in \mathbf{R} \mid-1 / \mathrm{i}<\mathrm{x}<1 / \mathrm{i}\}=(-1 / \mathrm{i}, 1 / \mathrm{i})$
- $A_{1} \cup A_{2} \cup A_{3}=\{x \in \mathbf{R} \mid x$ is in at least one of the intervals

$$
(-1,1),(-1 / 2,1 / 2),(-1 / 3,1 / 3)\}=(-1,1)
$$

- $A_{1} \cap A_{2} \cap A_{3}=\{x \in \mathbf{R} \mid x$ is in all of the intervals

$$
(-1,1),(-1 / 2,1 / 2),(-1 / 3,1 / 3)\}=(-1 / 3,1 / 3)
$$

- $\bigcup_{i=1}^{\infty} A_{i}=\{x \in \mathbf{R} \mid x$ is in at least one of the intervals $(-1 / i, 1 / i)$ where i is a positive integer $\}=(-1,1)$
- $\bigcap_{i=1}^{\infty} A_{i}=\{x \in \mathbf{R} \mid \mathrm{x}$ is in all of the intervals $(-1 / \mathrm{i}, 1 / \mathrm{i})$, where i is a positive integer $\}=\{0\}$

The empty set

- The empty set $\emptyset=\{ \}$ is a set that has no elements
- Examples:
- $\{1,2\} \cap\{3,4\}=\varnothing$
- $\{x \in R \mid 3<x<2\}=\varnothing$

Partitions of sets

- A and B are disjoint $\Leftrightarrow A \cap B=\varnothing$
- the sets A and B have no elements in common
- Sets $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots$ are mutually disjoint (pairwise disjoint or non-overlapping) $\Leftrightarrow \forall \mathrm{i}, \mathrm{j}=1,2,3, \ldots, \mathrm{i} \neq \mathrm{j} \rightarrow \mathrm{A}_{\mathrm{i}} \cap \mathrm{A}_{\mathrm{j}}=\varnothing$
- no two sets A_{i} and $\mathrm{A}_{\mathrm{j}}(\mathrm{i} \neq \mathrm{j})$ have any elements in common
- A finite or infinite collection of nonempty sets $\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots\right\}$ is a partition of a $\operatorname{set} \mathrm{A} \Leftrightarrow$

1. $\mathrm{A}=\bigcup_{i=1}^{\infty} \mathrm{A}_{\mathrm{i}}$
2. $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots$ are mutually disjoint

Partitions of sets: example

- $A=\{1,2,3,4,5,6\}$

$$
A_{1}=\{1,2\} \quad A_{2}=\{3,4\} \quad A_{3}=\{5,6\}
$$

$\left\{A_{1}, A_{2}, A_{3}\right\}$ is a partition of A, because

1. $A=A_{1} \cup A_{2} \cup A_{3}$
2. $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3} are mutually disjoint:

$$
\mathrm{A}_{1} \cap \mathrm{~A}_{2}=\mathrm{A}_{1} \cap \mathrm{~A}_{3}=\mathrm{A}_{2} \cap \mathrm{~A}_{3}=\varnothing
$$

- $\mathrm{T}_{1}=\{\mathrm{n} \in \mathbf{Z} \mid \mathrm{n}=3 \mathrm{k}$, for some integer k$\}$
$\mathrm{T}_{2}=\{\mathrm{n} \in \mathbf{Z} \mid \mathrm{n}=3 \mathrm{k}+1$, for some integer k$\}$
$\mathrm{T}_{3}=\{\mathrm{n} \in \mathbf{Z} \mid \mathrm{n}=3 \mathrm{k}+2$, for some integer k$\}$
$\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}\right\}$ is a partition of \mathbf{Z}

Power set

- Given a set A, the power set of $A, P(A)$, is the set of all subsets of A
- Examples:
- $P(\{x, y\})=\{\varnothing,\{\mathrm{x}\},\{\mathrm{y}\},\{\mathrm{x}, \mathrm{y}\}\}$
- $P(\varnothing)=\{\varnothing\}$
- $P(\{\varnothing\})=\{\varnothing,\{\varnothing\}\}$

