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Relations on sets
 A (binary) relation R from A to B is a subset of A×B (Section 1.3)

For (x,y) ∈A×B, x is related to y by R if, and only if, (x,y) ∈ R.

R is a subset of all pairs (x,y), x in A, y in B. x R y  (x,y) R

 Example: 

A less-than relation on real numbers: relation L from R to R:

for all x and y in R,   x L y  x < y
Examples:  (−17) L (−14),    (−17) L (−10),    (−35) L 1

The graph of L 

as a subset of Cartesian plane R × R:
It includes all points (x, y) with y > x,
that is, all points above the line x = y.
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Relations: example 1
 The congruence modulo 2 relation:

Define relation E from Z to Z:  for all (m, n) Z × Z,  

m E n  m − n is even.

 Examples: 4 E 0 because 4 − 0 = 4 and 4 is even.

2 E 6 because 2 − 6 = −4 and −4 is even.

3 E (−3) because 3 − (−3) = 6 and 6 is even.

 Prove that if n is any odd integer, then n E 1.

Proof:  Suppose n is any odd integer. 

Then n = 2k + 1 for some integer k.

By definition of E,  n E 1 n − 1 is even. 

By substitution, n − 1 = (2k + 1) − 1 = 2k.

Since k is an integer, 2k is even. That is, n – 1 is even. Hence n E 1.3



Relations: example 2
 A relation on a power set: 

X={a,b,c},  P(X)={ , {a},{b},{c}, {a, b},{a, c},{b,c},{a,b,c}}

Define relation S from P(X) to P(X):        (textbook says P(X) to Z)

for all sets A and B in P(X),

A S B  A has at least as many elements as B.

 Examples:

{a, b} S {b, c}

{a} S because {a} has one element, has zero elements,1 ≥ 0.

{c} S {a}
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Inverse of a relation, and an example
 Let R be a relation from A to B.   

The inverse relation R−1 from B to A:

R −1 = {(y, x) B × A | (x, y) R}.

For all x A, y B,  (y, x) R −1 (x, y) R. Logical

 Example:  A = {2,3,4}, B = {2,6,8}, R is the “divides” relation 
from A to B: for all (x, y) A × B, x  R y  x | y (x divides y).
R = {(2, 2), (2, 6), (2, 8), (3, 6), (4, 8)}      R −1 = {(2, 2), (6, 2), (8, 2), (6, 3), (8, 4)}
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For all (y, x) ∈ B × A, y R −1 x ⇔ y is a multiple of x. 



Inverse of a relation: example 2
 R from R to R : for all (x, y) R × R,  x R y  y = 2 ·|x|.

R and R−1 in the Cartesian plane:
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Directed graph of a relation
 A relation on a set A is a relation from A to A.

Arrow diagram of the relation can be made into a directed graph.

For all points x and y A, 
there is an arrow from x to y  x R y  (x, y) R

 Example:  

Let A = {3, 4, 5, 6, 7, 8}.

Define relation R on A: 

for all x and y A, 

x R y  2|(x−y)
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N-ary relations and relational databases
 Given sets A1, A2,..., An,  an n-ary relation R on A1×A2×···An is a 

subset of A1×A2×···An. 
 Special cases: 2-ary, 3-ary, 4-ary, called binary, ternary, quaternary

 Example database: (a1, a2, a3, a4) R a patient with patient ID 
a1, name a2, was admitted on date a3, with primary diagnosis a4

Examples: (011985,  John Schmidt, 120111, asthma)

(244388,  Sarah Wu, 010310, broken leg)

(574329, Tak Kurosawa, 120111, pneumonia)

In the database language SQL:
SELECT PatientID, Name FROM S WHERE AdmissionDate = 120111

011985 John Schmidt, 574329 Tak Kurosawa

setof((x.PatiendID, x.Name), x in S, x.AdmissionDate == 120111)  da
{(x.PatientID, x.Name) for x in S if x.AdmissionDate == 120111} da/py
{(x.PatiendID, x.Name): x in S, x.AdmissionDate = 120111}  da ideal8



Reflexivity, symmetry, and transitivity
 Properties of relations

 An example first:

Let A = {2, 3, 4, 6, 7, 9}.  Define a relation R on A: 

for all x and y A,   x R y  3 | (x − y).

