Functions

CSE 215, Foundations of Computer Science
 Stony Brook University

http:/ / www.cs.stonybrook.edu/liu/~cse215

Functions defined on general sets

- A function f from a set X to a set Y

$$
f: X \rightarrow Y
$$

X is the domain, Y is the co-domain
(1) every element in X is related to some element in Y
(2) no element in X is related to more than one element in Y

- Thus, for any element $x \in X$, there is a unique element $y \in Y$ such that $f(x)=y$
- range of $\mathrm{f}=$ image of X under $\mathrm{f}=\{\mathrm{y} \in \mathrm{Y} \mid \mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{x} \in \mathrm{X}\}$
- inverse image of $y=\{x \in X \mid f(x)=y\}$

Arrow diagrams

- An arrow diagram, with elements in X and Y , and an arrow from each x in X to corresponding y in Y .

- It defines a function because:
(1) Every element of X has an arrow coming out of it
(2) No element of X has two arrows coming out of it that point to two different elements of Y

Arrow diagrams: example 1

- $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \quad \mathrm{Y}=\{1,2,3,4\}$

Which one defines a function?

This one!

Arrow diagrams: example 2

- $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \quad \mathrm{Y}=\{1,2,3,4\}$

$$
\begin{aligned}
& f(a)=2 \\
& f(b)=4 \\
& f(c)=2
\end{aligned}
$$

- domain of $\mathrm{f}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \quad$ co-domain of $\mathrm{f}=\{1,2,3,4\}$
- range of $\mathrm{f}=\{2,4\}$
- inverse image of $2=\{\mathrm{a}, \mathrm{c}\}$
- inverse image of $4=\{b\}$
- inverse image of $1=\varnothing$
- function representation as a set of pairs: $\{(\mathrm{a}, 2),(\mathrm{b}, 4),(\mathrm{c}, 2)\}$

Function equality

Note the set notation for a function: $F(x)=y \Leftrightarrow(x, y) \in F$

- If $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{G}: \mathrm{X} \rightarrow \mathrm{Y}$ are functions, then $\mathrm{F}=\mathrm{G}$ if, and only if, $F(x)=G(x)$ for all $x \in X$.

Proof:

$\mathrm{F} \subseteq \mathrm{X} \times \mathrm{Y}$
$\mathrm{G} \subseteq \mathrm{X} \times \mathrm{Y}$
$F(x)=y \Leftrightarrow(x, y) \in F$

$$
G(x)=y \Leftrightarrow(x, y) \in G
$$

(\rightarrow) Suppose $F=G$. Then for all $x \in X$,

$$
\begin{gathered}
y=F(x) \Leftrightarrow(x, y) \in F \Leftrightarrow(x, y) \in G \Leftrightarrow y=G(x) \\
F(x)=y=G(x)
\end{gathered}
$$

(*) Suppose $F(x)=G(x)$ for all $x \in X$. Then for any $x \in X$:

$$
(x, y) \in F \Leftrightarrow y=F(x) \Leftrightarrow y=G(x) \Leftrightarrow(x, y) \in G
$$

F and G consist of exactly the same elements, hence $\mathrm{F}=\mathrm{G}$.

Function equality: example 1

- $\mathrm{J}_{3}=\{0,1,2\}$

$$
\begin{aligned}
& \mathrm{f}: \mathrm{J}_{3} \rightarrow \mathrm{~J}_{3} \\
& \mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{2}+\mathrm{x}+1\right) \bmod 3
\end{aligned}
$$

$$
\begin{aligned}
& g: J_{3} \rightarrow J_{3} \\
& g(x)=(x+2)^{2} \bmod 3
\end{aligned}
$$

\boldsymbol{x}	$\boldsymbol{x}^{\mathbf{2}+\boldsymbol{x}+\mathbf{1}}$	$f(\boldsymbol{x})=\left(\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{x}+\mathbf{1}\right) \bmod \mathbf{3}$	$(\boldsymbol{x}+\mathbf{2})^{\mathbf{2}}$	$\boldsymbol{g}(\boldsymbol{x})=(\boldsymbol{x}+\mathbf{2})^{\mathbf{2}} \bmod \mathbf{3}$
0	1	$1 \bmod 3=1$	4	$4 \bmod 3=1$
1	3	$3 \bmod 3=0$	9	$9 \bmod 3=0$
2	7	$7 \bmod 3=1$	16	$16 \bmod 3=1$

$$
\begin{aligned}
& f(0)=g(0)=1 \\
& f(1)=g(1)=0 \\
& f(2)=g(2)=1
\end{aligned}
$$

Hence, $\mathrm{f}=\mathrm{g}$

Function equality: example 2

- $\mathrm{F}: \mathbf{R} \rightarrow \mathbf{R}$ and $\mathrm{G}: \mathbf{R} \rightarrow \mathbf{R}$

$$
\begin{aligned}
& F+G: \mathbf{R} \rightarrow \mathbf{R} \text { and } G+F: \mathbf{R} \rightarrow \mathbf{R} \\
& (F+G)(x)=F(x)+G(x) \\
& (G+F)(x)=G(x)+F(x), \quad \text { for all } x \in \mathbf{R}
\end{aligned}
$$

For all real numbers x :

$$
\begin{aligned}
(\mathrm{F}+\mathrm{G})(\mathrm{x}) & =\mathrm{F}(\mathrm{x})+\mathrm{G}(\mathrm{x}) & & \text { by definition of } \mathrm{F}+\mathrm{G} \\
& =\mathrm{G}(\mathrm{x})+\mathrm{F}(\mathrm{x}) & & \text { by commutative law for } \\
& =(\mathrm{G}+\mathrm{F})(\mathrm{x}) & & \text { bddition of real numbers }
\end{aligned}
$$

Hence, $F+G=G+F$

Example functions (I)

- Identity function on a set:

Given a set X , define identity function $\mathrm{I}_{\mathrm{X}}: \mathrm{X} \rightarrow \mathrm{X}$ by

$$
\mathrm{I}_{\mathrm{X}}(\mathrm{x})=\mathrm{x}, \text { for all } \mathrm{x} \in \mathrm{X}
$$