Cartesian product

- An ordered n-tuple ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$) consists of the elements $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ together with the ordering: first x_{1}, then x_{2}, and so forth up to x_{n}
- Two ordered n-tuples ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$) and ($\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}$) are equal: $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \Leftrightarrow \mathrm{x}_{1}=\mathrm{y}_{1}$ and $\mathrm{x}_{2}=\mathrm{y}_{2}$ and $\ldots \mathrm{x}_{\mathrm{n}}=\mathrm{y}_{\mathrm{n}}$
- The Cartesian product of $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}$:

$$
A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}\right\}
$$

- Example: $A=\{1,2\}, B=\{3,4\}$

$$
\mathrm{A} \times \mathrm{B}=\{(1,3),(1,4),(2,3),(2,4)\}
$$

Cartesian product: more examples

- Example: $A=\{x, y\} \quad B=\{1,2,3\} \quad C=\{a, b\}$
$A \times B \times C=\{(u, v, w) \mid u \in A, v \in B$, and $w \in C\}$

$$
\begin{aligned}
=\{ & (x, 1, a),(x, 2, a),(x, 3, a),(y, 1, a),(y, 2, a),(y, 3, a) \\
& (x, 1, b),(x, 2, b),(x, 3, b),(y, 1, b),(y, 2, b),(y, 3, b)\}
\end{aligned}
$$

$(A \times B) \times C=\{(u, v) \mid u \in A \times B$ and $v \in C\}$

$$
\begin{aligned}
= & \{((x, 1), a),((x, 2), a),((x, 3), a),((y, 1), a),((y, 2), a),((y, 3), a), \\
& ((x, 1), b),((x, 2), b),((x, 3), b),((y, 1), b),((y, 2), b),((y, 3), b)\}
\end{aligned}
$$

Supplemental: Algorithm to check subset

- Input: m, n [positive integers], A, B [one-dimensional arrays] Algorithm body:
$\mathrm{i}:=1, \quad$ answer $:=$ " $\mathrm{A} \subseteq \mathrm{B}$ "
while ($\mathrm{i} \leq \mathrm{m}$ and answer $=$ " $\mathrm{A} \subseteq \mathrm{B}$ ")
$\mathrm{j}:=1$, found :="no"
while ($\mathrm{j} \leq \mathrm{n}$ and found $=$ " no ")

$$
\text { if a }[\mathrm{i}]=\mathrm{b}[\mathrm{j}] \text { then found := "yes" }
$$

$$
\mathrm{j}:=\mathrm{j}+1
$$

end while
complicated
and inefficient too
if found $=$ "no" then answer : $=$ " $\nsubseteq B$ "
$\mathrm{i}:=\mathrm{i}+1$
end while
Output: answer [a string]: "A $\subseteq \mathrm{B}$ " or "A $\nsubseteq \mathrm{B}$ "

$$
\begin{aligned}
& \text { each (} x \text { in } A \text {, has }=x \text { in } B) \text { da } \\
& \text { all }(x \text { in } B \text { for } x \text { in } A) \text { da/py } \\
& \text { each } x \text { in } A \text { has } x \text { in } B \text { abc } \\
& \text { forall } x \text { in } A \mid x \text { in } B \text { setl }
\end{aligned}
$$

$$
\text { answer }=\text { "A } \subseteq B " \text { if } \ldots \text { else"A } \nsubseteq B " \quad \operatorname{all}(x \text { in } B \text { for } x \text { in } A) d a / p y
$$

Properties of sets

- Inclusion of intersection: $\mathrm{A} \cap \mathrm{B} \subseteq \mathrm{A}$ and $\mathrm{A} \cap \mathrm{B} \subseteq \mathrm{B}$
- Inclusion in union: $A \subseteq A \cup B$ and $B \subseteq A \cup B$
- Transitivity of subset: $A \subseteq B$ and $B \subseteq C \rightarrow A \subseteq C$
- Set operations: logical definitions (textbook calls them procedural)
$\bullet x \in A \cup B \Leftrightarrow x \in A$ or $x \in B$
- $x \in A \cap B \Leftrightarrow x \in A$ and $x \in B$
- $x \in B-A \Leftrightarrow x \in B$ and $x \notin A$
$\cdot x \in A^{c} \quad \Leftrightarrow x \notin A$
$\bullet(x, y) \in A \times B \Leftrightarrow x \in A$ and $y \in B$

$$
\begin{aligned}
& \text { setof }(x, x \text { in } A, x \text { in } B) \text { da } \\
& \{x \text { for } x \text { in } A \text { if } x \text { in } B\} \text { da/py } \\
& \{x: x \text { in } A, x \text { in } B\}
\end{aligned}
$$

