Functions

CSE 215, Foundations of Computer Science Stony Brook University

http://www.cs.stonybrook.edu/liu/~cse215

Functions defined on general sets

• A function f from a set X to a set Y

 $f: X \longrightarrow Y$

X is the domain, Y is the co-domain
(1) every element in X is related to some element in Y
(2) no element in X is related to more than one element in Y

- Thus, **for any** element x ∈ X, there is a **unique** element y ∈ Y such that f(x)=y
- range of $f = \text{image of } X \text{ under } f = \{y \in Y \mid y = f(x), x \in X\}$
- inverse image of $y = \{x \in X \mid f(x) = y\}$

Arrow diagrams

• An arrow diagram, with elements in X and Y, and an arrow from each x in X to corresponding y in Y.

• It defines a function because:

(1) Every element of X has an arrow coming out of it(2) No element of X has two arrows coming out of it that point to two different elements of Y

Arrow diagrams: example 1
X = {a, b, c}, Y = {1, 2, 3, 4}

Which one defines a function?

This one!

• $X = \{a, b, c\}, Y = \{1, 2, 3, 4\}$ • $X = \{a, b, c\}, Y = \{1, 2, 3, 4\}$ f(a) = 2 f(b) = 4f(c) = 2

- domain of $f = \{a, b, c\}$, co-domain of $f = \{1, 2, 3, 4\}$
- range of $f = \{2, 4\}$
- inverse image of $2 = \{a, c\}$
- inverse image of $4 = \{b\}$
- inverse image of $1 = \emptyset$

• function representation as a set of pairs: {(a,2), (b,4), (c,2)}

Function equality

Note the set notation for a function: $F(x) = y \Leftrightarrow (x,y) \in F$

If F: X → Y and G: X → Y are functions, then F = G if, and only if,
 F(x) = G(x) for all x ∈ X.

Proof:

 $F \subseteq X \times Y \qquad G \subseteq X \times Y$ $F(x) = y \Leftrightarrow (x, y) \in F \qquad G(x) = y \Leftrightarrow (x, y) \in G$ $(\clubsuit) \text{ Suppose } F = G. \text{ Then for all } x \in X,$ $y = F(x) \Leftrightarrow (x, y) \in F \Leftrightarrow (x, y) \in G \Leftrightarrow y = G(x)$ F(x) = y = G(x) $(\clubsuit) \text{ Suppose } F(x) = G(x) \text{ for all } x \in X. \text{ Then for any } x \in X:$ $(x, y) \in F \Leftrightarrow y = F(x) \Leftrightarrow y = G(x) \Leftrightarrow (x, y) \in G$ F and G consist of exactly the same elements, hence F = G.

Function equality: example 1•
$$J_3 = \{0, 1, 2\}$$
 $f: J_3 \rightarrow J_3$ $g: J_3 \rightarrow J_3$ $f(x) = (x^2 + x + 1) \mod 3$ $g(x) = (x + 2)^2 \mod 3$

x	$x^2 + x + 1$	$f(x) = (x^2 + x + 1) \mod 3$	$(x + 2)^2$	$g(x) = (x+2)^2 \mod 3$
0	1	$1 \mod 3 = 1$	4	$4 \mod 3 = 1$
1	3	$3 \mod 3 = 0$	9	$9 \bmod 3 = 0$
2	7	$7 \mod 3 = 1$	16	$16 \mod 3 = 1$

$$f(0) = g(0) = 1$$

 $f(1) = g(1) = 0$
 $f(2) = g(2) = 1$
Hence, $f = g$

Function equality: example 2

• $F: \mathbf{R} \to \mathbf{R}$ and $G: \mathbf{R} \to \mathbf{R}$

 $F + G: \mathbf{R} \to \mathbf{R} \text{ and } G + F: \mathbf{R} \to \mathbf{R}$ $(F + G)(\mathbf{x}) = F(\mathbf{x}) + G(\mathbf{x})$ $(G + F)(\mathbf{x}) = G(\mathbf{x}) + F(\mathbf{x}), \text{ for all } \mathbf{x} \in \mathbf{R}$

For all real numbers x:

$$(F + G)(x) = F(x) + G(x)$$
$$= G(x) + F(x)$$

= (G + F)(x)

Hence, $\mathbf{F} + \mathbf{G} = \mathbf{G} + \mathbf{F}$

by definition of F + G
by commutative law for
 addition of real numbers
by definition of G + F

