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Functions



 A function f from a set X to a set Y 

f : X → Y
X is the domain,  Y is the co-domain
(1) every element in X is related to some element in Y 
(2) no element in X is related to more than one element in Y

 Thus, for any element x X, there is a unique element y Y 

such that f(x)=y

 range of  f  =  image of X under f  = {y Y | y = f(x), x X}

 inverse image of y = {x X | f (x) = y}
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Functions defined on general sets



Arrow diagrams
 An arrow diagram, with elements in X and  Y, and an arrow from 

each x in X to corresponding y in Y.

 It defines a function because:
(1) Every element of X has an arrow coming out of it
(2) No element of X has two arrows coming out of it that point to 
two different elements of  Y
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Arrow diagrams: example 1
 X = {a, b, c},     Y = {1, 2, 3, 4}

Which one defines a function?

This one!
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Arrow diagrams: example 2
 X = {a, b, c},     Y = {1, 2, 3, 4}

 domain of  f = {a, b, c},        co-domain of  f = {1, 2, 3, 4}
 range of  f = {2, 4}
 inverse image of 2 = {a, c}
 inverse image of 4 = {b}
 inverse image of 1 = 

 function representation as a set of pairs: {(a,2), (b,4), (c,2)}
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f (a) = 2
f (b) = 4
f (c) = 2



Function equality
Note the set notation for a function:  F(x) = y (x,y) F

 If F: X →Y and G: X →Y are functions, then F = G if, and only if, 
F(x) = G(x) for all x X.

Proof:

F X ×Y G X ×Y

F(x) = y (x, y) F G(x) = y (x, y) G

() Suppose F = G.  Then for all x X,

y = F(x) (x, y) F (x, y) G y = G(x)

F(x) = y = G(x)

() Suppose F(x) = G(x) for all x X. Then for any x X:

(x, y) F y = F(x) y = G(x) (x, y) G

F and G consist of exactly the same elements, hence F = G.
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Function equality: example 1
 J3 = {0, 1, 2}

f : J3 → J3 g : J3 → J3

f(x) = (x2 + x + 1) mod 3    g(x) = (x + 2)2 mod 3

f(0) = g(0) = 1

f(1) = g(1) = 0

f(2) = g(2) = 1

Hence, f  = g
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Function equality: example 2
 F: R → R and G: R → R

F + G: R → R and   G + F: R → R
(F + G)(x) = F(x) + G(x) 

(G + F)(x) = G(x) + F(x),    for all x R

For all real numbers x:

(F + G)(x) = F(x) + G(x) by definition of F + G

= G(x) + F(x) by commutative law for 
addition of real numbers

= (G + F)(x) by definition of G + F

Hence, F + G = G + F ■
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Example functions (I)
 Identity function on a set:

Given a set X, define identity function IX: X → X  by

IX(x) = x, for all x X

 Function for a sequence:

1, −1/2, 1/3, −1/4, 1/5,..., (−1)n/(n + 1),...

0 → 1,   1 → −1/2,   2 → 1/3 ,   3 → −1/4,   4 → 1/5

n → (−1)n/(n + 1)

f : N → R, for each integer n ≥ 0,  f(n) = (−1)n/(n + 1)

where (N = Znonneg)   OR

g : Z+ → R, for each integer n ≥ 1, g(n) = (−1)n+1/n

where (Z+ = Znonneg-{0})
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Example functions (II)
 Function defined on a power set:

F : P({a, b, c}) → Znonneg

For each X P({a, b, c}), 

F(X) = the number of elements in X (i.e., the cardinality of X)
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Example functions (III)
 Functions defined on a Cartesian product:

M : R × R → R and R : R × R → R × R

The multiplication function: M(a, b) = a * b

We omit parenthesis for tuples: M((a, b))=M(a,b) 

M(1, 1) = 1,     M(2, 2) = 4

The reflection function: R(a, b) = (-a, b)

R sends each point in the plane that corresponds to a pair of real 
numbers to the mirror image of the point across the vertical axis