- Function for a sequence:
$1,-1 / 2,1 / 3,-1 / 4,1 / 5, \ldots,(-1)^{n} /(n+1), \ldots$
$0 \rightarrow 1, \quad 1 \rightarrow-1 / 2, \quad 2 \rightarrow 1 / 3, \quad 3 \rightarrow-1 / 4, \quad 4 \rightarrow 1 / 5$

$$
\mathrm{n} \rightarrow(-1)^{\mathrm{n}} /(\mathrm{n}+1)
$$

$\mathrm{f}: \mathbf{N} \rightarrow \mathbf{R}$, for each integer $\mathrm{n} \geq 0, \mathrm{f}(\mathrm{n})=(-1)^{\mathrm{n}} /(\mathrm{n}+1)$ where ($\left.\mathbf{N}=\mathbf{Z}^{\text {nonneg }}\right) \quad$ OR
$\mathrm{g}: \mathbf{Z}^{+} \rightarrow \mathbf{R}$, for each integer $\mathrm{n} \geq 1, \mathrm{~g}(\mathrm{n})=(-1)^{\mathrm{n}+1} / \mathrm{n}$ where $\left(\mathbf{Z}^{+}=\mathbf{Z}^{\text {nonneg }}{ }_{-}\{\mathbf{0}\}\right)$

Example functions (II)

- Function defined on a power set:

$$
\mathrm{F}: \mathrm{P}(\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}) \longrightarrow \mathbf{Z}^{\text {nonneg }}
$$

For each $X \in P(\{a, b, c\})$,
$F(X)=$ the number of elements in X (i.e., the cardinality of X)

Example functions (III)

- Functions defined on a Cartesian product:

$$
\mathrm{M}: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \quad \text { and } \quad \mathrm{R}: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}
$$

The multiplication function: $\mathrm{M}(\mathrm{a}, \mathrm{b})=\mathrm{a} * \mathrm{~b}$
We omit parenthesis for tuples: $\mathrm{M}((\mathrm{a}, \mathrm{b}))=\mathrm{M}(\mathrm{a}, \mathrm{b})$

$$
\mathrm{M}(1,1)=1, \quad \mathrm{M}(2,2)=4
$$

The reflection function: $\mathrm{R}(\mathrm{a}, \mathrm{b})=(-a, b)$
R sends each point in the plane that corresponds to a pair of real numbers to the mirror image of the point across the vertical axis

$$
\mathrm{R}(1,1)=(-1,1), \quad \mathrm{R}(2,5)=(-2,5), \quad \mathrm{R}(-2,5)=(2,5)
$$

Example functions (IV)

- Logarithms and logarithmic functions:
- The base of a logarithm, b, is a positive real number with $b \neq 1$
- The logarithm with base bof $\mathrm{x}: \log _{\mathrm{b}} \mathrm{x}=\mathrm{y} \Leftrightarrow \mathrm{b}^{\mathrm{y}}=\mathrm{x}$
- The logarithmic function with base \mathbf{b} :

$$
\log _{\mathrm{b}} \mathrm{x}: \mathbf{R}^{+} \rightarrow \mathbf{R}
$$

Examples:
$\log _{3} 9=2$
$\log _{10}(1)=0$
$\log _{2} 1 / 2=-1$
$\log _{2}\left(2^{m}\right)=m$
because

$$
3^{2}=9
$$

because $\quad 10^{0}=1$
because
$2^{-1}=1 / 2$

More example functions (I)

- Encoding and decoding functions on sequences of 0's and 1's also called bit strings
Encoding function E: For each string s,
$E(s)=$ the string obtained from s by replacing each bit of s by the same bit written 3 times

Decoding function D : For each string t in the range of E ,

$$
\mathrm{D}(\mathrm{t})=\text { the string obtained from } \mathrm{t} \text { by }
$$ replacing each consecutive 3 identical bits of t by a single copy of that bit

More example functions (II)

- The Hamming distance function

Let S_{n} be the set of all strings of 0's and 1's of length n.
$\mathrm{H}: \mathrm{S}_{\mathrm{n}} \times \mathrm{S}_{\mathrm{n}} \rightarrow \mathrm{Z}^{\text {nonneg }}$
For each pair of strings $(s, t) \in S_{n} \times S_{n}$
$\mathrm{H}(\mathrm{s}, \mathrm{t})=$ number of positions in which s and t differ

Examples: For $\mathrm{n}=5, \mathrm{H}(11111,00000)=5$

$$
\begin{aligned}
& H(10101,00000)=3 \\
& H(01010,00000)=2
\end{aligned}
$$

More example functions (III)

- Boolean functions: (n-place) Boolean function

$$
\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}
$$

Cartesian product
domain $=$ set of all ordered n-tuples of 0's and 1's co-domain $=\{0,1\}$

Input			Output
\boldsymbol{P}	\boldsymbol{Q}	\boldsymbol{R}	\boldsymbol{S}
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	0

15 The input/ output tables correspond to some circuits.

More example functions (IV)

- Boolean functions example:

$$
\begin{gathered}
\mathrm{f}:\{0,1\}^{3} \rightarrow\{0,1\} \\
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right) \bmod 2
\end{gathered}
$$

$$
\mathrm{f}(0,0,0)=(0+0+0) \bmod 2=0 \bmod 2=0
$$

$$
\mathrm{f}(0,0,1)=(0+0+1) \bmod 2=1 \bmod 2=1
$$

$$
f(0,1,0)=(0+1+0) \bmod 2=1 \bmod 2=1
$$

$$
f(0,1,1)=(0+1+1) \bmod 2=2 \bmod 2=0
$$

$$
f(1,0,0)=(1+0+0) \bmod 2=1 \bmod 2=1
$$

$$
f(1,0,1)=(1+0+1) \bmod 2=2 \bmod 2=0
$$

$$
f(1,1,0)=(1+1+0) \bmod 2=2 \bmod 2=0
$$

$$
f(1,1,1)=(1+1+1) \bmod 2=3 \bmod 2=1
$$

Checking well-definedness

- A "function" f is not well defined if:
(1) there is no element y in the co-domain that satisfies $f(x)=y$ for some element x in the domain, or
(2) there are two different values of y that satisfy $f(x)=y$
- Example:
$\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}, \mathrm{f}(\mathrm{x})$ is the real number y such that $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ f is not well defined:
(1) $x=2$, there is no real number y such that $2^{2}+y^{2}=1$
(2) $x=0$, there are 2 real numbers $y=1$ and $y=-1$ such that

$$
0^{2}+y^{2}=1
$$

Checking well-definedness: example 2

- $\mathrm{f}: \mathbf{Q} \rightarrow \mathbf{Z}$,

$$
f(m / n)=m, \text { for all integers } m \text { and } n \text { with } n \neq 0
$$

f is not well defined:
$1 / 2=2 / 4 \rightarrow f(1 / 2)=f(2 / 4)$
but
$\mathrm{f}(1 / 2)=1 \quad \neq \quad 2=\mathrm{f}(2 / 4)$