Example proof: inclusion of intersection

- For all sets A and $\mathrm{B}, \mathrm{A} \cap \mathrm{B} \subseteq \mathrm{A}$
- The statement to be proved is universal:

$$
\forall \text { sets } \mathrm{A} \text { and } \mathrm{B}, \mathrm{~A} \cap \mathrm{~B} \subseteq \mathrm{~A}
$$

- Suppose A and B are any two particular but arbitrarily chosen sets.
- To show $\mathrm{A} \cap \mathrm{B} \subseteq \mathrm{A}$, we must show $\forall \mathrm{x}, \mathrm{x} \in \mathrm{A} \cap \mathrm{B} \rightarrow \mathrm{x} \in \mathrm{A}$
- Suppose x is any particular but arbitrarily chosen element in $\mathrm{A} \cap \mathrm{B}$
- By definition of $A \cap B, x \in A$ and $x \in B$.
- Therefore, $\mathrm{x} \in \mathrm{A}$

Set identities

- For all sets A, B, and C:
- Commutativity: $\quad A \cup B=B \cup A$ and $A \cap B=B \cap A$
- Associativity: $(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{BUC})$ and $(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})$
- Distributivity: $\mathrm{AU}(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{A} \cup \mathrm{C}), \mathrm{A} \cap(\mathrm{BUC})=(\mathrm{A} \cap \mathrm{B}) \mathrm{U}(\mathrm{A} \cap \mathrm{C})$
- Identity laws: $\quad A \cup \emptyset=A$ and $A \cap U=A$
- Complement laws: $\quad A \cup A^{c}=U$ and $A \cap A^{c}=\varnothing$
- Double complement:
$\left(A^{c}\right)^{c}=A$
- Idempotent laws:
$\mathrm{A} \cup \mathrm{A}=\mathrm{A}$ and $\mathrm{A} \cap \mathrm{A}=\mathrm{A}$
- Universal bound laws:
$A \cup U=U$ and $A \cap \varnothing=\varnothing$
- De Morgan's laws:
$(A \cup B)^{c}=A^{c} \cap B^{c}$ and $(A \cap B)^{c}=A^{c} \cup B^{c}$
- Absorption laws:
$\mathrm{A} \cup(\mathrm{A} \cap \mathrm{B})=\mathrm{A}$ and $\mathrm{A} \cap(\mathrm{A} \cup \mathrm{B})=\mathrm{A}$
- Complements of U and $\emptyset: \quad U^{c}=\emptyset$ and $\emptyset^{c}=U$
- Set difference law:
$A-B=A \cap B^{c}$

Example proof: distributivity

- For all sets A, B, and $C, A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
- Suppose A, B, and C are arbitrarily chosen sets.
- Part 1. $\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C}) \subseteq(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{AUC})$

To show: $\forall x$, if $x \in A \cup(B \cap C)$ then $x \in(A \cup B) \cap(A \cup C)$
Suppose $x \in A \cup(B \cap C)$, arbitrarily chosen.
Then by definition of union, $x \in A$ or $x \in B \cap C$
Case 1: $x \in A$. By definition of union, $x \in A \cup B$ and $x \in A \cup C$ By definition of intersection: $x \in(A \cup B) \cap(A \cup C)(*)$
Case 2: $x \in B \cap C$. By definition of intersection: $x \in B$ and $x \in C$
By definition of union: $x \in A \cup B$ and $x \in A \cup C$. So (*) again

- Part 2. $(A \cup B) \cap(A \cup C) \subseteq A \cup(B \cap C)$ (proved in similar manner)

Example proof: De Morgan's Iaw

- For all sets A and $B:(A \cup B)^{c}=A^{c} \cap B^{c}$
- Suppose A and B are arbitrarily chosen sets.
- (\rightarrow) Suppose $\mathrm{x} \in(\mathrm{A} \cup \mathrm{B})^{\mathrm{c}}$. By definition of complement: $x \notin A \cup B$

That is, it is false that (x is in A or x is in B)
By De Morgan's laws of logic: x is not in A and x is not in B
That is, $x \notin A$ and $x \notin B$
By definition of complement: $x \in A^{c}$ and $x \in B^{c}$
By definition of intersection: $\mathrm{x} \in \mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}$
-(\leftarrow) Proved in similar manner.