R(1, 1) = (-1, 1),     R(2, 5) = (-2, 5),      R(-2, 5) = (2, 5)
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Example functions (IV)
 Logarithms and logarithmic functions:
 The base of a logarithm, b, is a positive real number with b ≠ 1
 The logarithm with base b of x:     log b x = y  by = x
 The logarithmic function with base b: 

log b x : R+ → R
Examples:

log 3 9 = 2    because 32 = 9
log 10(1) = 0 because 100 = 1
log 2 ½ = -1  because 2-1 = ½
log 2 (2m) = m
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More example functions (I)
 Encoding and decoding functions on sequences of 0’s and 1’s

also called bit strings

Encoding function E: For each string s, 

E(s) = the string obtained from s by 

replacing each bit of s by the same bit written 3 times

Decoding function D:  For each string t in the range of E,  

D(t) = the string obtained from t by 

replacing each consecutive 3 identical bits of t 

by a single copy of that bit

Redundancy helps with error detection and fix.13



More example functions (II)
 The Hamming distance function

Let Sn be the set of all strings of 0’s and 1’s of length n.

H: Sn × Sn → Znonneg

For each pair of strings (s, t) Sn × Sn

H(s, t) = number of positions in which s and t differ

Examples: For n = 5,  H(11111, 00000) = 5

H(10101, 00000) = 3

H(01010, 00000) = 2

It is important in coding theory: gives a measure of “difference”. 14



More example functions (III)
 Boolean functions: (n-place) Boolean function 

f : {0, 1}n → {0, 1} Cartesian product

domain = set of all ordered n-tuples of 0’s and 1’s

co-domain = {0, 1}

The input/output tables correspond to some circuits.15



More example functions (IV)
 Boolean functions example:

f : {0, 1}3 → {0, 1}

f (x1, x2, x3) = (x1 + x2 + x3) mod 2

f (0, 0, 0) = (0 + 0 + 0) mod 2 = 0 mod 2 = 0

f (0, 0, 1) = (0 + 0 + 1) mod 2 = 1 mod 2 = 1

f (0, 1, 0) = (0 + 1 + 0) mod 2 = 1 mod 2 = 1

f (0, 1, 1) = (0 + 1 + 1) mod 2 = 2 mod 2 = 0

f (1, 0, 0) = (1 + 0 + 0) mod 2 = 1 mod 2 = 1

f (1, 0, 1) = (1 + 0 + 1) mod 2 = 2 mod 2 = 0

f (1, 1, 0) = (1 + 1 + 0) mod 2 = 2 mod 2 = 0

f (1, 1, 1) = (1 + 1 + 1) mod 2 = 3 mod 2 = 116



Checking well-definedness
 A “function” f is not well defined if:

(1) there is no element y in the co-domain that satisfies f(x) = y for   
some element x in the domain, or

(2) there are two different values of y that satisfy f(x) = y 

 Example:

f : R → R, f (x) is the real number y such that x2 + y2 = 1

f is not well defined:

(1) x = 2, there is no real number y such that 22 + y2 = 1

(2) x = 0, there are 2 real numbers y=1 and y=-1 such that 

02 + y2 = 1
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Checking well-definedness: example 2
 f : Q → Z, 

f(m/n) = m, for all integers m and n with n ≠ 0

f is not well defined:

1/2 = 2/4   f(1/2) = f(2/4)

but

f(1/2) = 1       ≠       2 = f(2/4) 

That is, there are two different values of y that satisfy f(x) = y 
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Functions acting on sets
 If  f : X →Y is a function and A X and C Y, then

f (A) = {y Y | y = f (x) for some x in A}

is the image of A

f−1(C) = {x X | f (x) C}

is the inverse image of C

Example: X = {1, 2, 3, 4},  Y = {a, b, c, d, e}, f : X →Y

f({1,4}) = {b}      f−1({a,b}) = {1, 2, 4} 

f(X) = {a, b, d}     f−1({c,e}) = 19



Functions acting on sets: 
an example proof
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 Let X and  Y be sets, let F : X →Y be a function, A X, and B X, 
then F(A B) F(A) F(B)

Proof:

Suppose y F(A B).

By definition of function, y = F(x) for some x A B. 

By definition of union, x A or x B.

Case 1, x A: F(x) = y, so y F(A).

By definition of union: y F(A) F(B)

Case 2, x B: F(x) = y, so y F(B).                             