Example functions (I)

• Identity function on a set:

Given a set X, define identity function $I_X: X \to X$ by

 $I_X(x) \equiv x$, for all $x \in X$

Function for a sequence: 1, -1/2, 1/3, -1/4, 1/5,..., (-1)ⁿ/(n + 1),... 0→1, 1→-1/2, 2→1/3, 3→-1/4, 4→1/5 n→(-1)ⁿ/(n + 1) f: N→ R, for each integer n ≥ 0, f(n) = (-1)ⁿ/(n + 1) where (N = Z^{nonneg}) OR g: Z⁺ → R, for each integer n ≥ 1, g(n) = (-1)ⁿ⁺¹/n where (Z⁺ = Z^{nonneg}-{0})

Example functions (II)

• Function defined on a power set:

$$F: P(\{a, b, c\}) \to \mathbb{Z}^{nonneg}$$

For each $X \in P(\{a, b, c\})$,

F(X) = the number of elements in X (i.e., the cardinality of X)

Example functions (III)• Functions defined on a Cartesian product: $M: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ and $R: \mathbf{R} \times \mathbf{R} \to \mathbf{R} \times \mathbf{R}$

The multiplication function: M(a, b) = a * bWe omit parenthesis for tuples: M((a, b))=M(a,b)M(1, 1) = 1, M(2, 2) = 4

The reflection function: R(a, b) = (-a, b)

R sends each point in the plane that corresponds to a pair of real numbers to the mirror image of the point across the vertical axis R(1, 1) = (-1, 1), R(2, 5) = (-2, 5), R(-2, 5) = (2, 5)

Example functions (IV)

- Logarithms and logarithmic functions:
 - The base of a logarithm, b, is a positive real number with $b \neq 1$
 - The logarithm with base b of x: $\log_b x = y \iff b^y = x$
 - The logarithmic function with base b:

 $\log_{b} x : \mathbf{R}^{+} \to \mathbf{R}$

Examples:

$\log_3 9 = 2$	because	$3^2 = 9$
$\log_{10}(1) = 0$	because	$10^0 = 1$
$\log_2 \frac{1}{2} = -1$	because	$2^{-1} = \frac{1}{2}$
$\log_{2}(2^{m}) \equiv m$		

More example functions (I)

• Encoding and decoding functions on sequences of 0's and 1's also called bit strings

Encoding function E: For each string s, E(s) = the string obtained from s by replacing each bit of s by the same bit written 3 times

Decoding function D: For each string t in the range of E, D(t) = the string obtained from t by replacing each consecutive 3 identical bits of t by a single copy of that bit

³ Redundancy helps with error detection and fix.

More example functions (II)

• The Hamming distance function

Let S_n be the set of all strings of 0's and 1's of length n. H: $S_n \times S_n \rightarrow Z^{nonneg}$ For each pair of strings $(s, t) \in S_n \times S_n$ H(s, t) = number of positions in which s and t differ

Examples: For n = 5, H(11111, 00000) = 5 H(10101, 00000) = 3 H(01010, 00000) = 2

14 It is important in coding theory: gives a measure of "difference".

More example functions (III)

• Boolean functions: (n-place) Boolean function

 $f: \{0, 1\}^n \rightarrow \{0, 1\}$ Cartesian product

domain = set of all ordered n-tuples of 0's and 1's

co-domain = $\{0, 1\}$

	Input	;	Output
Р	Q	R	S
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	0

¹⁵ The input/output tables correspond to some circuits.

More example functions (IV) Boolean functions example: $f: \{0, 1\}^3 \to \{0, 1\}$ $f(x_1, x_2, x_3) \equiv (x_1 + x_2 + x_3) \mod 2$ $f(0, 0, 0) = (0 + 0 + 0) \mod 2 \equiv 0 \mod 2 \equiv 0$ $f(0, 0, 1) = (0 + 0 + 1) \mod 2 \equiv 1 \mod 2 \equiv 1$ $f(0, 1, 0) = (0 + 1 + 0) \mod 2 \equiv 1 \mod 2 \equiv 1$ $f(0, 1, 1) = (0 + 1 + 1) \mod 2 \equiv 2 \mod 2 \equiv 0$ $f(1, 0, 0) = (1 + 0 + 0) \mod 2 \equiv 1 \mod 2 \equiv 1$ $f(1, 0, 1) = (1 + 0 + 1) \mod 2 = 2 \mod 2 = 0$ $f(1, 1, 0) = (1 + 1 + 0) \mod 2 = 2 \mod 2 = 0$ $f(1, 1, 1) = (1 + 1 + 1) \mod 2 \equiv 3 \mod 2 \equiv 1$ 16