That is, there are two different values of y that satisfy $f(x)=y$

Functions acting on sets

- If $f: X \rightarrow Y$ is a function and $A \subseteq X$ and $C \subseteq Y$, then

$$
\begin{aligned}
f(A)= & \{y \in Y \mid y=f(x) \text { for some } x \text { in } A\} \\
& \text { is the image of } A \\
f^{-1}(C) & =\{x \in X \mid f(x) \in C\}
\end{aligned}
$$

is the inverse image of C
Example: $\mathrm{X}=\{1,2,3,4\}, \mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}, \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$

$$
\begin{array}{ll}
\mathrm{f}(\{1,4\})=\{\mathrm{b}\} & \mathrm{f}^{-1}(\{\mathrm{a}, \mathrm{~b}\})=\{1,2,4\} \\
\mathrm{f}(\mathrm{X})=\{\mathrm{a}, \mathrm{~b}, \mathrm{~d}\} & \mathrm{f}^{-1}(\{\mathrm{c}, \mathrm{e}\})=\varnothing
\end{array}
$$

Functions acting on sets: an example proof

- Let X and Y be sets, let $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function, $\mathrm{A} \subseteq \mathrm{X}$, and $\mathrm{B} \subseteq \mathrm{X}$, then $F(A \cup B) \subseteq F(A) \cup F(B)$

Proof:

Suppose y $\in \operatorname{F}(A \cup B)$.
By definition of function, $y=F(x)$ for some $x \in A \cup B$.
By definition of union, $x \in A$ or $x \in B$.
Case 1, $x \in A: F(x)=y$, so $y \in F(A)$.
By definition of union: $y \in F(A) \cup F(B)$
Case 2, $x \in B: F(x)=y$, so $y \in F(B)$.
By definition of union: $y \in F(A) \cup F(B)$

One-to-one, onto, inverse functions

- $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is one-to-one (or injective) (often written 1-1) \Leftrightarrow for all $\mathrm{x}_{1} \in \mathrm{X}$ and $\mathrm{x}_{2} \in \mathrm{X}, \mathrm{F}\left(\mathrm{x}_{1}\right)=\mathrm{F}\left(\mathrm{x}_{2}\right) \rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$ or, equivalently (by contraposition), $\mathrm{x}_{1} \neq \mathrm{x}_{2} \rightarrow \mathrm{~F}\left(\mathrm{x}_{1}\right) \neq \mathrm{F}\left(\mathrm{x}_{2}\right)$

- $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is not one-to-one \Leftrightarrow
$\exists \mathrm{x}_{1} \in \mathrm{X}$ and $\mathrm{x}_{2} \in \mathrm{X}$, such that $\mathrm{x}_{1} \neq \mathrm{x}_{2}$ and $\mathrm{F}\left(\mathrm{x}_{1}\right)=\mathrm{F}\left(\mathrm{x}_{2}\right)$.

Two distinct elements
of X are sent to
the same element of Y.

One-to-one functions on finite sets

- Example 1:
$\mathrm{F}:\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} \rightarrow\{\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}\}$ defined by the following arrow diagram is one-to-one:

$$
\text { Domain of } F \quad \text { Co-domain of } F
$$

$$
\forall \mathrm{x}_{1} \in \mathrm{X} \text { and } \mathrm{x}_{2} \in \mathrm{X}, \quad \mathrm{x}_{1} \neq \mathrm{x}_{2} \rightarrow \mathrm{~F}\left(\mathrm{x}_{1}\right) \neq \mathrm{F}\left(\mathrm{x}_{2}\right)
$$

One-to-one functions on finite sets

- Example 2:
$\mathrm{G}:\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} \rightarrow\{\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}\}$ defined by the following arrow diagram is not one-to-one:

\exists elements $\mathrm{x}_{1} \in \mathrm{X}$ and $\mathrm{x}_{2} \in \mathrm{X}$, such that $\mathrm{x}_{1} \neq \mathrm{x}_{2}$ and $\mathrm{G}\left(\mathrm{x}_{1}\right)=\mathrm{G}\left(\mathrm{x}_{2}\right)$ that is, $a \in X$ and $c \in X$, such that $a \neq c$ and $G(a)=G(c)$

One-to-one functions on finite sets

- Example 3:
$\mathrm{H}:\{1,2,3\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{H}(1)=\mathrm{c}, \mathrm{H}(2)=\mathrm{a}, \mathrm{H}(3)=\mathrm{d}$
H is one-to-one:

$$
\forall \mathrm{x}_{1} \in \mathrm{X} \text { and } \mathrm{x}_{2} \in \mathrm{X}, \mathrm{x}_{1} \neq \mathrm{x}_{2} \rightarrow \mathrm{H}\left(\mathrm{x}_{1}\right) \neq \mathrm{H}\left(\mathrm{x}_{2}\right)
$$

- Example 4:
$K:\{1,2,3\} \rightarrow\{a, b, c, d\}, K(1)=d, K(2)=b, K(3)=d$
K is not one-to-one:

$$
K(1)=K(3)=d
$$

That is, $\exists \mathrm{x}_{1} \in \mathrm{X}$ and $\mathrm{x}_{2} \in \mathrm{X}$, such that $\mathrm{x}_{1} \neq \mathrm{x}_{2}$ and $\mathrm{K}\left(\mathrm{x}_{1}\right)=\mathrm{K}\left(\mathrm{x}_{2}\right)$

One-to-one functions on infinite sets

- Copied definition:
f is one-to-one $\Leftrightarrow \forall \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}$, if $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$ then $\mathrm{x}_{1}=\mathrm{x}_{2}$
- To show f is one-to-one, generally use direct proof:
- $\operatorname{suppose} \mathrm{x}_{1}$ and x_{2} are elements of X such that $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
- show that $\mathrm{x}_{1}=\mathrm{x}_{2}$.
- To show f is not one-to-one, generally use counterexample:
- find elements x_{1} and x_{2} in X so that $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$ but $\mathrm{x}_{1} \neq \mathrm{x}_{2}$.

One-to-one functions on infinite sets

copied: f is one-to-one $\Leftrightarrow \forall \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}$, if $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$ then $\mathrm{x}_{1}=\mathrm{x}_{2}$

- Example 1: f: $\mathbf{R} \rightarrow \mathbf{R}$,

$$
\mathrm{f}(\mathrm{x})=4 \mathrm{x}-1 \text { for all } \mathrm{x} \in \mathbf{R} \quad \text { is } \mathrm{f} \text { one-to-one? }
$$

Suppose x_{1} and x_{2} are any real numbers such that $4 x_{1}-1=4 x_{2}-1$.
Adding 1 to both sides and and dividing by 4 both sides gives $\mathrm{x}_{1}=\mathrm{x}_{2}$.
Yes, f is one-to-one

- Example 2: $g: \mathbf{Z} \rightarrow \mathbf{Z}$,

$$
\mathrm{g}(\mathrm{n})=\mathrm{n}^{2} \text { for all } \mathrm{n} \in \mathbf{Z} \quad \text { is } \mathrm{g} \text { one-to-one? }
$$

Start by trying to show that g is one-to-one
Suppose n_{1} and n_{2} are integers such that $\mathrm{n}_{1}{ }^{2}=\mathrm{n}_{2}{ }^{2}$ and try to show $\mathrm{n}_{1}=\mathrm{n}_{2}$. but $1^{2}=(-1)^{2}=1$.