By definition of union: y F(A) F(B) ■



One-to-one, onto, inverse functions
 F : X → Y is one-to-one (or injective) (often written 1-1) 

for all x1 X and x2 X, F(x1) = F(x2)  x1 = x2

or, equivalently (by contraposition), x1 ≠ x2 F(x1) ≠ F(x2)

 F : X → Y is not one-to-one 

x1 X and x2 X, such that x1 ≠ x2 and F(x1) = F(x2).
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One-to-one functions on finite sets
 Example 1: 

F:  {a,b,c,d} →{u,v,w,x,y} defined by the following arrow diagram 

is one-to-one:

x1 X and x2 X,    x1 ≠ x2 F(x1) ≠ F(x2)
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One-to-one functions on finite sets
 Example 2: 

G: {a,b,c,d} →{u,v,w,x,y} defined by the following arrow diagram 

is not one-to-one:

G(a) = G(c) = w

elements x1 X and x2 X, such that x1 ≠ x2 and G(x1) = G(x2)

that is, a X and c X, such that a ≠ c and G(a) = G(c)23



One-to-one functions on finite sets
 Example 3:

H:{1, 2, 3} →{a, b, c, d}, H(1) = c,  H(2) = a,  H(3) = d

H is one-to-one:

x1 X and x2 X,  x1 ≠ x2 H(x1) ≠ H(x2)

 Example 4: 

K:{1, 2, 3} →{a, b, c, d}, K(1) = d,  K(2) = b,  K(3) = d

K is not one-to-one:

K(1) = K(3) = d

That is, x1 X and x2 X, such that x1 ≠ x2 and K(x1)= K(x2)

24



One-to-one functions on infinite sets
 Copied definition:

f is one-to-one  x1,x2 X, if f(x1) = f(x2) then x1 = x2

 To show f is one-to-one, generally use direct proof:
 suppose x1 and x2 are elements of X such that f(x1)=f(x2)
 show that x1 = x2.

 To show f is not one-to-one, generally use counterexample:
 find elements x1 and x2 in X so that f(x1)=f(x2) but x1≠ x2.
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One-to-one functions on infinite sets
copied: f is one-to-one x1,x2 X, if f(x1) = f(x2) then x1 = x2

 Example 1:    f : R → R ,

f (x) = 4x − 1 for all x R is f one-to-one?

Suppose x1 and x2 are any real numbers such that 4x1−1=4x2−1.

Adding 1 to both sides and and dividing by 4 both sides gives x1=x2.

Yes, f is one-to-one ■
 Example 2:    g : Z → Z ,         

g(n) = n2 for all n Z is g one-to-one?

Start by trying to show that g is one-to-one

Suppose n1 and n2 are integers such that n1
2=n2

2 and try to show    
n1=n2. but 12=(-1)2=1.

No, g is not one-to-one ■26



Application: hash functions
 Hash functions are functions defined from larger to smaller sets 

of integers used in identifying documents.

 Example: Hash:  SSN →{0, 1, 2, 3, 4, 5, 6}

SSN = set of all social security numbers (ignoring hyphens)

Hash(n) = n mod 7    for all social security numbers n

e.g., Hash(328343419) = 328343419 − (7·46906202) = 5

 Hash is not one-to one: called a collision for hash functions.

e.g., Hash(328343412) = 328343412 − (7· 46906201) = 5

Collision resolution: 
if position Hash(n) is already occupied, then start from that position 

and search downward to place the record in the first empty position.27



Onto functions
 F: X → Y is onto (surjective) 

y Y,   x X such that F(x) = y.

For arrow diagrams, a function is onto if each element in the co-
domain has an arrow to it from some element in the domain.

 F: X → Y is not onto (surjective) 

y Y such that x X, F(x) ≠ y.

There is some element in  Y that is not the image of any element in X.

For arrow diagrams, a function is not onto if at least one element in 
its co-domain does not have an arrow pointing to it.
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Onto functions with arrow diagrams
 F is onto:
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 G: {1,2,3,4,5} → {a,b,c,d}

G is onto 

because y Y,  x X, such that G(x) = y
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Onto functions: example 1



Not onto functions
 F is not onto
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 F: {1,2,3,4,5} → {a,b,c,d}

F is not onto 

because b ≠ F(x) for any x in X

that is, y Y such that x X, F(x) ≠ y
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Onto functions: example 2



Onto functions: more examples
 H: {1,2,3,4} → {a,b,c}

H(1) = c,      H(2) = a,       H(3) = c, and        H(4) = b

H is onto because y Y,   x X such that H(x) = y:

a = H(2)

b = H(4) 

c = H(1) = H(3)

 K: {1,2,3,4} → {a,b,c}

K(1) = c,      K(2) = b,      K(3) = b, and       K(4) = c

H is not onto because a ≠ K(x) for any x {1, 2, 3, 4}.
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Onto functions on infinite sets
 Copied definition:

F is onto y Y, x X such that F(x) = y.