Intersection and union with a subset

- For any sets A and B , if $\mathrm{A} \subseteq \mathrm{B}$, then $\mathrm{A} \cap \mathrm{B}=\mathrm{A}$ and $\mathrm{A} \cup \mathrm{B}=\mathrm{B}$
$\mathrm{A} \cap \mathrm{B}=\mathrm{A} \Leftrightarrow(1) \mathrm{A} \cap \mathrm{B} \subseteq \mathrm{A}$ and $(2) \mathrm{A} \subseteq \mathrm{A} \cap \mathrm{B}$
(1) $\mathrm{A} \cap \mathrm{B} \subseteq \mathrm{A}$ is true by the inclusion of intersection property
(2) Suppose $x \in A$ (arbitrary chosen)

From $A \subseteq B$, then $x \in B$ (by definition of subset relation)
From $x \in A$ and $x \in B$, thus $x \in A \cap B$ (by definition of \cap) So, $\mathrm{A} \subseteq \mathrm{A} \cap \mathrm{B}$
$A \cup B=B \Leftrightarrow(3) A \cup B \subseteq B$ and (4) $B \subseteq A \cup B$
(3) and (4) are proved in similar manner to (1) and (2)

The empty set: two properties

- A set with no elements is a subset of every set

If E is a set with no elements and A is any set, then $\mathrm{E} \subseteq \mathrm{A}$
Proof (by contradiction):
Suppose there is a set E with no elements and a set A such that E $\nsubseteq \mathrm{A}$. By definition of \nsubseteq : there is an element of $E(x \in E)$ that is not an element of $\mathrm{A}(\mathrm{x} \notin \mathrm{A})$. Contradiction with E has no element. So $E \subseteq A$.
Q.E.D.

- Uniqueness of the empty set

There is only one set with no elements.
Proof: Suppose E_{1} and E_{2} are both sets with no elements.
29 By the above property: $\mathrm{E}_{1} \subseteq \mathrm{E}_{2}$ and $\mathrm{E}_{2} \subseteq \mathrm{E}_{1} \rightarrow \mathrm{E}_{1}=\mathrm{E}_{2}$

Element method for proving \varnothing

- To prove a set $\mathrm{X}=\emptyset$, prove X has no elements by contradiction
- suppose X has an element and derive a contradiction.
- Example: For any set $\mathrm{A}, \mathrm{A} \cap \emptyset=\varnothing$.

Proof: Let A be a particular but arbitrarily chosen set.

$$
\mathrm{A} \cap \emptyset=\emptyset \Leftrightarrow \mathrm{A} \cap \emptyset \text { has no elements }
$$

Proof by contradiction: suppose there is x such that $\mathrm{x} \in \mathrm{A} \cap \emptyset$.
By definition of intersection, $x \in A$ and $x \in \emptyset$
Contradiction with \emptyset having no elements.

Element method: example 2

- Example: For all sets A, B, and C, if $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{C}^{\mathrm{c}}$, then $\mathrm{A} \cap \mathrm{C}=\varnothing$.

Proof: Suppose A, B, and C are any sets such that $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{C}^{\mathrm{c}}$
Proof by contradiction: Suppose there is an element $x \in A \cap C$. By definition of intersection, $x \in A$ and $x \in C$.
From $\mathrm{x} \in \mathrm{A}$ and $\mathrm{A} \subseteq \mathrm{B}$, by definition of subset, $\mathrm{x} \in \mathrm{B}$.
From $x \in B$ and $B \subseteq C^{c}$, by definition of subset, $x \in C^{c}$.
By definition of complement $\mathrm{x} \notin \mathrm{C}$. Contradiction with $\mathrm{x} \in \mathrm{C}$.
Q.E.D.