Application: hash functions

- Hash functions are functions defined from larger to smaller sets of integers used in identifying documents.
- Example: Hash: $\operatorname{SSN} \rightarrow\{0,1,2,3,4,5,6\}$
$\mathrm{SSN}=$ set of all social security numbers (ignoring hyphens)
$\operatorname{Hash}(\mathrm{n})=\mathrm{n} \bmod 7 \quad$ for all social security numbers n
e.g., $\operatorname{Hash}(328343419)=328343419-(7 \cdot 46906202)=5$
- Hash is not one-to one: called a collision for hash functions.
e.g., $\operatorname{Hash}(328343412)=328343412-(7 \cdot 46906201)=5$

Collision resolution:
if position $\operatorname{Hash}(\mathrm{n})$ is already occupied, then start from that position and search downward to place the record in the first empty position.

Onto functions

- $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is onto (surjective) \Leftrightarrow

$$
\forall \mathrm{y} \in \mathrm{Y}, \quad \exists \mathrm{x} \in \mathrm{X} \text { such that } \mathrm{F}(\mathrm{x})=\mathrm{y}
$$

For arrow diagrams, a function is onto if each element in the codomain has an arrow to it from some element in the domain.

- $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is not onto (surjective) \Leftrightarrow

$$
\exists \mathrm{y} \in \mathrm{Y} \text { such that } \forall \mathrm{x} \in \mathrm{X}, \mathrm{~F}(\mathrm{x}) \neq \mathrm{y} \text {. }
$$

There is some element in Y that is not the image of any element in X . For arrow diagrams, a function is not onto if at least one element in its co-domain does not have an arrow pointing to it.

Onto functions with arrow diagrams

- F is onto:

Each element y in
Y equals $F(x)$ for at least one x in X.

Onto functions: example 1

- $\mathrm{G}:\{1,2,3,4,5\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$

G is onto
because $\forall y \in Y, \exists x \in X$, such that $G(x)=y$

Not onto functions

- F is not onto

At least one element in Y does not equal $F(x)$ for any x in X.

Onto functions: example 2

- $\mathrm{F}:\{1,2,3,4,5\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$

F is not onto
because $b \neq F(x)$ for any x in X that is, $\exists \mathrm{y} \in \mathrm{Y}$ such that $\forall \mathrm{x} \in \mathrm{X}, \mathrm{F}(\mathrm{x}) \neq \mathrm{y}$

Onto functions: more examples

- $\mathrm{H}:\{1,2,3,4\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

$$
\mathrm{H}(1)=\mathrm{c}, \quad \mathrm{H}(2)=\mathrm{a}, \quad \mathrm{H}(3)=\mathrm{c}, \text { and } \quad \mathrm{H}(4)=\mathrm{b}
$$

H is onto because $\forall y \in Y, \quad \exists x \in X$ such that $H(x)=y$:
$\mathrm{a}=\mathrm{H}(2)$
$\mathrm{b}=\mathrm{H}(4)$
$\mathrm{c}=\mathrm{H}(1)=\mathrm{H}(3)$

- $\mathrm{K}:\{1,2,3,4\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

$$
K(1)=c, \quad K(2)=b, \quad K(3)=b, \text { and } \quad K(4)=c
$$

H is not onto because $a \neq K(x)$ for any $x \in\{1,2,3,4\}$.

Onto functions on infinite sets

- Copied definition:
F is onto $\Leftrightarrow \forall y \in Y, \exists x \in X$ such that $F(x)=y$.
- To prove F is onto, generally use direct proof:
- suppose y is any element of Y,
- show there is an element x of X with $F(x)=y$.
- To prove F is not onto, use counterexample:
- find an element y of Y such that $y \neq F(x)$ for any x in X.

Onto functions on infinite sets: examples

- Prove that a function is onto or give counterexample
- $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$

$$
f(x)=4 x-1 \text { for all } x \in \mathbf{R}
$$

Suppose $y \in R$. Show there is a real number x such that $y=4 x-1$.
$4 \mathrm{x}-1=\mathrm{y} \Leftrightarrow \mathrm{x}=(\mathrm{y}+1) / 4 \in \mathrm{R}$. So, f is onto

- $\mathrm{h}: \mathbf{Z} \rightarrow \mathbf{Z}$

$$
\begin{gathered}
\mathrm{h}(\mathrm{n})=4 \mathrm{n}-1 \text { for all } \mathrm{n} \in \mathbf{Z} \\
0 \in \mathbf{Z}, \mathrm{~h}(\mathrm{n})=0 \Leftrightarrow 4 \mathrm{n}-1=0 \Leftrightarrow \mathrm{n}=1 / 4 \notin \mathbf{Z}
\end{gathered}
$$

$h(n) \neq 0$ for any integer n. So h is not onto

Exponential functions

- The exponential function with base $\mathrm{b}: \exp _{\mathrm{b}}: \mathbf{R} \rightarrow \mathbf{R}^{+}$

$$
\exp _{b}(x)=b^{x}
$$

$\exp _{b}(0)=b^{0}=1$
$\exp _{b}(-x)=b^{-x}=1 / b^{x}$

- The exponential function is one-to-one and onto:
for any positive real number $\mathrm{b} \neq 1, \mathrm{~b}^{\mathrm{v}}=\mathrm{b}^{\mathrm{u}} \rightarrow \mathrm{u}=\mathrm{v}, \forall \mathrm{u}, \mathrm{v} \in \mathbf{R}$
- Laws of exponents: $\forall \mathrm{b}, \mathrm{c} \in \mathbf{R}^{+}$and $\mathrm{u}, \mathrm{v} \in \mathbf{R}$

$$
\begin{aligned}
& b^{u} b^{v}=b^{u+v} \\
& b^{u} / b^{v}=b^{u-v} \\
& \left(b^{u}\right)^{v}=b^{u v} \\
& (b c)^{u}=b^{u} c^{u}
\end{aligned}
$$

Logarithmic functions

- The logarithmic function with base $\mathrm{b}: \log _{\mathrm{b}}: \mathbf{R}^{+} \rightarrow \mathbf{R}$

$$
\log _{b}(\mathrm{x})=\mathrm{y} \Leftrightarrow \mathrm{~b}^{\mathrm{y}}=\mathrm{x}
$$