Checking well-definedness

- A "function" f is **not well defined** if:
 - (1) there is no element y in the co-domain that satisfies f(x) = y for some element x in the domain, or
 - (2) there are two different values of y that satisfy f(x) = y

• Example:

 $f : \mathbf{R} \rightarrow \mathbf{R}$, f(x) is the real number y such that $x^2 + y^2 = 1$ f is not well defined:

(1) x = 2, there is no real number y such that 2² + y² = 1
(2) x = 0, there are 2 real numbers y=1 and y=-1 such that 0² + y² = 1

17

Checking well-definedness: example 2
f: Q → Z, f(m/n) = m, for all integers m and n with n ≠ 0

f is not well defined:

$$1/2 = 2/4 \rightarrow f(1/2) = f(2/4)$$

but

 $f(1/2) = 1 \neq 2 = f(2/4)$

That is, there are two different values of y that satisfy f(x) = y

Functions acting on sets: an example proof

• Let X and Y be sets, let $F : X \to Y$ be a function, $A \subseteq X$, and $B \subseteq X$, then $F(A \cup B) \subseteq F(A) \cup F(B)$

Proof:

Suppose $y \in F(A \cup B)$.

By definition of function, y = F(x) for some $x \in A \cup B$.

By definition of union, $x \in A$ or $x \in B$.

Case 1, x \in A: F(x) = y, so $y \in F(A)$.

By definition of union: $y \in F(A) \cup F(B)$

Case 2, \mathbf{x} \in \mathbf{B}: $F(\mathbf{x}) = y$, so $y \in F(B)$.

By definition of union: $y \in F(A) \cup F(B)$

One-to-one functions on finite sets

• Example 1:

F: $\{a,b,c,d\} \rightarrow \{u,v,w,x,y\}$ defined by the following arrow diagram is one-to-one:

 $\forall x_1 \in X \text{ and } x_2 \in X, \quad x_1 \neq x_2 \Rightarrow F(x_1) \neq F(x_2)$

One-to-one functions on finite sets

- Example 2:
 - G: $\{a,b,c,d\} \rightarrow \{u,v,w,x,y\}$ defined by the following arrow diagram

is not one-to-one:

$$G(a) \equiv G(c) \equiv w$$

∃ elements $x_1 \in X$ and $x_2 \in X$, such that $x_1 \neq x_2$ and $G(x_1) = G(x_2)$ that is, $a \in X$ and $c \in X$, such that $a \neq c$ and G(a) = G(c)

One-to-one functions on finite sets

• Example 3:

H:{1, 2, 3} → {a, b, c, d}, H(1) = c, H(2) = a, H(3) = d H is one-to-one:

$$\forall x_1 \in X \text{ and } x_2 \in X, x_1 \neq x_2 \Rightarrow H(x_1) \neq H(x_2)$$

• Example 4:

$$K: \{1, 2, 3\} \rightarrow \{a, b, c, d\}, K(1) = d, K(2) = b, K(3) = d$$

K is not one-to-one:

K(1) = K(3) = dThat is, $\exists x_1 \in X$ and $x_2 \in X$, such that $x_1 \neq x_2$ and $K(x_1) = K(x_2)$

One-to-one functions on infinite sets

• Copied definition:

f is one-to-one $\Leftrightarrow \forall x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$

- To show f is one-to-one, generally use direct proof:
 - suppose x_1 and x_2 are elements of X such that $f(x_1)=f(x_2)$
 - show that $\mathbf{x}_1 = \mathbf{x}_2$.
- To show f is not one-to-one, generally use counterexample:
 find elements x₁ and x₂ in X so that f(x₁)=f(x₂) but x₁≠ x₂.

One-to-one functions on infinite sets copied: f is one-to-one $\Leftrightarrow \forall x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$ • Example 1: $f: \mathbf{R} \to \mathbf{R}$,

f(x) = 4x - 1 for all $x \in \mathbf{R}$ is f one-to-one?

Suppose x_1 and x_2 are any real numbers such that $4x_1-1=4x_2-1$. Adding 1 to both sides and and dividing by 4 both sides gives $x_1 = x_2$. Yes, f is one-to-one

• Example 2: $g: Z \to Z$,

 $g(n) = n^2$ for all $n \in \mathbb{Z}$ is g one-to-one?