R is reflexive, symmetric, and transitive, to be defined next
9



 Let R be a relation on a set A.

1. R is reflexive iff for all x A, x R x, that is, (x,x) R

2. R is symmetric iff for all x, y A, if x R y then y R x

3. R is transitive iff for all x, y, z A, if x R y and y R z then x R z

 Directed graph properties:

1. Reflexive: each point of the graph has a loop by itself.

2. Symmetric: whenever there is an arrow from one point to a second, 
there is an arrow from the second point back to the first.

3. Transitive: whenever there is an arrow from one point to a second 
and from the second point to a third, there is an arrow from the first 
point to the third. 
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Reflexivity, symmetry, and transitivity



 R is not reflexive 

there is x in A such that x R x, that is, (x, x) R.

 R is not symmetric 

there are x and y in A such that  x R y but y R x,

that is, (x, y) R but (y, x) R.

 R is not transitive 

there are x, y and z in A such that  x R y and y R z but x R z,

that is, (x, y) R and (y, z) R but (x, z) R
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Reflexivity, symmetry, and transitivity: not



Properties of relations: example 1
 Let A = {0, 1, 2, 3}.

R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}

R is reflexive:

There is a loop at each point of the graph.

R is symmetric:  Whenever there is an 

arrow from one point of to a second, 

there is an arrow from the second point back to the first. 

R is not transitive:  There is an arrow from 1 to 0 and 

an arrow from 0 to 3, but there is no arrow going from 1 to 3.12



Properties of relations: example 2
 Let A = {0, 1, 2, 3}.

S = {(0, 0), (0, 2), (0, 3), (2, 3)}

S is not reflexive: 

There is no loop at 1.

S is not symmetric: 

There is an arrow from 0 to 2 but not from 2 to 0.

S is transitive!
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Properties of relations: example 3
 Let A = {0, 1, 2, 3}.

T = {(0, 1), (2, 3)}

T is not reflexive: 

There is no loop at 0.

T is not symmetric: 

There is an arrow from 0 to 1 but not from 1 to 0. 

T is transitive: 

The transitivity condition is vacuously true for  T.
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Properties of relations: example 4
 Equality relation on real numbers, an infinite set

R is a relation on real numbers, for all real numbers x and y,
x R y x = y

R is reflexive: For all x R, x R x  (x=x).

R is symmetric: For all x, y R,  if x R y then y R x
(if x = y then y = x).

R is transitive: For all x, y, z R, if x R y and y R z then x R z
(if x = y and y = z then x = z).
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Properties of relations: example 5
 Less-than relation:  For all x, y R,  x R y x < y.

R is not reflexive: R is reflexive iff, x R,x R x. 

By definition of R, this means that x R, x < x. 

This is false: x = 0 R such that x x.

R is not symmetric: R is symmetric iff x, y R, if x R y then y R x

By definition of R, this means that x, y R, if x<y then y<x

This is false: x = 0, y = 1 R such that x < y and y x.

R is transitive: R is transitive iff x,y,z R, if x R y,y R z, then x R z

By definition of R, this means x,y,z R, if x<y, y<z, then x < z16



Properties of relations: example 6
 Congruence modulo 3

For all x and y Z,  m  T n 3 | (m − n).

T is reflexive: Suppose m is any integer. [We must show that m T m.] 
m − m = 0.  And 3 | 0 because 0 = 3 · 0. 

Hence 3 | (m − m).  By definition of  T, m T m

T is symmetric: Suppose m and n are integers that satisfy m  T n. 

[We must show that n T m.] 

By definition of  T,  m T n implies 3 | (m − n). 

By definition of  “divides,”  m − n = 3k, for some integer k. 

Multiplying both sides by −1 gives n − m = 3(−k). 

Since −k is an integer, this equation shows 3 | (n − m).  

By definition of  T, n T m.17



Properties of relations: example 6 (II)
 Congruence modulo 3

For all x, y Z, m T n 3 | (m − n).

T is transitive: Suppose m, n, and p are any integers that satisfy 

m T n and n T p. [We must show that m T p.] 

By definition of  T,  m T n and n T p means 3|(m−n) and 3|(n−p). 