- The logarithmic function is one-to-one and onto: for any positive real number $b \neq 1$,

$$
\log _{\mathrm{b}} \mathrm{u}=\log _{\mathrm{b}} \mathrm{v} \rightarrow \mathrm{u}=\mathrm{v}, \quad \forall \mathrm{u}, \mathrm{v} \in \mathbf{R}^{+}
$$

- Properties of logarithms: $\forall \mathrm{b}, \mathrm{c}, \mathrm{x} \in \mathbf{R}^{+}$, with $\mathrm{b} \neq 1$ and $\mathrm{c} \neq 1$

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b}\left(x^{a}\right)=a \log _{b} x \\
& \log _{c} x=\log _{b} x / \log _{b} c
\end{aligned}
$$

Logarithmic functions: example proofs

- $\forall \mathrm{b}, \mathrm{c}, \mathrm{x} \in \mathbf{R}^{+}$, with $\mathrm{b} \neq 1$ and $\mathrm{c} \neq 1: \log _{\mathrm{c}} \mathrm{x}=\log _{\mathrm{b}} \mathrm{x} / \log _{\mathrm{b}} \mathrm{c}$

Proof:

Suppose positive real numbers b, c, and x are given, s.t.
(1) $u=\log _{b} \mathrm{c}$
(2) $\mathrm{v}=\log _{\mathrm{c}} \mathrm{x}$
(3) $\mathrm{w}=\log _{\mathrm{b}} \mathrm{x}$

By definition of logarithm: $c=b^{u}, x=c^{v}$ and $x=b^{w}$
$\mathrm{x}=\mathrm{c}^{\mathrm{v}}=\left(\mathrm{b}^{\mathrm{u}}\right)^{\mathrm{v}}=\mathrm{b}^{\mathrm{uv}}$, by laws of exponents
So $\mathrm{x}=\mathrm{b}^{\mathrm{w}}=\mathrm{b}^{\mathrm{uv}}$, so $u v=\mathrm{w}$
That is, $\left(\log _{b} \mathrm{c}\right)\left(\log _{\mathrm{c}} \mathrm{x}\right)=\log _{\mathrm{b}} \mathrm{x}$, by (1), (2), and (3)
By dividing both sides by $\log _{\mathrm{b}} \mathrm{c}: \log _{\mathrm{c}} \mathrm{x}=\log _{\mathrm{b}} \mathrm{x} / \log _{\mathrm{b}} \mathrm{c}$

Logarithmic functions: notations

- Logarithms with base 10 are called common logarithms and are denoted by simply log.
- Logarithms with base e are called natural logarithms and are denoted by \ln.
- Example:

$$
\log _{2} 5=\log 5 / \log 2=\ln 5 / \ln 2
$$

One-to-one correspondences

- A one-to-one correspondence (or bijection) from a set X to a set Y is a function $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ that is both one-to-one and onto.
- Example:

$$
X=\text { domain of } F \quad{ }_{c} \quad Y=\text { co-domain of } F
$$

One-to-one correspondences: example 2

- A function from a power set to a set of strings

$$
\mathrm{h}: \mathrm{P}(\{\mathrm{a}, \mathrm{~b}\}) \rightarrow\{00,01,10,11\}
$$

If a is in A, write a 1 in the $1^{\text {st }}$ position of the string $h(A)$.
If a is not in A, write a 0 in the $1^{\text {st }}$ position of the string $h(A)$.
If b is in A, write a 1 in the $2^{\text {nd }}$ position of the string $h(A)$.
If b is not in A, write a 0 in the $2^{\text {nd }}$ position of the string $h(A)$.

h			
Subset of $\{a, b\}$	Status of a	Status of b	String in S
\emptyset	not in	not in	00
$\{a\}$	in	not in	10
$\{b\}$	not in	in	01
$\{a, b\}$	in	in	11

One-to-one correspondences: example 3

- Example: $\mathrm{F}: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}$

$$
F(x, y)=(x+y, x-y), \text { for all }(x, y) \in \mathbf{R} \times \mathbf{R}
$$

Proof that F is one-to-one:

Suppose that ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) are any ordered pairs in $\mathbf{R} \times \mathbf{R}$ such that $\mathrm{F}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\mathrm{F}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$.
$\Leftrightarrow\left(\mathrm{x}_{1}+\mathrm{y}_{1}, \mathrm{x}_{1}-\mathrm{y}_{1}\right)=\left(\mathrm{x}_{2}+\mathrm{y}_{2}, \mathrm{x}_{2}-\mathrm{y}_{2}\right)$, by definition of F
$\Leftrightarrow(1) \mathrm{x}_{1}+\mathrm{y}_{1}=\mathrm{x}_{2}+\mathrm{y}_{2}$ and (2) $\mathrm{x}_{1}-\mathrm{y}_{1}=\mathrm{x}_{2}-\mathrm{y}_{2}$, by pair equalty
$(1)+(2) \rightarrow 2 x_{1}=2 x_{2} \rightarrow(3) x_{1}=x_{2}$
Substituting (3) in (2) $\rightarrow \mathrm{x}_{1}+\mathrm{y}_{1}=\mathrm{x}_{1}+\mathrm{y}_{2} \rightarrow \mathrm{y}_{1}=\mathrm{y}_{2}$
So, $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
So, F is one-to-one.

One-to-one correspondences: example 3

- Example: $\mathrm{F}: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}$

$$
F(x, y)=(x+y, x-y), \text { for all }(x, y) \in \mathbf{R} \times \mathbf{R}
$$

Proof that F is onto:

Let (u, v) be any ordered pair in $\mathbf{R} \times \mathbf{R}$
Suppose that we found (r, s) $\in \mathbf{R} \times \mathbf{R}$ such that $\mathrm{F}(\mathrm{r}, \mathrm{s})=(\mathrm{u}, \mathrm{v})$.
$\Leftrightarrow(\mathrm{r}+\mathrm{s}, \mathrm{r}-\mathrm{s})=(\mathrm{u}, \mathrm{v}) \Leftrightarrow \mathrm{r}+\mathrm{s}=\mathrm{u}$ and $\mathrm{r}-\mathrm{s}=\mathrm{v}$
$\Leftrightarrow 2 \mathrm{r}=\mathrm{u}+\mathrm{v}$ and $2 \mathrm{~s}=\mathrm{u}-\mathrm{v}$
$\Leftrightarrow \mathrm{r}=(\mathrm{u}+\mathrm{v}) / 2$ and $\mathrm{s}=(\mathrm{u}-\mathrm{v}) / 2$
We found (r,s) $\in \mathbf{R} \times \mathbf{R}$ such that $F(r, s)=(u, v)$
So, F is onto.
43 Thus, F is a One-to-One correspondence.