More proofs

- Disproving an alleged set property amounts to finding a counterexample for which the property is false.
- Example: Disprove that for all sets A,B, and C,

There are sets A, B, and C for which the equality does not hold.
Counterexample 1: $\mathrm{A}=\{1,2,4,5\}, \mathrm{B}=\{2,3,5,6\}, \mathrm{C}=\{4,5,6,7\}$ A $\quad 1$

$$
(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{C})=\{1,4\} \cup\{2,3\}=\{1,2,3,4\} \neq\{1,2\}=\mathrm{A}-\mathrm{C}
$$

Counterexample 2: $\mathrm{A}=\varnothing, \mathrm{B}=\{1\}, \mathrm{C}=\varnothing$

Cardinality of a set

- The cardinality of a set A:
$\mathrm{N}(\mathrm{A})$ or $|\mathrm{A}|$ is a measure of the "number of elements of the set"
- Example: $|\{2,4,6\}|=3$
- For any sets A and B,

$$
|\mathrm{A} \cup \mathrm{~B}|+|\mathrm{A} \cap \mathrm{~B}|=|\mathrm{A}|+|\mathrm{B}|
$$

- If A and B are disjoint sets, then

$$
|\mathrm{A} \cup \mathrm{~B}|=|\mathrm{A}|+|\mathrm{B}|
$$

Number of subsets of a set

- For all integer $\mathrm{n} \geq 0, \mathbf{X}$ has \mathbf{n} elements $\rightarrow \mathbf{P (X)}$ has 2^{n} elements Proof (by mathematical induction): $\mathrm{Q}(\mathrm{n})$: Any set with n elements has 2^{n} subsets. Base step: $\mathrm{Q}(0)$: Any set with 0 elements has 2^{0} subsets:

The power set of the empty set \varnothing is the set $\mathrm{P}(\varnothing)=\{\varnothing\}$.
$P(\emptyset)$ has $1=2^{0}$ element: the empty set \emptyset.
Induction step: For all integers $\mathrm{k} \geq 0$, if $\mathrm{Q}(\mathrm{k})$ is true then $\mathrm{Q}(\mathrm{k}+1)$ is also true.
Induction hypothesis: $\mathrm{Q}(\mathrm{k})$: Any set with k elements has 2^{k} subsets.
We show $\mathrm{Q}(\mathrm{k}+1)$: Any set with $\mathrm{k}+1$ elements has $2^{\mathrm{k}+1}$ subsets.
Let X be a set with $\mathrm{k}+1$ elements and $\mathrm{z} \in \mathrm{X}$ (since X has at least one element). $X-\{z\}$ has k elements, so $P(X-\{z\})$ has 2^{k} elements.
Any subset A of $X-\{z\}$ is a subset of $X: A \in P(X)$.
Any subset A of $X-\{z\}$, can also be matched up with $\{z\}: A \cup\{z\} \in P(X)$

Algebraic proofs of set identities

- Algebraic proofs $=$ Use of laws to prove new identities
- Commutativity: $\quad A \cup B=B \cup A$ and $A \cap B=B \cap A$
- Associativity: $(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{BUC})$ and $(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})$
- Distributivity: $\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{A} \cup \mathrm{C}), \mathrm{A} \cap(\mathrm{BUC})=(\mathrm{A} \cap \mathrm{B}) \mathrm{U}(\mathrm{A} \cap \mathrm{C})$
- Identity laws:
$A \cup \emptyset=A$ and $A \cap U=A$
- Complement laws:
$\mathrm{A} \cup \mathrm{A}^{\mathrm{c}}=\mathrm{U}$ and $\mathrm{A} \cap \mathrm{A}^{\mathrm{c}}=\varnothing$
- Double complement:
$\left(A^{c}\right)^{c}=A$
- Idempotent laws:
$\mathrm{A} \cup \mathrm{A}=\mathrm{A}$ and $\mathrm{A} \cap \mathrm{A}=\mathrm{A}$
- Universal bound laws:
$A \cup U=U$ and $A \cap \emptyset=\varnothing$
- De Morgan's laws:
$(A \cup B)^{c}=A^{c} \cap B^{c}$ and $(A \cap B)^{c}=A^{c} \cup B^{c}$
- Absorption laws: $\quad \mathrm{A} \cup(\mathrm{A} \cap \mathrm{B})=\mathrm{A}$ and $\mathrm{A} \cap(\mathrm{A} \cup \mathrm{B})=\mathrm{A}$
- Complements of U and $\emptyset: \quad U^{c}=\varnothing$ and $\emptyset^{c}=U$
- Set difference law:
$A-B=A \cap B^{c}$

