Relations

CSE 215: Foundations of Computer Science Stony Brook University

http://www.cs.stonybrook.edu/~liu/cse215

Relations on sets

A (binary) relation R from A to B is a subset of A×B (Section 1.3)
For (x,y) ∈ A×B, x is related to y by R if, and only if, (x,y) ∈ R.
R is a subset of all pairs (x,y), x in A, y in B. x R y ⇔ (x,y) ∈ R

• Example:

A less-than relation on real numbers: relation L from **R** to **R**:

for all x and y in **R**, x L y \Leftrightarrow x < y **Examples:** (-17) L (-14), (-17) L (-10), (-35) L 1 The graph of L

as a subset of Cartesian plane $\mathbf{R} \times \mathbf{R}$: It includes all points (x, y) with y > x, that is, all points above the line x = y.

Relations: example 1

• The congruence modulo 2 relation:

Define relation E from Z to Z: for all $(m, n) \in \mathbb{Z} \times \mathbb{Z}$,

 $m E n \Leftrightarrow m - n \text{ is even.}$

• **Examples:** $4 \ge 0$ because 4 - 0 = 4 and 4 is even.

2 E 6 because 2 - 6 = -4 and -4 is even.

- 3 E (-3) because 3 (-3) = 6 and 6 is even.
- Prove that if n is any odd integer, then n E 1.

Proof: Suppose n is any odd integer.

Then n = 2k + 1 for some integer k.

By definition of E, $n \ge 1 \Leftrightarrow n - 1$ is even.

By substitution, n - 1 = (2k + 1) - 1 = 2k.

Since k is an integer, 2k is even. That is, n - 1 is even. Hence $n \to 1$.

Relations: example 2

• A relation on a power set:

 $X=\{a,b,c\}, P(X)=\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$ Define relation S from P(X) to P(X): (textbook says P(X) to Z) for all sets A and B in P(X),

A S B \Leftrightarrow A has at least as many elements as B.

• Examples:

 $\{a, b\} S \{b, c\} \\ \{a\} S Ø because \{a\} has one element, Ø has zero elements, 1 \ge 0. \\ \{c\} S \{a\}$

Inverse of a relation, and an example

• Let R be a relation from A to B.

The **inverse relation** R^{-1} from B to A:

 $\mathbf{R}^{-1} \equiv \{ (\mathbf{y}, \mathbf{x}) \in \mathbf{B} \times \mathbf{A} \mid (\mathbf{x}, \mathbf{y}) \in \mathbf{R} \}.$

For all $x \in A$, $y \in B$, $(y, x) \in R^{-1} \Leftrightarrow (x, y) \in R$. Logical

• Example: $A = \{2,3,4\}, B = \{2,6,8\}, R \text{ is the "divides" relation}$ from A to B: for all $(x, y) \in A \times B$, $x R y \Leftrightarrow x \mid y \pmod{x}$ (x divides y). $R = \{(2, 2), (2, 6), (2, 8), (3, 6), (4, 8)\}$ $R^{-1} = \{(2, 2), (6, 2), (8, 2), (6, 3), (8, 4)\}$

For all $(y, x) \in B \times A$, $y R^{-1} x \Leftrightarrow y$ is a multiple of x.

Inverse of a relation: example 2 • *R* from **R** to **R** : for all $(x, y) \in \mathbf{R} \times \mathbf{R}, x R y \Leftrightarrow y = 2 \cdot |x|$. *R* and R^{-1} in the Cartesian plane:

6

Directed graph of a relation

A relation on a set A is a relation from A to A.
 Arrow diagram of the relation can be made into a directed graph.
 For all points x and y ∈ A,

there is an arrow from x to $y \Leftrightarrow x R y \Leftrightarrow (x, y) \in R$

• Example:

Let A = $\{3, 4, 5, 6, 7, 8\}$. Define relation R on A: for all x and y \in A, x R y \Leftrightarrow 2 | (x-y)