Start by trying to show that g is one-to-one

Suppose n_1 and n_2 are integers such that $n_1^2 = n_2^2$ and try to show $n_1 = n_2$ but $1^2 = (-1)^2 = 1$.

Application: hash functions

- Hash functions are functions defined from larger to smaller sets of integers used in identifying documents.
- Example: Hash: SSN → {0, 1, 2, 3, 4, 5, 6}
 SSN = set of all social security numbers (ignoring hyphens)
 Hash(n) = n mod 7 for all social security numbers n
 e.g., Hash(328343419) = 328343419 (7.46906202) = 5
- Hash is not one-to one: called a collision for hash functions.
 e.g., Hash(328343412) = 328343412 (7 · 46906201) = 5
 Collision resolution:

if position Hash(n) is already occupied, then start from that position and search downward to place the record in the first empty position.

Onto functions

• $F: X \rightarrow Y$ is onto (surjective) \Leftrightarrow

 $\forall y \in Y, \exists x \in X \text{ such that } F(x) = y.$

For arrow diagrams, a function is onto if each element in the codomain has an arrow to it from some element in the domain.

• F: X \rightarrow Y is not onto (surjective) \Leftrightarrow

 $\exists y \in Y \text{ such that } \forall x \in X, F(x) \neq y.$

There is some element in Y that is not the image of any element in X. For arrow diagrams, a function is not onto if at least one element in its co-domain does not have an arrow pointing to it.

Onto functions with arrow diagrams

• *F* is onto:

Onto functions: example 1 • G: $\{1,2,3,4,5\} \rightarrow \{a,b,c,d\}$

G is onto

because $\forall y \in Y$, $\exists x \in X$, such that G(x) = y

Not onto functions

• *F* is not onto

Onto functions: example 2 • F: $\{1,2,3,4,5\} \rightarrow \{a,b,c,d\}$

F is not onto

because $b \neq F(x)$ for any x in X that is, $\exists y \in Y$ such that $\forall x \in X$, $F(x) \neq y$

32

Onto functions: more examples • H: $\{1,2,3,4\} \rightarrow \{a,b,c\}$ H(1) = c, H(2) = a, H(3) = c, and H(4) = bH is onto because $\forall y \in Y$, $\exists x \in X$ such that H(x) = y: $a \equiv H(2)$ b = H(4)c = H(1) = H(3)• K: $\{1,2,3,4\} \rightarrow \{a,b,c\}$ K(1) = c, K(2) = b, K(3) = b, and K(4) = cH is not onto because $a \neq K(x)$ for any $x \in \{1, 2, 3, 4\}$.

Onto functions on infinite sets

• Copied definition:

F is onto $\Leftrightarrow \forall y \in Y, \exists x \in X \text{ such that } F(x) = y.$

- To prove F is onto, generally use direct proof:
 - suppose y is any element of Y,
 - show there is an element x of X with F(x)=y.
- To prove F is **not** onto, use counterexample:

• find an element y of Y such that $y \neq F(x)$ for any x in X.

Onto functions on infinite sets: examples

• Prove that a function is onto or give counterexample

• $f : \mathbf{R} \to \mathbf{R}$

f(x) = 4x - 1 for all $x \in \mathbf{R}$

Suppose $y \in R$. Show there is a real number x such that y = 4x - 1. $4x - 1 = y \iff x = (y + 1)/4 \in R$. So, f is onto

h: Z → Z
h(n) = 4n - 1 for all n ∈ Z
0 ∈ Z, h(n) = 0 ⇔ 4n - 1 = 0 ⇔ n = 1/4 ∉ Z
h(n) ≠ 0 for any integer n. So h is not onto

35

Exponential functions

• The exponential function with base b: $\exp_b: \mathbf{R} \to \mathbf{R}^+$

$$\exp_{b}(x) = b^{x}$$

 $\exp_{\mathbf{b}}(0) = \mathbf{b}^0 = 1$

$$\exp_{\mathbf{b}}(-\mathbf{x}) \equiv \mathbf{b}^{-\mathbf{x}} \equiv 1/\mathbf{b}^{\mathbf{x}}$$