Algebraic proofs: example 1

- For all sets A, B, and C,

$$
(A \cup B)-C=(A-C) \cup(B-C)
$$

Proof:

$$
\begin{aligned}
(A \cup B)-C & =(A \cup B) \cap C^{c} & & \text { by set difference law } \\
& =C^{c} \cap(A \cup B) & & \text { by commutative law for } \cap \\
& =\left(C^{c} \cap A\right) \cup\left(C^{c} \cap B\right) & & \text { by distributive law } \\
& =\left(A \cap C^{c}\right) \cup\left(B \cap C^{c}\right) & & \text { by commutative law for } \cap \\
& =(A-C) \cup(B-C) & & \text { by set difference law }
\end{aligned}
$$

Algebraic proofs: example 2

- For all sets A and B ,

$$
\mathrm{A}-(\mathrm{A} \cap \mathrm{~B})=\mathrm{A}-\mathrm{B}
$$

Proof:

$$
\begin{aligned}
\mathrm{A}-(\mathrm{A} \cap \mathrm{~B}) & =\mathrm{A} \cap(\mathrm{~A} \cap \mathrm{~B})^{\mathrm{c}} & & \text { by set difference law } \\
& =\mathrm{A} \cap\left(\mathrm{~A}^{\mathrm{c}} \cup \mathrm{~B}^{\mathrm{c}}\right) & & \text { by De Morgan's laws } \\
& =\left(\mathrm{A} \cap \mathrm{~A}^{\mathrm{c}}\right) \cup\left(\mathrm{A} \cap \mathrm{~B}^{\mathrm{c}}\right) & & \text { by distributive law } \\
& =\emptyset \cup\left(\mathrm{A} \cap \mathrm{~B}^{\mathrm{c}}\right) & & \text { by complement law } \\
& =\left(\mathrm{A} \cap \mathrm{~B}^{\mathrm{c}}\right) \cup \emptyset & & \text { by commutative law for } \mathrm{U} \\
& =\mathrm{A} \cap \mathrm{~B}^{\mathrm{c}} & & \text { by identity law for } \mathrm{U} \\
& =\mathrm{A}-\mathrm{B} & & \text { by set difference law }
\end{aligned}
$$

Logical equivalences vs set identities

Logical Equivalences	Set Properties
For all statement variables p, q, and r :	For all sets A, B, and C :
a. $p \vee q \equiv q \vee p$ b. $p \wedge q \equiv q \wedge p$	a. $A \cup B=B \cup A$ b. $A \cap B=B \cap A$
a. $p \wedge(q \wedge r) \equiv p \wedge(q \wedge r)$ b. $p \vee(q \vee r) \equiv p \vee(q \vee r)$	a. $A \cup(B \cup C)=A \cup(B \cup C)$ b. $A \cap(B \cap C)=A \cap(B \cap C)$
a. $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$ b. $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$	a. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ b. $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
a. $p \vee \mathbf{c} \equiv p$ b. $p \wedge \mathbf{t} \equiv p$	a. $A \cup \emptyset=A$ b. $A \cap U=A$
a. $p \vee \sim p \equiv \mathbf{t}$ b. $p \wedge \sim p \equiv \mathbf{c}$	a. $A \cup A^{c}=U$ b. $A \cap A^{c}=\emptyset$
$\sim(\sim p) \equiv p$	$\left(A^{c}\right)^{c}=A$
a. $p \vee p \equiv p$ b. $p \wedge p \equiv p$	a. $A \cup A=A$ b. $A \cap A=A$
a. $p \vee \mathbf{t} \equiv \mathbf{t}$ b. $p \wedge \mathbf{c} \equiv \mathbf{c}$	a. $A \cup U=U$ b. $A \cap \emptyset=\emptyset$
a. $\sim(p \vee q) \equiv \sim p \wedge \sim q$ b. $\sim(p \wedge q) \equiv \sim p \vee \sim q$	a. $(A \cup B)^{c}=A^{c} \cap B^{c}$ b. $(A \cap B)^{c}=A^{c} \cup B^{c}$
a. $p \vee(p \wedge q) \equiv p$ b. $p \wedge(p \vee q) \equiv p$	a. $A \cup(A \cap B)=A$ b. $A \cap(A \cup B)=A$
a. $\sim \mathbf{t} \equiv \mathbf{c}$ b. $\sim \mathbf{c} \equiv \mathbf{t}$	a. $U^{c}=\emptyset$ b. $\emptyset^{c}=U$