 To prove F is onto, generally use direct proof:
 suppose y is any element of  Y, 
 show there is an element x of X with F(x)=y.

 To prove F is not onto, use counterexample:
 find an element y of  Y such that y ≠ F(x) for any x in X.
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Onto functions on infinite sets: examples
 Prove that a function is onto or give counterexample

 f : R → R

f(x) = 4x − 1 for all x R

Suppose y R. Show there is a real number x such that y = 4x − 1.

4x − 1 = y  x = (y + 1)/4 R.  So, f is onto ■

 h : Z → Z  

h(n) = 4n − 1 for all n Z

0 Z, h(n) = 0 4n − 1 = 0  n = 1/4 Z

h(n) ≠ 0 for any integer n.  So h is not onto ■
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Exponential functions
 The exponential function with base b: expb : R → R+

expb(x) = bx

expb(0) = b0 = 1 

expb(-x) = b-x = 1/bx

 The exponential function is one-to-one and onto:

for any positive real number b≠1,  bv = bu  u = v,  u,v R

 Laws of exponents: b, c R+ and u,v R
bubv = bu+v

bu/bv = bu-v

(bu)v = buv

(bc)u = bucu
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Logarithmic functions
 The logarithmic function with base b: logb : R+ → R

logb(x) = y  by = x

 The logarithmic function is one-to-one and onto:

for any positive real number b≠1, 

logbu = logbv  u = v,    u,v R+

 Properties of logarithms: b, c, x R+, with b ≠ 1 and c ≠ 1

logb(xy) = logbx + logby

logb(x/y) = logbx − logby

logb(xa) = a logbx

logcx = logbx / logbc
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Logarithmic functions: example proofs 
 b, c, x R+, with b ≠ 1 and c ≠ 1:  logcx = logbx / logbc

Proof: 

Suppose positive real numbers b, c, and x are given, s.t.

(1) u = logbc (2) v = logc x (3) w = logb x

By definition of logarithm: c = bu, x = cv and x = bw

x = cv = (bu)v = buv ,   by laws of exponents

So x = bw = buv , so uv = w

That is, (logbc)(logc x) = logb x, by (1), (2), and (3)

By dividing both sides by logbc:  logcx = logbx / logbc ■
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Logarithmic functions: notations
 Logarithms with base 10 are called common logarithms

and are denoted by simply log.

 Logarithms with base e are called natural logarithms

and are denoted by ln.

 Example:

log 25 = log 5 / log 2 = ln 5 / ln 2
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One-to-one correspondences
 A one-to-one correspondence (or bijection) 

from a set X to a set  Y is a function F: X →Y 

that is both one-to-one and onto.

 Example: 

40



One-to-one correspondences: example 2
 A function from a power set to a set of strings

h : P({a, b}) → {00, 01, 10, 11}

If a is in A, write a 1 in the 1st position of the string h(A). 

If a is not in A, write a 0 in the 1st position of the string h(A). 

If b is in A, write a 1 in the 2nd position of the string h(A). 

If b is not in A, write a 0 in the 2nd position of the string h(A). 
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One-to-one correspondences: example 3
 Example:  F: R × R → R × R 

F(x, y) = (x + y, x − y), for all (x, y) R × R

Proof that F is one-to-one:

Suppose that (x1,y1) and (x2,y2) are any ordered pairs in R × R such 
that F(x1,y1) = F(x2,y2).