- The exponential function is one-to-one and onto: for any positive real number $b \neq 1$, $b^v = b^u \rightarrow u = v$, $\forall u, v \in \mathbf{R}$
- Laws of exponents: \forall b, c $\in \mathbf{R}^+$ and u, v $\in \mathbf{R}$

$$b^{u}b^{v} \equiv b^{u+v}$$

$$b^{u}/b^{v} \equiv b^{u-v}$$

$$(b^{u})^{v} \equiv b^{uv}$$

$$(bc)^{u} \equiv b^{u}c^{u}$$
Logarithmic functions

• The logarithmic function with base b: $\log_b : \mathbf{R}^+ \to \mathbf{R}$

for any positive real number $b \neq 1$,

$$\log_{b} u = \log_{b} v \rightarrow u = v, \quad \forall u, v \in \mathbf{R}^{+}$$

• Properties of logarithms:
$$\forall$$
 b, c, $x \in \mathbb{R}^+$, with $b \neq 1$ and $c \neq 1$
 $\log_b(xy) = \log_b x + \log_b y$
 $\log_b(x/y) = \log_b x - \log_b y$
 $\log_b(x^a) = a \log_b x$
 $\log_c x = \log_b x / \log_b c$

Logarithmic functions: example proofs

• \forall b, c, x $\in \mathbb{R}^+$, with b \neq 1 and c \neq 1: $\log_c x = \log_b x / \log_b c$

Proof:

Suppose positive real numbers b, c, and x are given, s.t. (1) $u = \log_b c$ (2) $v = \log_c x$ (3) $w = \log_b x$ By definition of logarithm: $c = b^u$, $x = c^v$ and $x = b^w$ $x = c^v = (b^u)^v = b^{uv}$, by laws of exponents So $x = b^w = b^{uv}$, so uv = wThat is, $(\log_b c)(\log_c x) = \log_b x$, by (1), (2), and (3) By dividing both sides by $\log_b c$: $\log_c x = \log_b x / \log_b c$

Logarithmic functions: notations

- Logarithms with base 10 are called **common logarithms** and are denoted by simply log.
- Logarithms with base *e* are called **natural logarithms** and are denoted by ln.

• Example:

$$\log_2 5 = \log 5 / \log 2 = \ln 5 / \ln 2$$

One-to-one correspondences

 A one-to-one correspondence (or bijection) from a set X to a set Y is a function F: X → Y that is **both one-to-one** and **onto**.

• Example:

One-to-one correspondences: example 2 A function from a power set to a set of strings h: P({a, b}) → {00, 01, 10, 11}

If a is in A, write a 1 in the 1st position of the string h(A). If a is not in A, write a 0 in the 1st position of the string h(A). If b is in A, write a 1 in the 2nd position of the string h(A). If b is not in A, write a 0 in the 2nd position of the string h(A).

h			
		k	
Subset of { <i>a</i> , <i>b</i> }	Status of <i>a</i>	Status of b	String in S
Ø	not in	not in	00
$\{a\}$	in	not in	10
$\{b\}$	not in	in	01
$\{a, b\}$	in	in	11

One-to-one correspondences: example 3

• Example: $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$

F(x, y) = (x + y, x - y), for all $(x, y) \in \mathbf{R} \times \mathbf{R}$

Proof that F is one-to-one:

Suppose that (x_1, y_1) and (x_2, y_2) are any ordered pairs in $\mathbf{R} \times \mathbf{R}$ such that $F(x_1, y_1) = F(x_2, y_2)$. $\Leftrightarrow (x_1 + y_1, x_1 - y_1) = (x_2 + y_2, x_2 - y_2)$, by definition of F $\Leftrightarrow (1) x_1 + y_1 = x_2 + y_2$ and (2) $x_1 - y_1 = x_2 - y_2$, by pair equalty $(1) + (2) \rightarrow 2x_1 = 2x_2 \rightarrow (3) x_1 = x_2$ Substituting (3) in (2) $\rightarrow x_1 + y_1 = x_1 + y_2 \rightarrow y_1 = y_2$ So, $(x_1, y_1) = (x_2, y_2)$ So, F is one-to-one. One-to-one correspondences: example 3 • Example: $F: R \times R \rightarrow R \times R$

F(x, y) = (x + y, x - y), for all $(x, y) \in \mathbf{R} \times \mathbf{R}$

Proof that F is onto:

Let (u,v) be any ordered pair in $\mathbf{R} \times \mathbf{R}$ Suppose that we found $(r, s) \in \mathbf{R} \times \mathbf{R}$ such that F(r, s) = (u, v). $\Leftrightarrow (r + s, r - s) = (u, v) \Leftrightarrow r + s = u$ and r - s = v $\Leftrightarrow 2r = u + v$ and 2s = u - v $\Leftrightarrow r = (u + v)/2$ and s = (u - v)/2We found $(r, s) \in \mathbf{R} \times \mathbf{R}$ such that F(r, s) = (u, v)So, F is onto.