N-ary relations and relational databases

- Given sets $A_1, A_2, ..., A_n$, an **n-ary relation** R on $A_1 \times A_2 \times \cdots A_n$ is a subset of $A_1 \times A_2 \times \cdots A_n$.
 - Special cases: 2-ary, 3-ary, 4-ary, called binary, ternary, quaternary
- Example database: (a₁, a₂, a₃, a₄) ∈ R ⇔ a patient with patient ID a₁, name a₂, was admitted on date a₃, with primary diagnosis a₄

Examples: (011985, John Schmidt, 120111, asthma)

(244388, Sarah Wu, 010310, broken leg)

(574329, Tak Kurosawa, 120111, pneumonia)

In the database language SQL:

SELECT PatientID, Name FROM S WHERE AdmissionDate = 120111

011985 John Schmidt, 574329 Tak Kurosawa

setof((x.PatiendID, x.Name), x in S, x.AdmissionDate == 120111) da
{(x.PatientID, x.Name) for x in S if x.AdmissionDate == 120111} da/py
{(x.PatiendID, x.Name): x in S, x.AdmissionDate = 120111} da ideal_

Reflexivity, symmetry, and transitivity

- Properties of relations
- <u>An example first:</u>

Let $A = \{2, 3, 4, 6, 7, 9\}$. Define a relation R on A:

for all x and $y \in A$, x R y $\Leftrightarrow 3 \mid (x - y)$.

R is reflexive, symmetric, and transitive, to be defined next

Reflexivity, symmetry, and transitivity

- Let R be a relation on a set A.
- 1. R is **reflexive** iff for all $x \in A$, $x \in X$, that is, $(x,x) \in R$
- 2. R is symmetric iff for all x, $y \in A$, if x R y then y R x
- 3. R is **transitive** iff for all x, y, $z \in A$, if x R y and y R z then x R z
- Directed graph properties:
- 1. Reflexive: each point of the graph has a loop by itself.
- 2. Symmetric: whenever there is an arrow from one point to a second, there is an arrow from the second point back to the first.
- 3. Transitive: whenever there is an arrow from one point to a second and from the second point to a third, there is an arrow from the first point to the third.

Reflexivity, symmetry, and transitivity: not

• R is not reflexive \Leftrightarrow

there is x in A such that $x \not R$ x, that is, $(x, x) \notin R$.

- R is not symmetric ⇔
 there are x and y in A such that x R y but y R x,
 that is, (x, y) ∈ R but (y, x) ∉ R.
- R is not transitive ⇔
 there are x, y and z in A such that x R y and y R z but x R z,
 that is, (x, y) ∈ R and (y, z) ∈ R but (x, z) ∉ R

• Let $A = \{0, 1, 2, 3\}$. R = $\{(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)\}$

R is reflexive:

There is a loop at each point of the graph.

R is symmetric: Whenever there is an arrow from one point of to a second,

there is an arrow from the second point back to the first.

R is not transitive: There is an arrow from 1 to 0 and an arrow from 0 to 3, but there is no arrow going from 1 to 3.

Let A = {0, 1, 2, 3}.
S = {(0, 0), (0, 2), (0, 3), (2, 3)}

S is not reflexive:

There is no loop at 1.

S is not symmetric:

There is an arrow from 0 to 2 but not from 2 to 0.

S is transitive!

• Let $A = \{0, 1, 2, 3\}$. T = $\{(0, 1), (2, 3)\}$

0.

→• 1

T is not reflexive:

There is no loop at 0.

T is not symmetric:

There is an arrow from 0 to 1 but not from 1 to 0.

T is transitive:

The transitivity condition is vacuously true for T.

• Equality relation on real numbers, an infinite set R is a relation on real numbers, for all real numbers x and y,

 $x R y \Leftrightarrow x = y$

R is reflexive: For all $x \in R$, x R x (x=x).

R is symmetric: For all x, $y \in R$, if x R y then y R x (if x = y then y = x).

R is transitive: For all x, y, $z \in R$, if x R y and y R z then x R z (if x = y and y = z then x = z).

15

• Less-than relation: For all x, $y \in R$, $x R y \Leftrightarrow x < y$.