(x1 + y1, x1 − y1) = (x2 + y 2, x 2 − y 2),  by definition of F

(1) x1 + y1 = x2 + y 2 and (2) x1 − y1 = x 2 − y 2, by pair equalty

(1) + (2)  2x1 = 2x2 (3) x1 = x2

Substituting (3) in (2)  x1 + y1 = x1 + y2  y1 = y2

So, (x1, y1) = (x2, y2)

So, F is one-to-one.42



One-to-one correspondences: example 3
 Example:  F: R × R → R × R 

F(x, y) = (x + y, x − y), for all (x, y) R × R

Proof that F is onto:

Let (u,v) be any ordered pair in R × R 

Suppose that we found (r, s) R × R such that F(r, s) = (u, v).

(r + s, r − s) = (u, v) r + s = u   and   r − s = v 

2r = u + v     and    2s = u − v

r = (u + v)/2     and    s = (u − v)/2

We found (r, s) R × R such that F(r, s) = (u,v)

So, F is onto.

Thus,  F is a One-to-One correspondence. ■43



Inverse functions
 If F: X →Y is a one-to-one correspondence, then there is an 

inverse function for F,  F−1: Y → X , such that for any element 
y Y,

F−1(y) = that unique element x X such that F(x) = y

F−1(y) = x  y = F(x)
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Inverse functions: example 1
 Function h:

The inverse function for h is  h−1:

45



Inverse functions: example 2
 Function f : R → R

f(x) = 4x − 1 for all real numbers x.

The inverse function for f is  f−1 : R → R, 

for any y in R,

f −1(y) is that unique real number x such that f(x) = y.

f (x) = y  4x − 1 = y  x = (y + 1)/4

Hence, f −1(y) = (y + 1)/4.
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Inverse functions: one-to-one, onto
 If X and  Y are sets and F : X →Y is one-to-one and onto, 

then F −1 :  Y → X is also one-to-one and onto.

Proof:

F −1 is one-to-one:

Suppose y1 and y2 are elements of  Y, such that F−1(y1)= F−1(y2)

Let x = F−1(y1) = F−1(y2). Then x X.

By definition of F−1, F(x) = y1 and F(x) = y2 , so y1 = y2

F −1 is onto: 

Suppose x X. Need to find y in Y, such that F −1(y)=x

Let y = F(x).  Then y Y.

By definition of F−1, F −1(y) = x.47



The Pigeonhole principle (sec 9.4)
 A function from a finite set to a smaller set cannot be 1-1: 

at least 2 elements in the domain have the same image in co-domain
If n pigeons fly into m pigeonholes with n > m, 
then at least one hole contains two or more pigeons.

at least 2 arrows point to the same element in co-domain48



The Pigeonhole principle: example 1
 In a group of 6 people, must there be at least two who were born in 

the same month?

 In a group of 13 people, must there be at least two who were born 
in the same month
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The Pigeonhole principle: example 2
 Finding the number to pick to ensure a result:

at least the cardinality of the co-domain + 1

 A drawer contains black and white socks.

What is the least number of socks you must pull out to be sure to 
get a matched pair?

2 socks are not enough: 

one white and one black

3 socks are enough by the pigeonhole principle
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The Pigeonhole principle: example 3
 Reach a certain sum:  Let A = {1, 2, 3, 4, 5, 6, 7, 8}

 If we select 4 integers from A, must at least one pair of the integers 
have a sum of 9?

No.   Let B ={1,2,3,4}

1+2 = 3 ; 1+3 = 4 ; 1+4 = 5 ; 2+3 = 5 ; 2+4 = 6 ; 3+4 = 7

 If we select 5 integers from A, must at least one pair of the integers 
have a sum of 9?

Yes.

51



Generalized Pigeonhole principle
 For any function f from a finite set X with n elements to a finite set  Y 

with m elements and for any positive integer k, 

if k < n/m (i.e., km < n), then there is some y Y such that 

y is the image of at least k + 1 distinct elements of X.

 Example:

n = 9 pigeons

m = 4 holes

a least one pigeonhole 

contains 3 or more pigeons.

k = 2 < 9/4, k+1 = 352



One-to-one and onto for finite sets
 Let X and Y be finite sets with the same number of elements 

and f is a function from X to Y.  Then f is 1-1  f is onto
Proof :  Let X = {x1, x2,..., xm} and  Y = {y1, y2,..., ym}

() If f is 1-1, then f (xi) for i = 1,…m are all distinct. 