⁴³ Thus, F is a One-to-One correspondence.

Inverse functions

If F: X → Y is a one-to-one correspondence, then there is an inverse function for F, F⁻¹: Y → X, such that for any element y ∈ Y,

 $F^{-1}(y)$ = that unique element $x \in X$ such that F(x) = y

$$F^{-1}(y) \equiv x \iff y \equiv F(x)$$

44

Inverse functions: example 1

• Function h:

The inverse function for h is h^{-1} :

$$\begin{split} h^{-1}(00) &= \emptyset \quad h^{-1}(10) = \{a\} \\ h^{-1}(01) &= \{b\} \quad h^{-1}(11) = \{a, b\} \end{split}$$

Inverse functions: example 2

• Function $f : \mathbf{R} \rightarrow \mathbf{R}$

f(x) = 4x - 1 for all real numbers x.

The inverse function for f is $f^{-1} : \mathbf{R} \to \mathbf{R}$, for any y in **R**, $f^{-1}(y)$ is that unique real number x such that f(x) = y. $f(x) = y \Leftrightarrow 4x - 1 = y \Leftrightarrow x = (y + 1)/4$ Hence, $f^{-1}(y) = (y + 1)/4$.

Inverse functions: one-to-one, onto

• If X and Y are sets and $F : X \to Y$ is one-to-one and onto, then $F^{-1} : Y \to X$ is also one-to-one and onto.

Proof:

 F^{-1} is one-to-one:

Suppose y_1 and y_2 are elements of Y, such that $F^{-1}(y_1) = F^{-1}(y_2)$ Let $x = F^{-1}(y_1) = F^{-1}(y_2)$. Then $x \in X$.

By definition of F^{-1} , $F(x) = y_1$ and $F(x) = y_2$, so $y_1 = y_2$

\mathbf{F}^{-1} is onto:

Suppose $x \in X$. Need to find y in Y, such that $F^{-1}(y) = x$ Let y = F(x). Then $y \in Y$. By definition of F^{-1} , $F^{-1}(y) = x$.

The Pigeonhole principle (sec 9.4)

 A function from a finite set to a smaller set cannot be 1-1: at least 2 elements in the domain have the same image in co-domain If n pigeons fly into m pigeonholes with n > m, then at least one hole contains two or more pigeons.

at least 2 arrows point to the same element in co-domain

The Pigeonhole principle: example 1

- In a group of 6 people, must there be at least two who were born in the same month?
- In a group of 13 people, must there be at least two who were born in the same month

The Pigeonhole principle: example 2

• Finding the number to pick to ensure a result:

at least the cardinality of the co-domain + 1

A drawer contains black and white socks.
 What is the least number of socks you must pull out to be sure to get a matched pair?

The Pigeonhole principle: example 3

- **Reach a certain sum:** Let A = {1, 2, 3, 4, 5, 6, 7, 8}
- If we select 4 integers from A, must at least one pair of the integers have a sum of 9?

No. Let
$$B = \{1, 2, 3, 4\}$$

1+2 = 3; 1+3 = 4; 1+4 = 5; 2+3 = 5; 2+4 = 6; 3+4 = 7

• If we select 5 integers from A, must at least one pair of the integers have a sum of 9? The 5 selected integers The 4 subsets in the partition of A (pigeons) (pigeonholes) Yes. P $a_1 \bullet$ •{1,8} $P(a_i)$ = the subset that $a_2 \bullet$ •{2,7} contains a_i $a_3 \bullet$ • {3, 6} $a_4 \bullet$

 $a_5 \bullet$

• {4, 5}

Generalized Pigeonhole principle

For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k,
 if k < n/m (i.e., km < n), then there is some y ∈Y such that

y is the image of at least k + 1 distinct elements of X.