By definition of  “divides,” this means m − n = 3r and n − p = 3s,

for some integers r and s. 

Adding the two equations gives (m − n) + (n − p) = 3r + 3s, 

and simplifying gives that m − p = 3(r + s). 

Since r + s is an integer, this equation shows 3 | (m − p). 

By definition of  T, m T p.18



The transitive closure of a relation
 Let A be a set and R a relation on A.  The transitive closure of R 

is the relation Rt on A that satisfies the following three properties:

1. Rt is transitive

2. R Rt

3. If S is any other transitive relation that contains R, then Rt S

 Example:  

A = {0, 1, 2, 3}

R = {(0, 1), (1, 2), (2, 3)}

Rt={(0, 1), (0, 2), (0, 3), 

(1, 2), (1, 3), (2, 3)}
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Equivalence relations
 An example first: Given a partition of a set A (Section 6),        

the relation induced by the partition, R, is defined on A as 
follows: for all x, y A, 

x R y  subset Ai of the partition, x Ai and y Ai.

 Example: A = {0,1,2,3,4}. Consider partition: {0,3,4}, {1}, {2}
0 R 3 because both 0 and 3 are in {0, 3, 4}    3 R 0 because both 3 and 0 are in {0, 3, 4}

0 R 4 because both 0 and 4 are in {0, 3, 4}    4 R 0 because both 4 and 0 are in {0, 3, 4}

3 R 4 because both 3 and 4 are in {0, 3, 4}    4 R 3 because both 4 and 3 are in {0, 3, 4}

0 R 0 because both 0 and 0 are in {0, 3, 4}    3 R 3 because both 3 and 3 are in {0, 3, 4}

4 R 4 because both 4 and 4 are in {0, 3, 4} 

1 R 1 because both 1 and 1 are in {1}  2 R 2 because both 2 and 2 are in {2}

R = { (0, 0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4) }20



Relation induced by a partition
 Let A be a set with a partition. Let R be the relation induced by the 

partition.  Then R is reflexive, symmetric, and transitive.

Proof: for finite partition but same for infinite except for notation

Suppose A is a set with a partition A1,A2,...,An,

Ai∩Aj= whenever i = j,  and  A1 A2 ··· An = A.

For all x, y A,  x R y   set Ai in the partition, x Ai and y Ai

(Reflexive) Suppose x A. Since A1 A2 ··· An=A, x Ai for some i.

That is,  set Ai, x Ai and x Ai.   By definition of R, x R x.

(Symmetric) Suppose x and y are in A and x R y. 

Then by definition of R,  set Ai in the partition, x Ai and y Ai.

Then,  set Ai, y Ai and x Ai.   By definition of R, y R x.21



Relation induced by a partition (II)
(Transitive) Suppose x, y, and z are in A and x R y and y R z. 

Then by definition of R,  sets Ai and Aj in the partition such that    
x and y are in Ai, and y and z are in Aj.

Suppose Ai ≠ Aj. [We will deduce a contradiction.] 

Then Ai∩Aj= since {A1, A2, A3,..., An} is a partition of A. 

But y is in Ai and y is in Aj. Thus Ai∩Aj ≠ . Contradicts Ai∩Aj= .

Thus Ai = Aj. 

So, x, y, and z are all in Ai. 

That is,  set Ai, x Ai and z Ai. By definition of R, x R z.

22



Equivalence relation
 Let A be a set, R be a relation on A.  R is an equivalence relation

if, and only if, R is reflexive, symmetric, and transitive.

 Example:  X = {{1},{2},{3},  {1,2},{1,3},{2,3},  {1,2,3}}

A R B  ⇔ the least element of A = the least element of B
Prove that R is an equivalence relation on X:
(Reflexive) Suppose A is a nonempty subset of {1, 2, 3}

The least element of A = the least element of A.  By definition of R, A R A.
(Symmetric) Suppose A and B are nonempty subsets of {1, 2, 3} and A R B. 

By A R B, the least element of A = the least element of B.  
By symmetry of equality, B R A.