R is not reflexive: R is reflexive iff, $\forall x \in R, x \in R$. By definition of R, this means that $\forall x \in R, x < x$. This is false: $\exists x = 0 \in R$ such that $x \not\leq x$.

R is not symmetric: R is symmetric iff $\forall x, y \in R$, if x R y then y R x By definition of R, this means that $\forall x, y \in R$, if x < y then y < xThis is false: $\exists x = 0, y = 1 \in R$ such that x < y and y < x.

R is transitive: R is transitive iff $\forall x, y, z \in R$, if x R y, y R z, then x R z By definition of R, this means $\forall x, y, z \in R$, if x < y, y < z, then x < z

Congruence modulo 3

17

For all x and y \in Z, m T n \Leftrightarrow 3 | (m - n).

T is reflexive: Suppose m is any integer. [We must show that m T m.] m - m = 0. And $3 \mid 0$ because $0 = 3 \cdot 0$. Hence $3 \mid (m - m)$. By definition of T, m T m T is symmetric: Suppose m and n are integers that satisfy m T n. [We must show that n T m.] By definition of T, mT n implies $3 \mid (m - n)$. By definition of "divides," m - n = 3k, for some integer k. Multiplying both sides by -1 gives n - m = 3(-k). Since -k is an integer, this equation shows $3 \mid (n - m)$. By definition of T, nT m.

Congruence modulo 3

For all x, y \in Z, m T n \Leftrightarrow 3 | (m - n).

T is transitive: Suppose m, n, and p are any integers that satisfy m T n and n T p. [We must show that m T p.] By definition of T, mT n and nT p means $3 \mid (m-n)$ and $3 \mid (n-p)$. By definition of "divides," this means m - n = 3r and n - p = 3s, for some integers r and s. Adding the two equations gives (m - n) + (n - p) = 3r + 3s, and simplifying gives that m - p = 3(r + s). Since r + s is an integer, this equation shows $3 \mid (m - p)$. By definition of T, m T p.

The transitive closure of a relation

• Let A be a set and R a relation on A. The transitive closure of R is the relation R^t on A that satisfies the following three properties:

2

- 1. R^t is transitive
- 2. R \subseteq R^t
- 3. If S is any other transitive relation that contains R, then $R^t \subseteq S$
- Example: $A = \{0, 1, 2, 3\}$ $R = \{(0, 1), (1, 2), (2, 3)\}$ $R^{t} = \{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)\}$

Equivalence relations

 An example first: Given a partition of a set A (Section 6), the relation induced by the partition, R, is defined on A as follows: for all x, y ∈ A,

 $x R y \Leftrightarrow \exists subset A_i of the partition, x \in A_i and y \in A_i$.

- **Example:** $A = \{0, 1, 2, 3, 4\}$. Consider partition: $\{0, 3, 4\}, \{1\}, \{2\}$
 - 0 R 3 because both 0 and 3 are in {0, 3, 4}
 0 R 4 because both 0 and 4 are in {0, 3, 4}
 3 R 4 because both 3 and 4 are in {0, 3, 4}
 - 0 R 0 because both 0 and 0 are in {0, 3, 4}4 R 4 because both 4 and 4 are in {0, 3, 4}
- 3 R 3 because both 3 and 3 are in $\{0, 3, 4\}$

3 R 0 because both 3 and 0 are in $\{0, 3, 4\}$

4 R 0 because both 4 and 0 are in $\{0, 3, 4\}$

4 R 3 because both 4 and 3 are in $\{0, 3, 4\}$

1 R 1 because both 1 and 1 are in $\{1\}$ 2 R 2 because both 2 and 2 are in $\{2\}$

 $\mathbf{R} = \{ (0, 0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4) \}$

Relation induced by a partition

- Let A be a set with a partition. Let R be the relation induced by the partition. Then R is reflexive, symmetric, and transitive.
 - **Proof:** for finite partition but same for infinite except for notation Suppose A is a set with a partition $A_1, A_2, ..., A_n$.

 $A_i \cap A_j = \emptyset$ whenever i = j, and $A_1 \cup A_2 \cup \cdots \cup A_n = A$.