One-to-one and onto for finite sets

 Let X and Y be finite sets with the same number of elements and f is a function from X to Y. Then f is 1-1 ⇔ f is onto

Proof : Let $X = \{x_1, x_2, ..., x_m\}$ and $Y = \{y_1, y_2, ..., y_m\}$

(
$$\Rightarrow$$
) If f is 1-1, then f (x_i) for i = 1,...m are all distinct.
Let S = {y \in Y | \forall x \in X, f(x) \neq y}; all {f (x_i)} and S are mutually disjoint.
m = |Y| = | {f (x₁)} |+| {f (x₂)} |+...+ | {f (x_m)} |+ |S| = m + |S|
 \Leftrightarrow |S| = 0, no element of Y is not the image of some element of X.
That is, f is onto.

() If f is onto, then
$$|f^{-1}(y_i)| \ge 1$$
 for all $i = 1,...,m$.
all $\{f^{-1}(y_i)\}$ are mutually disjoint by f.
 $m = |X| \ge |f^{-1}(y_1)| + ... + |f^{-1}(y_m)|$. m terms, so $|f^{-1}(y_i)| = 1$.
That is, f is 1-1.

53

Composition of functions

 Let f : X → Y' and g: Y → Z be functions with the property that the range of f is a subset of the domain of g: Y' ⊆ Y

The composition of f and g is a function $g \circ f : X \to Z :$ $(g \circ f)(x) \equiv g(f(x))$ for all $x \in X$

Composition of functions: example 1
•
$$f: Z \rightarrow Z$$
 and $g: Z \rightarrow Z$
 $f(n)=n + 1$, for all $n \in Z$
 $g(n) = n^2$, for all $n \in Z$
 $(g \circ f)(n) = g(f(n)) = g(n+1) = (n + 1)^2$, for all $n \in Z$
 $(f \circ g)(n) = f(g(n)) = f(n^2) = n^2 + 1$, for all $n \in Z$
 $(g \circ f)(1) = (1 + 1)^2 = 4$
 $(f \circ g)(1) = 1^2 + 1 = 2$
So, $f \circ g \neq g \circ f$

$\begin{array}{l} \textbf{Composition of functions: example 2}\\ \bullet \ f: \{1,2,3\} \rightarrow \{a,b,c,d\} \ \text{and} \ g: \ \{a,b,c,d,e\} \rightarrow \{x,y,z\} \end{array}$

Composition of functions: example 4

- Composing a function with its inverse:
 - If $f: X \rightarrow Y$ is a one-to-one and onto function with inverse function
 - f⁻¹: Y \rightarrow X, then (1) f⁻¹° f = I_X and (2) f ° f⁻¹ = I_Y

Proof of (1):

Let x be any element in X: $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x' \in X (*)$ Definition of inverse function:

$$f^{-1}(b) = a \iff f(a) = b$$
 for all $a \in X$ and $b \in Y$

$$f^{-1}(f(x)) \equiv x' \iff f(x') \equiv f(x)$$

Since f is one-to-one, this implies that x' = x.

$$(*) \rightarrow (f^{-1} \circ f)(x) \equiv x$$

Composition of one-to-one functions
If f: X → Y and g: Y → Z are both one-to-one functions, then g ° f is also one-to-one.

Proof (by direct proof): Suppose $f : X \rightarrow Y$ and $g: Y \rightarrow Z$ are both one-to-one functions.

Suppose $x_1, x_2 \in X$ such that: $(g \circ f)(x_1) = (g \circ f)(x_2)$ By definition of composition of functions, $g(f(x_1)) = g(f(x_2))$. Since g is one-to-one, $f(x_1) = f(x_2)$. Since f is one-to-one, $x_1 = x_2$.

60

Composition of one-to-one functions

Composition of onto functions

• If f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ are both onto functions, then g \circ f is onto.

Proof:

Suppose $f: X \to Y$ and $g: Y \to Z$ are both onto functions. Let z be an element of Z.

Since g is onto, there is an element y in Y such that g(y) = z. Since f is onto, there is an element x in X such that f(x) = y.

 $z = g(y) = g(f(x)) = (g \circ f) (x) \Rightarrow g \circ f \text{ is onto}$

Composition of onto functions

• Example:

Cardinality and sizes of infinity

- cardinal number (cardinal): describe number of elements in a set.
 ordinal number (ordinal): describe order of elements in an ordered set.
- finite set: the empty set or a set that can be put into

 1-1 correspondence with {1,2,...,n} for some positive integer n.
 infinite set: a nonempty set that cannot be put into
 1-1 correspondence with {1,2,...,n} for any positive integer n.
- a set A has the same cardinality a set B if, and only if, there is a 1-1 correspondence from A to B.
 - reflexivity: A has same cardinality as A
 - symmetry: if A has same cardinality as B, then B has same cardinality as A
 - transitivity: if A has same cardinality as B, and B has same cardinality as C, then A has same cardinality as C.