Let S ={y ∈Y|∀x ∈ X, f(x) ≠ y}; all{f (xi)} and S are mutually disjoint.

m = |Y| = |{f (x1)}|+|{f (x2)}|+... + |{f (xm)}|+ |S| = m + |S|

⇔ |S| = 0,  no element of  Y is not the image of some element of X.

That is, f is onto.

()  If f is onto, then|f−1(yi)| ≥ 1 for all i = 1,...,m.

all {f−1(yi)} are mutually disjoint by f.

m = |X| >= |f−1(y1)| +...+ |f−1(ym)|.  m terms, so |f−1(yi)| = 1.

That is, f is 1-1.53



Composition of functions
 Let f : X →Y’ and g: Y → Z be functions with the property that 

the range of f is a subset of the domain of g:   Y’ Y

The composition of f and g is a function  g ◦ f : X → Z :

(g ◦ f )(x) = g( f (x)) for all x X

54



Composition of functions: example 1
 f : Z → Z and g: Z → Z

f (n)=n + 1, for all n Z

g(n) = n2 , for all n Z

(g ◦ f )(n) = g(f (n)) = g(n+1) = (n + 1) 2 , for all n Z

(f ◦ g)(n) = f (g(n)) = f (n2) = n2 + 1, for all n Z

(g ◦ f )(1) = (1 + 1) 2 = 4

( f ◦ g)(1) = 12 + 1 = 2

So, f ◦ g  ≠  g ◦ f 
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Composition of functions: example 2
 f : {1,2,3} → {a,b,c,d} and g: {a,b,c,d,e} → {x,y,z}
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 X = {a, b, c, d} and  Y = {u, v, w},  f : X →Y

IX : X → X is an identity function IY :  Y →Y is an identity function

IX(x) = x, for all x ∈ X IY(y) = y, for all y ∈Y

(f ◦ IX )(x) = f (IX(x)) = f (x) , for all x ∈ X (IY◦ f )(x) = IY(f (x)) = f(x), for all x ∈ X

Composition of functions: example 3
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 Composing a function with its inverse:

Let f : {a, b, c} → {x, y, z} be a one-to-one and onto function

f is one-to-one correspondence  f−1 : {x, y, z} → {a, b, c}

( f −1 ◦ f )(a) = f −1( f (a)) = f −1(z) = a

( f −1 ◦ f )(b)= f −1( f (b)) = f −1(x) = b  f −1 ◦ f = IX

( f −1 ◦ f )(c) = f −1( f (c)) = f −1(y) = c also   f ◦ f −1 = IY

Composition of functions: example 4



 Composing a function with its inverse:

If f : X→Y is a one-to-one and onto function with inverse function 

f −1:  Y→X, then (1) f −1◦ f = IX and (2) f ◦ f −1 = IY

Proof of (1):

Let x be any element in X:  (f −1◦ f )(x) = f −1(f (x)) = x’ X (*)

Definition of inverse function: 

f −1(b) = a  f (a) = b for all a X and b Y

 f −1(f (x)) = x’  f(x’) = f(x)

Since f is one-to-one, this implies that x’ = x.

(*)  (f −1◦ f )(x) = x

Composition of functions: example 4
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 If  f : X →Y and g: Y → Z are both one-to-one functions, 

then g ◦ f is also one-to-one.

Proof (by direct proof):

Suppose f : X →Y and g: Y → Z are both one-to-one functions.

Suppose x1, x2 X such that: (g ◦ f )(x1) = (g ◦ f )(x2)

By definition of composition of functions, g(f (x1)) = g(f (x2)).

Since g is one-to-one, f (x1) = f(x2).

Since f is one-to-one, x1 = x2.

Composition of one-to-one functions
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 Example: 

Composition of one-to-one functions
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 If f: X→Y and g:  Y→Z are both onto functions, then g ◦ f is onto.

Proof:

Suppose f : X →Y and g: Y → Z are both onto functions.

Let z be an element of Z.

Since g is onto, there is an element y in  Y such that g(y) = z.