For all x, y $\in A$, x R y $\Leftrightarrow \exists set A_i in the partition, x \in A_i and y \in A_i$

(Reflexive) Suppose $x \in A$. Since $A_1 \cup A_2 \cup \cdots \cup A_n = A$, $x \in A_i$ for some i. That is, $\exists set A_i, x \in A_i$ and $x \in A_i$. By definition of R, $x \in x$. (Symmetric) Suppose x and y are in A and x R y.

Then by definition of R, \exists set A_i in the partition, $x \in A_i$ and $y \in A_i$. Then, \exists set A_i, $y \in A_i$ and $x \in A_i$. By definition of R, $y \in x$. **Relation induced by a partition (II)** (Transitive) Suppose x, y, and z are in A and x R y and y R z. Then by definition of R, \exists sets A_i and A_j in the partition such that x and y are in A_i , and y and z are in A_i .

Suppose $A_i \neq A_j$. [We will deduce a contradiction.] Then $A_i \cap A_j = \emptyset$ since $\{A_1, A_2, A_3, ..., A_n\}$ is a partition of A. But y is in A_i and y is in A_j . Thus $A_i \cap A_j \neq \emptyset$. Contradicts $A_i \cap A_j = \emptyset$. Thus $A_i = A_j$.

So, x, y, and z are all in A_i .

That is, $\exists \text{ set } A_i, x \in A_i \text{ and } z \in A_i$. By definition of R, x R z.

Equivalence relation

• Let A be a set, R be a relation on A. R is an **equivalence relation** if, and only if, R is reflexive, symmetric, and transitive.

• **Example:** $X = \{\{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

A R B \Leftrightarrow the least element of A = the least element of B Prove that R is an equivalence relation on X: (Reflexive) Suppose A is a nonempty subset of {1, 2, 3} The least element of A = the least element of A. By definition of R, A R A. (Symmetric) Suppose A and B are nonempty subsets of $\{1, 2, 3\}$ and A R B. By A R B, the least element of A = the least element of B. By symmetry of equality, B R A. (Transitive) Suppose A, B, C are nonempty subsets of {1, 2, 3}, A R B and B R C. By A R B, the least element of A = the least element of B. By B R C, the least element of B = the least element of C. By transitivity of equality, the least element of A = the least element of C. So A R C.

Equivalence classes

• Let A be a set, R be an equivalence relation on A. For each a in A, the **equivalence class of a** (the **class of a**) is the set of all x in A such that x is related to a by R.

 $[a] \equiv \{ \mathbf{x} \in \mathbf{A} \mid \mathbf{x} \in \mathbf{R} \}$

• **Example:** Let $A = \{0, 1, 2, 3, 4\}$, and R be a relation on A:

 $R = \{(0,0), (0,4), (1,1), (1,3), (2,2), (3,1), (3,3), (4,0), (4,4)\}$

R is an equivalence relation: check.

$$[0] = \{x \in A | x R 0\} = \{0, 4\}. [4] = same$$

$$[1] = \{x \in A | x R 1\} = \{1, 3\}. [3] = same$$

$$[2] = \{x \in A | x R 2\} = \{2\}$$

$$\{0, 4\}, \{1, 3\} \text{ and } \{2\} \text{ are distinct equivalence classes}$$

Equivalence classes: example 2

• Equivalence classes of a relation on a set of subsets

$$X = \{\{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

 $A R B \Leftrightarrow$ the least element of A = the least element of B R is an equivalence relations (proved 3 slides back)

 $[\{1\}] = \{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}.$ $[\{1,2\}] = [\{1,3\}] = [\{1,2,3\}] = same$

 $[\{2\}] = \{\{2\}, \{2, 3\}\}.$ $[\{2, 3\}] = same$

 $[{3}] = {{3}}$

Equivalence classes: example 3

Equivalence classes of the identity relation

Let A be any set. Let R be a relation on A: For all x and y in A,

 $x R y \iff x = y$

R is an equivalence relation: easy to prove.