Cardinality: surprising example

• An infinite set and a proper subset can have the same cardinality

• Example:

Z, the set of integers, and2Z, the set of even numbershave the same cardinality.

Proof: define function H: $\mathbb{Z} \to 2\mathbb{Z}$ as H(n) = 2n for all $n \in \mathbb{Z}$. H is 1-1: if H(n1) = H(n2) then n1 = n2, by def of H and div by 2. H is onto : any $m \in 2\mathbb{Z}$, m is even, so m = 2k for some $k \in \mathbb{Z}$ Thus H is a 1-1 correspondence.

Countable sets

• Counting

- A set is **countably infinite** if, and only if, it has the same cardinality as **Z**⁺, the set of positive integers.
- A set is **countable** if, and only if, it is finite or countbly infinite.
- A set is **uncountable** if and only if it is not countable.

Countable sets of same cardinality For function f: A → B, where A and B have the same cardinality,

if A and B are finite, then f is 1-1 \Leftrightarrow f is onto (slide 53)

 If A and B are infinite, then there exist functions that are both 1-1 and onto, functions that are 1-1 but not onto, functions that are onto but not 1-1.

Examples: Z^+ and Z have the same cardinality (previous slide) i: $Z^+ \rightarrow Z$ with i(n)=n is 1-1 but not onto j: $Z \rightarrow Z^+$ with j(n)=|n|+1 is onto but not 1-1

Larger infinities? surprising example

• The set Q⁺ of all positive rational numbers is countable Rational number are dense:

between any two, there is another!

Proof:

Count following arrows, skipping duplicates F(1)=1/1, F(2)=1/2, F(3)=2/1,F(4)=3/1, skip 2/2=1/1, F(t)=1/3, ...

F is onto: all q in \mathbf{Q}^+ will be counted F is 1-1: no q in \mathbf{Q}^+ is counted twice

Larger infinities: famous example

The set of all real numbers between 0 and 1 is uncountable
 Proof (by contradiction): Suppose the set [0,1] is countable.
 Then decimal representations of all these
 0.a₁₁a₁₂a₁₃ ... a_{1n} ...
 0.a₂₁a₂₂a₂₃ ... a_{2n} ...
 numbers can be written in a list, on right:
 0.a₃₁a₃₂a₃₃ ... a_{3n} ...
 The i-th number's j-th decimal digit is aij:

 $0.a_{n1}a_{n2}a_{n3}\cdots a_{nn}\cdots$

Construct a decimal number $d = 0.d_1d_2d_3\cdots d_n \cdots d_n = \begin{cases} 1 & \text{if } a_{nn} \neq 1 \\ 2 & \text{if } a_{nn} = 1 \end{cases}$ e.g., $d_1 = 1, d_2 = 2, d_3 = 1, \dots$ so d = 0.12112...

Each n, d differs from the n-th number on list in n-th decimal digit. d is not in the list, contradiction! Cantor diagonalization process

Larger infinities: famous example 2

 The set of all real numbers and the set of real numbers between 0 and 1 have the same cardinality Proof:

Let $S = \{x \in \mathbf{R} \mid 0 \le x \le 1\}$. Make a circle:

no 0 or 1, so top-most point of circle is omitted

Define function $F: S \rightarrow \mathbf{R}$ where $F(\mathbf{x})$

is projection of x on number line.

F is 1-1: different points on circle go

71

to distinct points on number line F is onto: for any point on number line, a line can be drawn to top of circle and intersect circle at some point.

L

Thus, F is a 1-1 correspondence from S to **R**.

More countable sets and infinities

- The set of all bit strings (strings of 0's and 1's) is countable (think of mapping each positive integer to its binary representation)
- The set of all computer programs in a language is **countable** (finite alphabet, each symbol translated to bit string)
- The set of all functions from integers to {0,1} is **uncountable**
- Any subset of any countable set is **countable**
- Any set with an uncountable subset is **uncountable**
- There is an infinite sequence of larger infinities.
 Example: Z, P(Z), P(P(Z)), P(P(Z))), ...