Inverse functions

- If $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is a one-to-one correspondence, then there is an inverse function for $\mathrm{F}, \mathrm{F}^{-1}: \mathrm{Y} \rightarrow \mathrm{X}$, such that for any element $y \in Y$,
$F^{-1}(y)=$ that unique element $x \in X$ such that $F(x)=y$

$$
F^{-1}(y)=x \Leftrightarrow y=F(x)
$$

Inverse functions: example 1

- Function h:

The inverse function for h is h^{-1} :

Inverse functions: example 2

- Function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$

$$
f(x)=4 x-1 \text { for all real numbers } x .
$$

The inverse function for f is $f^{-1}: \mathbf{R} \rightarrow \mathbf{R}$, for any y in \mathbf{R},
$f^{-1}(y)$ is that unique real number x such that $f(x)=y$.
$\mathrm{f}(\mathrm{x})=\mathrm{y} \Leftrightarrow 4 \mathrm{x}-1=\mathrm{y} \Leftrightarrow \mathrm{x}=(\mathrm{y}+1) / 4$
Hence, $\mathrm{f}^{-1}(\mathrm{y})=(\mathrm{y}+1) / 4$.

Inverse functions: one-to-one, onto

- If X and Y are sets and $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ is one-to-one and onto, then $\mathrm{F}^{-1}: \mathrm{Y} \rightarrow \mathrm{X}$ is also one-to-one and onto.

Proof:

F^{-1} is one-to-one:
Suppose y_{1} and y_{2} are elements of Y, such that $F^{-1}\left(y_{1}\right)=F^{-1}\left(y_{2}\right)$
Let $\mathrm{x}=\mathrm{F}^{-1}\left(\mathrm{y}_{1}\right)=\mathrm{F}^{-1}\left(\mathrm{y}_{2}\right)$. Then $\mathrm{x} \in \mathrm{X}$.
By definition of $\mathrm{F}^{-1}, F(\mathrm{x})=\mathrm{y}_{1}$ and $\mathrm{F}(\mathrm{x})=\mathrm{y}_{2}$, so $\mathrm{y}_{1}=\mathrm{y}_{2}$ F^{-1} is onto:

Suppose $x \in X$. Need to find y in Y, such that $F^{-1}(y)=x$
Let $\mathrm{y}=\mathrm{F}(\mathrm{x})$. Then $\mathrm{y} \in \mathrm{Y}$.
By definition of $\mathrm{F}^{-1}, \mathrm{~F}^{-1}(\mathrm{y})=\mathrm{x}$.

The Pigeonhole principle (sec 9.4)

- A function from a finite set to a smaller set cannot be 1-1: at least 2 elements in the domain have the same image in co-domain If n pigeons fly into m pigeonholes with $\mathrm{n}>\mathrm{m}$, then at least one hole contains two or more pigeons.
 at least 2 arrows point to the same element in co-domain

The Pigeonhole principle: example 1

- In a group of 6 people, must there be at least two who were born in the same month?
- In a group of 13 people, must there be at least two who were born in the same month

13 people (pigeons)

The Pigeonhole principle: example 2

- Finding the number to pick to ensure a result: at least the cardinality of the co-domain +1
- A drawer contains black and white socks.

What is the least number of socks you must pull out to be sure to get a matched pair?

Socks pulled out (pigeons)

2 socks are not enough: one white and one black

3 socks are enough by the pigeonhole principle

The Pigeonhole principle: example 3

- Reach a certain sum: $\operatorname{Let} A=\{1,2,3,4,5,6,7,8\}$
- If we select 4 integers from A, must at least one pair of the integers have a sum of 9 ?

No. Let $B=\{1,2,3,4\}$

$$
1+2=3 ; 1+3=4 ; 1+4=5 ; 2+3=5 ; 2+4=6 ; 3+4=7
$$

- If we select 5 integers from A, must at least one pair of the integers have a sum of 9 ? Yes.

The 5 selected integers (pigeons)

Generalized Pigeonhole principle

- For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k , if $k<n / m$ (i.e., $k m<n$), then there is some $y \in Y$ such that y is the image of at least $\mathrm{k}+1$ distinct elements of X .
- Example:

$$
\begin{aligned}
& \mathrm{n}=9 \text { pigeons } \\
& \mathrm{m}=4 \text { holes }
\end{aligned}
$$

a least one pigeonhole contains 3 or more pigeons.

Pigeons Pigeonholes

$52 \mathrm{k}=2<9 / 4, \mathrm{k}+1=3$

One-to-one and onto for finite sets

- Let X and Y be finite sets with the same number of elements and f is a function from X to Y . Then \mathbf{f} is $\mathbf{1 - 1} \Leftrightarrow \mathbf{f}$ is onto Proof: Let $\mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}\right\}$ and $\mathrm{Y}=\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{m}}\right\}$
(\rightarrow) If f is $1-1$, then $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$ for $\mathrm{i}=1, \ldots \mathrm{~m}$ are all distinct. Let $\mathrm{S}=\{\mathrm{y} \in \mathrm{Y} \mid \forall \mathrm{x} \in \mathrm{X}, \mathrm{f}(\mathrm{x}) \neq \mathrm{y}\} ;$ all $\left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)\right\}$ and S are mutually disjoint. $\mathrm{m}=|\mathrm{Y}|=\left|\left\{\mathrm{f}\left(\mathrm{x}_{1}\right)\right\}\right|+\left|\left\{\mathrm{f}\left(\mathrm{x}_{2}\right)\right\}\right|+\ldots+\left|\left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{m}}\right)\right\}\right|+|\mathrm{S}|=\mathrm{m}+|\mathrm{S}|$ $\Leftrightarrow|S|=0$, no element of Y is not the image of some element of X.

That is, f is onto.
(*) If f is onto, then $\left|f^{-1}\left(y_{i}\right)\right| \geq 1$ for all $i=1, \ldots, m$.
all $\left\{\mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{i}}\right)\right\}$ are mutually disjoint by f .
$\mathrm{m}=|\mathrm{X}|>=\left|\mathrm{f}^{-1}\left(\mathrm{y}_{1}\right)\right|+\ldots+\left|\mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{m}}\right)\right|$. m terms, so $\left|\mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{i}}\right)\right|=1$.