(Transitive) Suppose A, B, C are nonempty subsets of {1, 2, 3}, A R B and B R C.
By A R B, the least element of A = the least element of B.   By B R C, 
the least  element of B = the least element of C.  By transitivity of equality, 
the least element of A = the least element of C.  So A R C.23



Equivalence classes
 Let A be a set, R be an equivalence relation on A. For each a in A, 

the equivalence class of a (the class of a) is the set of all x in A 
such that x is related to a by R.

[a] = {x A |x R a}

 Example:  Let A = {0, 1, 2, 3, 4}, and R be a relation on A:

R = {(0,0),(0,4), (1,1),(1,3), (2,2), (3,1),(3,3), (4,0),(4,4)}

R is an equivalence relation: check.

[0] ={x A|x R 0}={0, 4}.  [4]=same

[1] ={x A|x R 1}={1, 3}.  [3]=same

[2] ={x A|x R 2}={2}

{0, 4}, {1, 3} and {2} are distinct equivalence classes
24



Equivalence classes: example 2
 Equivalence classes of a relation on a set of subsets

X = {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}

A R B   the least element of  A = the least element of B

R is an equivalence relations (proved 3 slides back)

[{1}] ={1},{1,2},{1,3},{1,2,3}}.  

[{1,2}] = [{1,3}] = [{1,2,3}] = same

[{2}] ={{2}, {2, 3}}. [{2, 3}] = same

[{3}] ={{3}}
25



Equivalence classes: example 3
 Equivalence classes of the identity relation

Let A be any set.  Let R be a relation on A:  For all x and y in A,

x R y  x = y

R is an equivalence relation: easy to prove.

Given any a in A, the class of a is: 

[a] = {x A |x R a} = {a}

because the only element of A that equals a is a.
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Equivalence classes: example proof 1 
 Let A be a set, R be an equivalence relation on A, and a and b be 

elements of A.  If a R b, then [a] = [b].

Proof:  [a] = [b]  [a] [b] and [b] [a].

1. Proof of [a] [b]: 

Let x [a].  Then x R a, by definition of [a].  

a R b by hypothesis  by transitivity of R, x R b  x [b]

2. Proof of [b] [a]: 

Let x [b].  Then x R b, by definition of [b].

b R a by hypothesis and symmetry  by transitivity of R, x R a 
 x [a]
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Equivalence classes: example proof 2 
 Let A be a set, R be an equivalence relation on A, and a and b are 

elements of A.  Either [a] ∩ [b] = or [a] = [b].

Proof: 

Suppose A is a set, R is an equivalence relation on A, a and b are 
elements of A, and [a] ∩ [b] ≠ . [We must show [a] = [b]]

Since[a] ∩ [b] ≠ ,  x in A such that x [a] ∩ [b]

 x [a] and x [b]  so x R a and x R b

By symmetry and transitivity, a R b  [a] = [b].

 If R is an equivalence relation on A, then the distinct equivalence 
classes of R form a partition of A: union of those classes is all of A, 
and intersection of any two distinct classes is empty.
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Equivalence classes: example 4
 Let R be the relation of congruence modulo 3 on Z: 

for all m and n in Z,  m R n  3|(m−n)   m ≡ n (mod 3).

For each integer a,

[a] = {x ∈ Z| 3|(x−a)} ={x ∈ Z| x−a = 3k, for some integer k}

= {x ∈ Z| x = 3k + a, for some integer k}.

[0] = {x ∈ Z| x = 3k + 0, for some integer k} 

={...− 9,−6,−3, 0, 3, 6, 9,...}= [3] = [−3] = [6] = [−6] =...

[1] = {x ∈ Z| x = 3k + 1, for some integer k}

={...− 8,−5,−2, 1, 4, 7, 10,...}= [4] = [−2] = [7] = [−5] =...

[2] = {x ∈ Z| x = 3k + 2, for some integer k}

={... − 7,−4,−1, 2, 5, 8, 11,...}= [5] = [−1] = [8] = [−4] = ...
29



Some terminologies
 Let R be an equivalence relation on a set A, S be an equivalence class 

of R.  A representative of the class S is any element a in A such 
that [a] = S.

 Let m and n be integers, and let d be a positive integer.

m is congruent to n modulo d, m ≡ n (mod d), iff d|(m−n).