Given any a in A, the class of a is:

 $[a] = \{x \in A \mid x R a\} = \{a\}$

because the only element of A that equals a is a.

Equivalence classes: example proof 1

Let A be a set, R be an equivalence relation on A, and a and b be elements of A. If a R b, then [a] = [b].

Proof: [a] = [b] ⇔ [a] ⊆ [b] and [b] ⊆ [a]. 1. Proof of [a] ⊆ [b]: Let x ∈ [a]. Then x R a, by definition of [a]. a R b by hypothesis → by transitivity of R, x R b → x ∈ [b] 2. Proof of [b] ⊆ [a]: Let x ∈ [b]. Then x R b, by definition of [b]. b R a by hypothesis and symmetry → by transitivity of R, x R a → x ∈ [a]

Equivalence classes: example proof 2

Let A be a set, R be an equivalence relation on A, and a and b are elements of A. Either [a] ∩ [b] = Ø or [a] = [b].

Proof:

Suppose A is a set, R is an equivalence relation on A, a and b are elements of A, and [a] \cap [b] $\neq \emptyset$. [We must show [a] = [b]] Since[a] \cap [b] $\neq \emptyset$, $\exists x \text{ in A}$ such that $x \in [a] \cap [b]$ $\Rightarrow x \in [a]$ and $x \in [b] \Rightarrow$ so x R a and x R b By symmetry and transitivity, a R b \Rightarrow [a] = [b].

If R is an equivalence relation on A, then the distinct equivalence classes of R form a partition of A: union of those classes is all of A, and intersection of any two distinct classes is empty.

Equivalence classes: example 4

• Let R be the relation of **congruence modulo 3** on **Z**:

for all m and n in Z, m R n $\Leftrightarrow 3 \mid (m-n) \Leftrightarrow m \equiv n \pmod{3}$. For each integer a, $[a] = \{x \in Z \mid 3 \mid (x-a)\} = \{x \in Z \mid x-a = 3k, \text{ for some integer } k\}$ $= \{x \in Z \mid x = 3k + a, \text{ for some integer } k\}.$

$$[0] = \{x \in Z \mid x = 3k + 0, \text{ for some integer } k\}$$

= {...-9,-6,-3, 0, 3, 6, 9,...} = [3] = [-3] = [6] = [-6] = ...
[1] = {x \in Z \mid x = 3k + 1, \text{ for some integer } k}
= {...-8,-5,-2, 1, 4, 7, 10,...} = [4] = [-2] = [7] = [-5] = ...
[2] = {x \in Z \mid x = 3k + 2, \text{ for some integer } k}
= {...-7,-4,-1, 2, 5, 8, 11,...} = [5] = [-1] = [8] = [-4] = ...

Some terminologies

- Let R be an equivalence relation on a set A, S be an equivalence class of R. A representative of the class S is any element a in A such that [a] = S.
- Let m and n be integers, and let d be a positive integer.
 m is congruent to n modulo d, m ≡ n (mod d), iff d | (m−n).
 That is,

 $m \equiv n \pmod{d} \iff d \mid (m - n)$

Example:

 $12 \equiv 7 \pmod{5}$ because $12 - 7 \equiv 5 \equiv 5 \cdot 1 \rightarrow 5 \mid (12 - 7)$

Equivalence classes: example 6

• Rational numbers are equivalence classes

Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero: A = Z × (Z − {0})
R is a relation on A: for all (a, b), (c, d) ∈ A,

 $(a, b) R (c, d) \Leftrightarrow ad = bc (a/b=c/d)$

R is an equivalence relation.

Example:

 $[(1, 2)] = \{(1, 2), (-1, -2), (2, 4), (-2, -4), (3, 6), (-3, -6), \ldots\}$

$$\frac{1}{2} = \frac{-1}{-2} = \frac{2}{4} = \frac{-2}{-4} = \frac{3}{6} = \frac{-3}{-6}$$
 and so forth.