Composition of functions

- Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}^{\prime}$ and $g: Y \rightarrow Z$ be functions with the property that the range of f is a subset of the domain of $g: Y^{\prime} \subseteq Y$

The composition of f and g is a function $g \circ f: X \rightarrow Z$:

$$
(g \circ f)(x)=g(f(x)) \quad \text { for all } x \in X
$$

Composition of functions: example 1

- $\mathrm{f}: \mathbf{Z} \rightarrow \mathbf{Z}$ and $\mathrm{g}: \mathbf{Z} \rightarrow \mathbf{Z}$

$$
\begin{aligned}
& f(\mathrm{n})=\mathrm{n}+1, \text { for all } \mathrm{n} \in \mathbf{Z} \\
& \mathrm{~g}(\mathrm{n})=\mathrm{n}^{2}, \text { for all } \mathrm{n} \in \mathbf{Z} \\
& (\mathrm{~g} \circ \mathrm{f})(\mathrm{n})=\mathrm{g}(\mathrm{f}(\mathrm{n}))=\mathrm{g}(\mathrm{n}+1)=(\mathrm{n}+1)^{2}, \text { for all } \mathrm{n} \in \mathbf{Z} \\
& (\mathrm{f} \circ \mathrm{~g})(\mathrm{n})=\mathrm{f}(\mathrm{~g}(\mathrm{n}))=\mathrm{f}\left(\mathrm{n}^{2}\right)=\mathrm{n}^{2}+1, \text { for all } \mathrm{n} \in \mathbf{Z} \\
& (\mathrm{~g} \circ \mathrm{f})(1)=(1+1)^{2}=4 \\
& (\mathrm{f} \circ \mathrm{~g})(1)=1^{2}+1=2 \\
& \text { So, } \mathrm{f} \circ \mathrm{~g} \neq \mathrm{g} \circ \mathrm{f}
\end{aligned}
$$

Composition of functions: example 2

- $\mathrm{f}:\{1,2,3\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{g}:\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\} \rightarrow\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$

Composition of functions: example 3

- $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{Y}=\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}, \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$

$\mathrm{I}_{\mathrm{X}}: \mathrm{X} \rightarrow \mathrm{X}$ is an identity function
$\mathrm{I}_{\mathrm{X}}(\mathrm{x})=\mathrm{x}$, for all $\mathrm{x} \in \mathrm{X}$
$\left(\mathrm{f} \circ \mathrm{I}_{\mathrm{X}}\right)(\mathrm{x})=\mathrm{f}\left(\mathrm{I}_{\mathrm{X}}(\mathrm{x})\right)=\mathrm{f}(\mathrm{x})$, for all $\mathrm{x} \in \mathrm{X}$

$\mathrm{I}_{\mathrm{Y}}: \mathrm{Y} \rightarrow \mathrm{Y}$ is an identity function
$\mathrm{I}_{\mathrm{Y}}(\mathrm{y})=\mathrm{y}$, for all $\mathrm{y} \in \mathrm{Y}$
$\left(\mathrm{I}_{\mathrm{Y}}{ }^{\circ} \mathrm{f}\right)(\mathrm{x})=\mathrm{I}_{\mathrm{Y}}(\mathrm{f}(\mathrm{x}))=\mathrm{f}(\mathrm{x})$, for all $\mathrm{x} \in \mathrm{X}$

Composition of functions: example 4

- Composing a function with its inverse:

Let $f:\{a, b, c\} \rightarrow\{x, y, z\}$ be a one-to-one and onto function

f is one-to-one correspondence $\longrightarrow \mathrm{f}^{-1}:\{\mathrm{x}, \mathrm{y}, \mathrm{z}\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

$\left(\mathrm{f}^{-1} \circ \mathrm{f}\right)(\mathrm{a})=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{a}))=\mathrm{f}^{-1}(\mathrm{z})=\mathrm{a}$
$\left(\mathrm{f}^{-1} \circ \mathrm{f}\right)(\mathrm{b})=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{b}))=\mathrm{f}^{-1}(\mathrm{x})=\mathrm{b}$
$\rightarrow \mathrm{f}^{-1} \circ \mathrm{f}=\mathrm{I}_{\mathrm{X}}$
58
$\left(\mathrm{f}^{-1} \circ \mathrm{f}\right)(\mathrm{c})=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{c}))=\mathrm{f}^{-1}(\mathrm{y})=\mathrm{c}$ also $\mathbf{f} \circ \mathbf{f}^{-1}=\mathbf{I}_{\mathbf{Y}}$

Composition of functions: example 4

- Composing a function with its inverse:

If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a one-to-one and onto function with inverse function $\mathrm{f}^{-1}: \mathrm{Y} \rightarrow \mathrm{X}$, then (1) $\mathrm{f}^{-1} \circ \mathrm{f}=\mathrm{I}_{\mathrm{X}}$ and (2) $\mathrm{f} \circ \mathrm{f}^{-1}=\mathrm{I}_{\mathrm{Y}}$

Proof of (1):

Let x be any element in $\mathrm{X}:\left(\mathrm{f}^{-1} \mathrm{of}\right)(\mathrm{x})=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=\mathrm{x}^{\prime} \in \mathrm{X}(*)$ Definition of inverse function:
$\mathrm{f}^{-1}(\mathrm{~b})=\mathrm{a} \Leftrightarrow \mathrm{f}(\mathrm{a})=\mathrm{b}$ for all $\mathrm{a} \in \mathrm{X}$ and $\mathrm{b} \in \mathrm{Y}$
$\rightarrow \mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=\mathrm{x}^{\prime} \Leftrightarrow \mathrm{f}\left(\mathrm{x}^{\prime}\right)=\mathrm{f}(\mathrm{x})$
Since f is one-to-one, this implies that $\mathrm{x}^{\prime}=\mathrm{x}$.
$(*) \rightarrow\left(\mathrm{f}^{-1} \circ \mathrm{f}\right)(\mathrm{x})=\mathrm{x}$

Composition of one-to-one functions

- If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ are both one-to-one functions, then $g \circ f$ is also one-to-one.

Proof (by direct proof):
Suppose $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ are both one-to-one functions.

Suppose $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}$ such that: $(\mathrm{g} \circ \mathrm{f})\left(\mathrm{x}_{1}\right)=(\mathrm{g} \circ \mathrm{f})\left(\mathrm{x}_{2}\right)$
By definition of composition of functions, $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$.
Since g is one-to-one, $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Since f is one-to-one, $\mathrm{x}_{1}=\mathrm{x}_{2}$.

Composition of one-to-one functions

- Example:

Composition of onto functions

- If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ are both onto functions, then $\mathrm{g}{ }^{\circ} \mathrm{f}$ is onto.

Proof:

Suppose $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ are both onto functions.
Let z be an element of Z .
Since g is onto, there is an element y in Y such that $g(y)=z$.
Since f is onto, there is an element x in X such that $f(x)=y$.
$\mathrm{z}=\mathrm{g}(\mathrm{y})=\mathrm{g}(\mathrm{f}(\mathrm{x}))=(\mathrm{g} \circ \mathrm{f})(\mathrm{x}) \rightarrow \mathrm{g} \circ \mathrm{f}$ is onto

Composition of onto functions

- Example:

Cardinality and sizes of infinity

- cardinal number (cardinal): describe number of elements in a set. ordinal number (ordinal): describe order of elements in an ordered set.
- finite set: the empty set or a set that can be put into $1-1$ correspondence with $\{1,2, \ldots, \mathrm{n}\}$ for some positive integer n . infinite set: a nonempty set that cannot be put into 1-1 correspondence with $\{1,2, \ldots, n\}$ for any positive integer n.
- a set A has the same cardinality a set B if, and only if, there is a $1-1$ correspondence from A to B.
- reflexivity: A has same cardinality as A
- symmetry: if A has same cardinality as B , then B has same cardinality as A
- transitivity: if A has same cardinality as B, and B has same cardinality as C, then A has same cardinality as C .