Boolean algebra

- Logic vs sets
- V (or) corresponds to U (union)
- \wedge (and) corresponds to \cap (intersection)
- ~ (negation) corresponds to ${ }^{\mathrm{c}}$ (complementation)
- t (a tautology) corresponds to U (a universal set)
- c (a contradiction) corresponds to \emptyset (the empty set)
- Logic and sets are special cases of the same general structure Boolean algebra

Boolean algebra

- A Boolean algebra is a set B together with two operations + and •, such that, for all a and b in B , both $\mathrm{a}+\mathrm{b}$ and $\mathrm{a} \cdot \mathrm{b}$ are in B and the following properties hold:
- Commutativity: for all a and b in $\mathrm{B}, \mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$ and $\mathrm{a} \cdot \mathrm{b}=\mathrm{b} \cdot \mathrm{a}$
- Associativity: for all a,b, c in B,

$$
(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c}) \quad \text { and } \quad(\mathrm{a} \cdot \mathrm{~b}) \cdot \mathrm{c}=\mathrm{a} \cdot(\mathrm{~b} \cdot \mathrm{c})
$$

- Distributivity: for all a, b, and c in B ,

$$
\mathrm{a}+(\mathrm{b} \cdot \mathrm{c})=(\mathrm{a}+\mathrm{b}) \cdot(\mathrm{a}+\mathrm{c}) \text { and } \quad \mathrm{a} \cdot(\mathrm{~b}+\mathrm{c})=(\mathrm{a} \cdot \mathrm{~b})+(\mathrm{a} \cdot \mathrm{c})
$$

- Identity laws: there exist distinct elements 0 and 1 in B such that for all a in $\mathrm{B}, \mathrm{a}+0=\mathrm{a}$ and $\mathrm{a} \cdot 1=\mathrm{a}$
- Complement laws: for each a in B, there exists an element in B, \bar{a}, complement or negation of a, such that $a+\bar{a}=1$ and $a \cdot \bar{a}=0$

Properties of a Boolean algebra

- Uniqueness of the complement law:
for all a and x in B, if $a+x=1$ and $a \cdot x=0$ then $x=\bar{a}$
- Uniqueness of 0 and 1 :
if there exists x in B such that $a+x=a$ for all a in B, then $x=0$, and if there exists y in B such that $a \cdot y=a$ for all a in B, then $y=1$.
- Double complement law: for all $a \in B, \overline{(\bar{a})}=a$
- Idempotent law: for all $a \in B, a+a=a$ and $a \cdot a=a$.
- Universal bound law: for all $a \in B, a+1=1$ and $a \cdot 0=0$.
- De Morgan's laws: for all a and $b \in B, \overline{a+b}=\bar{a} \cdot \bar{b}$ and $\overline{a \cdot b}=\bar{a}+\bar{b}$
- Absorption laws: for all a and $b \in B,(a+b) \cdot a=a$ and $(a \cdot b)+a=a$
- Complements of 0 and $1: \overline{0}=1$ and $\overline{1}=0$.

Example proof

- Uniqueness of the complement law:
for all a and x in B , if $\mathrm{a}+\mathrm{x}=1$ and $\mathrm{a} \cdot \mathrm{x}=0$ then $\mathrm{x}=\overline{\mathrm{a}}$
Proof: Suppose a and x are particular arbitrarily chosen in B that satisfy the hypothesis: $\mathrm{a}+\mathrm{x}=1$ and $\mathrm{a} \cdot \mathrm{x}=0$.