Modular arithmetic

- Example: 12-hour analog clock
 5 o'clock + 10 hours: (5 + 10) mod 12 = 15 mod 12 = 3
- Properties of congruence modulo n, to do arithmetic modulo n.
- Equivalence classes of integers modulo n, and extend arithmetic to add and multiply such classes, Z_n
- Applications to cryptography: encrypt/decrypt messages.
 RSA: prime factors and modulo arithmetic.
 Too hard to find large prime factors—hundreds of digits.

Euclid algorithm and applications

• Euclid algorithm finding GCD

We've seen at the end of the topics on number theory (and even did extra-credit programing, a few lines)

More proofs and uses
 These use modular arithmetic.

Partial order relations

• Antisymmetry

Let R be a relation on a set A.

R is **antisymmetric** if, and only if, for all a and b in A, if a R b and b R a, then a=b

R is **not antisymmetric** \Leftrightarrow there are a and b in A such that a R b and b R a but a \neq b

Antisymmetry: examples using "divides"

- Example 1: For all $a, b \in \mathbb{Z}^+$, $a \in \mathbb{R}_1$ $b \Leftrightarrow a \mid b$.
 - R_1 is antisymmetric: Suppose a, $b \in \mathbb{Z}^+$ has a R_1 b and b R_1 a. [We must show that a = b]

By definition of R₁, a | b and b | a \rightarrow b=k₁a and a=k₂b, for k₁,k₂ $\in \mathbb{Z}$ \rightarrow b=k₁k₂b

Dividing both sides by b gives $k_1k_2=1 \rightarrow k_1=k_2=1 \rightarrow a=b$

• **Example 2:** For all $a, b \in \mathbb{Z}$, $a R_2 b \Leftrightarrow a \mid b$.

R₂ is not antisymmetric:

Counterexample: a = 2 and $b = -2 \rightarrow a \neq b$

- a | b because $-2 = (-1) \cdot 2 \rightarrow a R_2 b$
- b | a because $2 = (-1) (-2) \rightarrow b R_2 a$

Partial order relations

• Let R be a relation on a set A. R is a **partial order relation** if, and only if, R is **reflexive**, **antisymmetric**, and **transitive**.

(no cycles besides self cycles)
(partial order vs. total order)

Example: The "Subset" (⊆) relation on sets.
Let A be a set of sets. Define ⊆ relation on A:
For all U, V ∈ A, U ⊆ V ⇔ for all x, if x ∈ U then x ∈ V.

 \subseteq is a partial order

Proof: (Antisymmetric) for all sets U and V in A,

if $U \subseteq V$ and $V \subseteq U$ then U = V (by definition of equality of sets)

Partial order relations: example 2

• The "less than or equal to" (\leq) relation on **R**:

for all x and y in **R**, $x \le y \iff x < y$ or x = y.

 \leq is a partial order relation

Proof:

(Reflexive) $x \le x$ means that x < x or x = x, and x = x is true.

Thus $x \leq x$ for all real numbers.

(Antisymmetric) for all x and y in **R**, if $x \le y$ and $y \le x$ then x = y. (Transitive) for all x, y, and z in **R**, if $x \le y$ and $y \le z$ then $x \le z$.

example 3: Lexicographic order

- Order in an English dictionary: compare letters one by one from left to right in words.
- Let A be a set (of letters, etc) with a partial order relation R. Let S be a set of strings over A. Define relation ≤ on S: For any 2 strings in S, a₁a₂...a_m and b₁b₂...b_n, where m,n ∈ Z⁺,
 1. If m ≤ n and a_i=b_i for all i=1,2,...,m, then a₁a₂...a_m≤b₁b₂...b_n
 2. If for some integer k with k ≤ m, k ≤ n, and k ≥ 1, a_i=b_i for all i=1,2,...,k-1, and a_k≠b_k, but a_k R b_k then a₁a₂...a_m≤b₁b₂...b_n.
 3. If ε is the null string, and s is any string in S, then ε ≤ s. (messy, complex cases)

If no strings are related other than by these three conditions, then ≼ is a partial order relation (called **lexicographic order for S**).

Lexicographic order: example

• Let $A = \{x, y\}$. Let R be the partial order relation on A:

 $R = \{(x, x), (x, y), (y, y)\}.$

Let S be the set of all strings over A, and \leq the lexicographic order for S that corresponds to R.