Since f is onto, there is an element x in X such that f (x) = y.

z = g(y) = g(f(x)) = (g ◦ f ) (x)  g ◦ f is onto

Composition of onto functions
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 Example:

Composition of onto functions
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Cardinality and sizes of infinity
 cardinal number (cardinal): describe number of elements in a set.

ordinal number (ordinal): describe order of elements in an ordered set.

 finite set: the empty set or a set that can be put into                                       
1-1 correspondence with {1,2,…,n} for some positive integer n.

infinite set: a nonempty set that cannot be put into                                
1-1 correspondence with {1,2,…,n} for any positive integer n.

 a set A has the same cardinality a set B if, and only if, there is a 1-1 
correspondence from A to B.
 reflexivity:  A has same cardinality as A
 symmetry:  if  A has same cardinality as B, then B has same cardinality as A
 transitivity:  if  A has same cardinality as B, and B has same cardinality as C, 

then A has same cardinality as C.64



Cardinality: surprising example
 An infinite set and a proper subset can have the              

same cardinality

 Example:  

Z, the set of integers, and 

2Z, the set of even numbers 

have the same cardinality.

Proof:  define function H: Z → 2Z as H(n) = 2n  for all n Z.

H is 1-1: if H(n1) = H(n2) then n1 = n2,  by def of H and div by 2.

H is onto : any m 2Z, m is even, so m= 2k for some k Z
Thus H is a 1-1 correspondence.65



Countable sets
 Counting

 A set is countably infinite if, and only if, it has the same 
cardinality as Z+, the set of positive integers.

 A set is countable if, and only if, it is finite or countbly infinite.

 A set is uncountable if and only if it is not countable.
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Countable sets: easy example
 The set Z of all integers is countable (and so 2Z is too)

Proof:

No n in Z is counted twice:

1-1: n in Z -- at most 1 m in Z+

All n in Z is counted:

onto: each n in Z -- some m in Z+

Formally, define function F:  Z+ → Z  as

F(n) = n/2 if n is an even positive integer 

-(n-1)/2  if n is an odd positive integer67



Countable sets of same cardinality
 For function f:  A → B, where A and B have the same cardinality,

if A and B are finite, then f is 1-1 f is onto (slide 53)

 If A and B are infinite, then there exist

functions that are both 1-1 and onto,

functions that are 1-1 but not onto,

functions that are onto but not 1-1.

Examples: Z+ and Z have the same cardinality (previous slide) 

i: Z+ → Z with i(n)=n is 1-1 but not onto

j: Z → Z+ with j(n)=|n|+1 is onto but not 1-1
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Larger infinities? surprising example
 The set Q+ of all positive rational numbers is countable

Rational number are dense:

between any two, there is another!

Proof: 

Count following arrows, skipping duplicates
F(1)=1/1, F(2)=1/2, F(3)=2/1,F(4)=3/1,

skip 2/2=1/1, F(t)=1/3, …

F is onto: all q in Q+ will be counted

F is 1-1: no q in Q+ is counted twice
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Larger infinities: famous example
 The set of all real numbers between 0 and 1 is uncountable

Proof (by contradiction): Suppose the set [0,1] is countable. 

Then decimal representations of all these

numbers can be written in a list, on right:

The i-th number’s j-th decimal digit is aij:

e.g., a11=2, a22 =1,

a33 =3, …

Construct a decimal number 

e.g., d1=1, d2=2, d3=1, … so d = 0.12112...

Each n, d differs from the n-th number on list in n-th decimal digit.

d is not in the list, contradiction! Cantor diagonalization process70



Larger infinities: famous example 2
 The set of all real numbers and the set of real numbers 

between 0 and 1 have the same cardinality

Proof: 

Let S = {x R| 0 < x < 1}. Make a circle:

no 0 or 1, so top-most point of circle is omitted

Define function F: S → R where F(x)

is projection of x on number line.

F is 1-1: different points on circle go 

to distinct points on number line 

F is onto: for any point on number line, a line can be drawn 

to top of circle and intersect circle at some point.

Thus, F is a 1-1 correspondence from S to R.71



More countable sets and infinities
 The set of all bit strings (strings of 0’s and 1’s) is countable

(think of mapping each positive integer to its binary representation)

 The set of all computer programs in a language is countable

(finite alphabet, each symbol translated to bit string)

 The set of all functions from integers to {0,1} is uncountable

 Any subset of any countable set is countable

 Any set with an uncountable subset is uncountable

 There is an infinite sequence of larger infinities.

Example: Z, P(Z), P(P(Z)), P(P(P(Z))), …
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