$$
\begin{array}{rlrl}
\mathrm{x} & =\mathrm{x} \cdot 1 & & \text { because } 1 \text { is an identity for } \cdot \\
& =\mathrm{x} \cdot(\mathrm{a}+\overline{\mathrm{a})} & & \text { by the complement law for }+ \\
& =\mathrm{x} \cdot \mathrm{a}+\mathrm{x} \cdot \overline{\mathrm{a}} & & \text { by the distributive law for } \cdot \text { over }+ \\
& =\mathrm{a} \cdot \mathrm{x}+\mathrm{x} \cdot \overline{\mathrm{a}} & & \text { by the commutative law for } \cdot \\
& =0+\mathrm{x} \cdot \overline{\mathrm{a}} & & \text { by hypothesis } \\
& =\mathrm{a} \cdot \overline{\mathrm{a}}+\mathrm{x} \cdot \overline{\mathrm{a}} & & \text { by the complement law for } \cdot \\
& =\overline{(a} \cdot \mathrm{a})+(\bar{a} \cdot \mathrm{x}) \text { by the commutative law for } \cdot \\
& =\overline{\mathrm{a}} \cdot(\mathrm{a}+\mathrm{x}) & & \text { by the distributive law for } \cdot \text { over }+ \\
& =\overline{\mathrm{a}} \cdot 1 & & \text { by hypothesis } \\
& =\overline{\mathrm{a}} & & \text { because } 1 \text { is an identity for } \cdot
\end{array}
$$

Russell's paradox

- Most sets are not elements of themselves. A possible exception: The set of all abstract ideas might be considered an abstract idea.
- Imagine a set A being an element of itself: A \in A.
- Let S be the set of all sets that are not elements of themselves:

$$
S=\{A \mid A \text { is a set and } A \notin A\}
$$

- Is S an element of itself?
- If $S \in S$, then S does not satisfy the defining property for S, so $S \notin S$.
- If $S \notin S$, then satisfies the defining property for S, so $S \in S$.
- It cannot be either!

Russell's paradox: the Barber puzzle

- In a town, there is a male barber who shaves all those men, and only those men, who do not shave themselves.
- Does the barber shave himself?
- If the barber shaves himself, he is a member of the class of men who shave themselves. The barber does not shave himself because he doesn't shave men who shave themselves.
- If the barber does not shave himself, he is a member of the class of men who do not shave themselves. The barber shaves every man in this class, so the barber must shave himself.
- Both Yes \& No derive contradiction.

Russell's paradox: one solution

- Except for power set, whose existence is guaranteed by an axiom, whenever a set is defined using a predicate as a defining property, the set is a subset of a known set. (elements are from a known set)
- Then, S from Russell's Paradox is not a subset of a known set

$$
\begin{aligned}
& \mathrm{S}=\{\mathrm{A} \mid \mathrm{A} \text { is a set and } \mathrm{A} \notin \mathrm{~A}\} \text { (A's are not from a known set) } \\
& \mathbf{A} \in \mathbf{S} \Leftrightarrow \mathbf{A} \text { is a set and } \mathbf{A} \notin \mathrm{A} \\
& \mathbf{A} \text { in } \mathbf{S} \Leftrightarrow \mathbf{A} \text { is a set and } \mathbf{A} \text { not in } \mathbf{A} \\
& \text { B shave } \mathbf{A} \Leftrightarrow \mathbf{A} \text { is a man and } \mathbf{A} \text { not shave } \mathbf{A}
\end{aligned}
$$

- Solution is good for practical examples:

$$
S=\{x \text { in blocks } \mid x \text { is blue }\}
$$

The halting problem

- There is no computer algorithm that will accept any algorithm X and data set D as input and then output "halts" or "loops forever" to indicate whether or not X terminates in a finite number of steps when X is run with data set D .

Proof sketch (by contradiction): Suppose there is an algorithm CheckHalt such that for any input algorithm X and a data set D , it prints "halts" or "loops forever".
A new algorithm $\operatorname{Test}(\mathrm{X})$:
loops forever if CheckHalt(X, X) prints "halts" or
stops if CheckHalt(X, X) prints "loops forever".
Test $($ Test $)=$?

- If $\operatorname{Test(Test)~terminates~after~a~finite~number~of~steps,~then~}$ CheckHalt(Test, Test) prints "halts", so Test(Test) loops forever. Contradiction!
- If Test(Test) does not terminate after a finite number of steps, then

CheckHalt(Test, Test) prints "loops forever", so Test(Test) terminates. Contradiction!
So, CheckHalt doesn't exist.