Examples:

 $x \leq xx$ $x \leq xy$ $yxy \leq yxyxxx$ $x \leq y$ $xx \leq xyx$ $xxxy \leq xy$ $\varepsilon \leq x$ $\varepsilon \leq xyxyyx$

Hasse diagrams

- A Hasse diagram is a graph to present a partial order relation
- Example: Let A = {1, 2, 3, 9, 18}. Consider relation | on A:
 For all a, b ∈ A, a | b ⇔ b = k·a for some integer k.

18

Draw a directed graph of the relation, such that all arrows except loops point up.

Remove

40

- 1. loops at all vertices
- 2. arrows that are implied by the transitive property
- 3. direction indicators on the arrows

Hasse diagrams: example

The "subset" relation ⊆ on set P({a, b, c}): for all U and V in P({a, b, c}), U ⊆ V ⇔ ∀x, if x ∈ U then x ∈ V Draw directed graph of ⊆ such that all arrows except loops point up. Remove all loops, unnecessary arrows, and direction indicators.

Hasse diagrams: back to directed graph

- Obtain original directed graph from Hasse diagram:
- 1. Insert direction markers on the edges, making all arrows point up.
- 2. For each pair of arrows from one point to a second and from that second point to a third, add an arrow from the first point to the third; do so repeatedly until no more can be added.
- 3. Add loops at each vertex.

Partially and totally ordered sets

- Let ≤ be a partial order relation on a set A. Elements a and b of A are comparable if, and only, either a ≤ b or b ≤ a.
 Otherwise, a and b are noncomparable.
- Let R is a partial order relation on a set A. If every two elements in A are comparable, then R is a **total order relation** on A.
- Hasse diagram for a total order relation is a single vertical "chain".
- Set A is called a partially ordered set (or poset) with respect to a relation ≤ if, and only if, ≤ is a partial order relation on A.
- Set A is called a totally ordered set with respect to a relation ≤ if, and only, A is a poset with respect to ≤ and ≤ is a total order.

Partially and totally ordered sets (II)

- Let A be a poset with respect to a relation ≤. Subset B of A is called a chain if, and only if, each pair of elements in B is comparable.
- The **length** of a chain is one less than the number of elements in the chain.

• Example:

Chain of subsets

The set P({a, b, c}) is partially ordered with respect to \subseteq . A chain of length 3: $\emptyset \subseteq \{a\} \subseteq \{a, b,\} \subseteq \{a, b, c\}$

Partially and totally ordered sets (III)

- An element a in A is called a maximal element of A if, and only if, for all b in A, either b ≤ a or b and a are not comparable.
- An element a in A is called a greatest element of A if, and only if, for all b in A, b ≤ a.
 maximum
- An element a in A is called a minimal element of A if, and only if, for all b in A, either a ≤ b or b and a are not comparable.
- An element a in A is called a least element of A if, and only if for all b in A, a ≤ b.
 minimum
- Example:
 - a maximal element g
 - greatest element: also g
 - minimal elements: c, d, i
 - there is no least element

Topological sorting (partial to total order)

• Given partial order relations \leq and \leq ' on a set A,

 \leq ' is **compatible** with \leq if, and only if,

for all a and b in A, if a \leq b then a \leq 'b.

- Given partial order relations ≤ and ≤' on a set A,
 ≤' is a topological sorting for ≤ if, and only if,
 ≤' is a total order that is compatible with ≤.
- **Example:** $P(\{a, b, c\})$ with partial order \subseteq

Total order: Ø, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}

Topological sorting: algorithm

- Constructing a topological sorting
- Pick any minimal element x in A with respect to ≤.
 [Such an element exists since A is nonempty.]

2. Set A' = A -
$$\{x\}$$

- 3. Repeat steps a to c while $A' \neq \emptyset$:
 - a. Pick any minimal element y in A'.
 - b. Define $x \leq y$.

c. Set
$$A' = A' - \{y\}$$
 and $x = y$