Cardinality: surprising example

- An infinite set and a proper subset can have the same cardinality
- Example:
\mathbf{Z}, the set of integers, and $\mathbf{2 Z}$, the set of even numbers have the same cardinality.

Proof: define function $\mathrm{H}: \mathbb{Z} \rightarrow 2 \mathbb{Z}$ as $\mathrm{H}(\mathrm{n})=2 \mathrm{n}$ for all $\mathrm{n} \in \mathbb{Z}$. H is $1-1$: if $\mathrm{H}(\mathrm{n} 1)=\mathrm{H}(\mathrm{n} 2)$ then $\mathrm{n} 1=\mathrm{n} 2$, by def of H and div by 2 .
H is onto : any $m \in \mathbf{2 Z}, m$ is even, so $m=2 k$ for some $k \in \mathbf{Z}$
65 Thus H is a $1-1$ correspondence.

Countable sets

- Counting

- A set is countably infinite if, and only if, it has the same cardinality as \mathbf{Z}^{+}, the set of positive integers.
- A set is countable if, and only if, it is finite or countbly infinite.
- A set is uncountable if and only if it is not countable.

Countable sets: easy example

- The set \mathbf{Z} of all integers is countable (and so $\mathbf{2 Z}$ is too) positive integers

$\underbrace{\cdots-5}$| | -4 | -3 | -2 | -1 | 0 | \nmid | 2 | 3 | 4 | $5 \cdots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | all integers

Proof:

No n in Z is counted twice:
$1-1: \mathrm{n}$ in Z -- at most 1 m in Z^{+}
All n in Z is counted: onto: each n in Z -- some m in Z^{+}

Formally, define function $\mathrm{F}: \mathbf{Z}^{+} \rightarrow \mathbf{Z}$ as
$F(n)=n / 2 \quad$ if n is an even positive integer

$$
-(\mathrm{n}-1) / 2 \text { if } \mathrm{n} \text { is an odd positive integer }
$$

Countable sets of same cardinality

- For function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, where A and B have the same cardinality, if A and B are finite, then f is $1-1 \Leftrightarrow f$ is onto (slide 53)
- If A and B are infinite, then there exist functions that are both 1-1 and onto, functions that are 1-1 but not onto, functions that are onto but not 1-1.

Examples: \mathbf{Z}^{+}and \mathbf{Z} have the same cardinality (previous slide)
i: $\mathbf{Z}^{+} \rightarrow \mathbf{Z}$ with $\mathrm{i}(\mathrm{n})=\mathrm{n}$ is $1-1$ but not onto
$\mathrm{j}: \mathbf{Z} \rightarrow \mathbf{Z}^{+}$with $\mathrm{j}(\mathrm{n})=|\mathrm{n}|+1$ is onto but not 1-1

Larger infinities? surprising example

- The set Q^{+}of all positive rational numbers is countable Rational number are dense:
between any two, there is another!

Proof:

Count following arrows, skipping duplicates

$$
F(1)=1 / 1, F(2)=1 / 2, F(3)=2 / 1, F(4)=3 / 1,
$$

$$
\text { skip } 2 / 2=1 / 1, F(\mathrm{t})=1 / 3, \ldots
$$

F is onto: all q in \mathbf{Q}^{+}will be counted F is 1-1: no q in \mathbf{Q}^{+}is counted twice

Larger infinities: famous example

- The set of all real numbers between 0 and 1 is uncountable Proof (by contradiction): Suppose the set [0,1] is countable.
Then decimal representations of all these numbers can be written in a list, on right: $0 . a_{31} a_{32} a_{33} \cdots a_{3 n} \ldots$. $0 . a_{21} a_{22} a_{23} \cdots a_{2 n} \cdots \cdot$ The i-th number's j-th decimal digit is $a_{i j}$:
$\begin{array}{clllllllll}\text { e.g., } a_{11}=2, a_{22}=1, & 0 .(2) & 0 & 1 & 4 & 8 & 8 & 0 & 2 \ldots \\ a_{33}=3, \ldots & 0 . & 1 & 1 & 6 & 6 & 6 & 0 & 2 & 1 \ldots \\ & 0 . & 3 & 3 & 5 & 3 & 3 & 2 & 0 \ldots \\ & 0 . & 0 & 0 & 7 & (7) & 6 & 8 & 0 & 9 \ldots \\ & & (1) & 0 & 0 & 2 \ldots\end{array}$ $0 . a_{n 1} a_{n 2} a_{n 3} \cdots a_{n n} \cdots$

Construct a decimal number $d=0 . d_{1} d_{2} d_{3} \cdots d_{n} \cdots \quad d_{n}= \begin{cases}1 & \text { if } a_{n n} \neq 1 \\ 2 & \text { if } a_{n n}=1\end{cases}$ e.g., $d_{1}=1, d_{2}=2, d_{3}=1, \ldots$ so $d=0.12112 \ldots$

Each n, d differs from the n-th number on list in n-th decimal digit. d is not in the list, contradiction! Cantor diagonalization process

Larger infinities: famous example 2

- The set of all real numbers and the set of real numbers between 0 and 1 have the same cardinality

Proof:

Let $S=\left\{x \in \mathbf{R} \mid 0<{ }_{x}<1\right\}$. Make a circle: no 0 or 1 , so top-most point of circle is omitted
Define function $F: S \rightarrow \mathbf{R}$ where $F(\mathrm{x})$
is projection of x on number line.
F is 1-1: different points on circle go
to distinct points on number line

F is onto: for any point on number line, a line can be drawn
to top of circle and intersect circle at some point.
Thus, F is a $1-1$ correspondence from S to \mathbf{R}.

More countable sets and infinities

- The set of all bit strings (strings of 0's and 1's) is countable (think of mapping each positive integer to its binary representation)
- The set of all computer programs in a language is countable (finite alphabet, each symbol translated to bit string)
- The set of all functions from integers to $\{0,1\}$ is uncountable
- Any subset of any countable set is countable
- Any set with an uncountable subset is uncountable
- There is an infinite sequence of larger infinities.

Example: $\mathrm{Z}, P(\mathrm{Z}), P(P(\mathrm{Z})), P(P(P(\mathrm{Z}))), \ldots$