That is,

m ≡ n (mod d) d | (m − n)

Example:

12 ≡ 7 (mod 5)  because 12 − 7 = 5 = 5 · 1  5 | (12 − 7)
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Equivalence classes: example 6
 Rational numbers are equivalence classes

Let A be the set of all ordered pairs of integers for which the 
second element of the pair is nonzero:  A = Z × (Z − {0})

R is a relation on A: for all (a, b), (c, d) A,

(a, b) R (c, d)  ad = bc (a/b=c/d)

R is an equivalence relation.

Example:
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Modular arithmetic
 Example: 12-hour analog clock

5 o’clock + 10 hours:  (5 + 10) mod 12 = 15 mod 12 = 3

 Properties of congruence modulo n, 

to do arithmetic modulo n.

 Equivalence classes of integers modulo n,

and extend arithmetic to add and multiply such classes, Zn

 Applications to cryptography: encrypt/decrypt messages. 

RSA: prime factors and modulo arithmetic.

Too hard to find large prime factors—hundreds of digits.
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Euclid algorithm and applications
 Euclid algorithm finding GCD

We’ve seen at the end of the topics on number theory

(and even did extra-credit programing, a few lines)

 More proofs and uses

These use modular arithmetic.
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Partial order relations
 Antisymmetry

Let R be a relation on a set A.  

R is antisymmetric if, and only if,

for all a and b in A, 

if a R b and  b R a, then a=b

R is not antisymmetric 
there are a and b in A such that 

a R b and b R a but a ≠ b

0 R 2 and 2 R 0 but 0 ≠ 2
34



Antisymmetry: examples using “divides”
 Example 1:  For all a, b Z+, a R1 b a | b.

R1 is antisymmetric: Suppose a, b Z+ has a R1 b and b R1 a.     
[We must show that a = b] 

By definition of R1, a|b and b|a b=k1a and a=k2b, for k1,k2 Z 
 b=k1k2b

Dividing both sides by b gives k1k2=1  k1=k2=1 a=b

 Example 2:  For all a, b Z, a R2 b a | b.

R2 is not antisymmetric: 

Counterexample: a = 2 and b = −2  a ≠ b

a | b   because −2 = (−1) · 2  a R2 b 

b | a   because 2 = (−1) (−2)  b R2 a 
35



Partial order relations
 Let R be a relation on a set A.   R is a partial order relation if, 

and only if, R is reflexive, antisymmetric, and transitive.

(no cycles besides self cycles)

(partial order vs. total order)

 Example: The “Subset” ( ) relation on sets.

Let A be a set of sets.  Define relation on A: 

For all U, V A,   U V  for all x, if x U then x V.

is a partial order

Proof: (Antisymmetric) for all sets U and  V in A,

if U V and V U then U = V (by definition of equality of sets)36



Partial order relations: example 2
 The “less than or equal to” (≤) relation on R: 

for all x and y in R,  x ≤ y  x < y or x = y.

≤ is a partial order relation
Proof:

(Reflexive) x ≤ x means that x < x or x = x, and x = x is true. 

Thus x ≤ x for all real numbers. 

(Antisymmetric) for all x and y in R, if x ≤ y and y ≤ x then x = y. 

(Transitive) for all x, y, and z in R, if x ≤ y and y ≤ z then x ≤ z. 
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example 3: Lexicographic order
 Order in an English dictionary: 

compare letters one by one from left to right in words.

 Let A be a set (of letters, etc) with a partial order relation R. 

Let S be a set of strings over A. Define relation on S: 

For any 2 strings in S, a1a2...am and b1b2...bn, where m,n Z+,

1. If m ≤ n and ai=bi for all i=1,2,...,m, then a1a2...am b1b2...bn

2. If for some integer k with k ≤ m, k ≤ n, and k ≥ 1,  ai=bi for all
i=1,2,...,k−1, and ak≠bk, but ak R bk then a1a2...am b1b2...bn.

3. If ε is the null string, and s is any string in S, then ε s.

(messy, complex cases)

If no strings are related other than by these three conditions, then     
is a partial order relation (called lexicographic order for S).
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Lexicographic order: example
 Let A = {x, y}. Let R be the partial order relation on A:

R = {(x, x), (x, y), (y, y)}.

Let S be the set of all strings over A, and the lexicographic order 
for S that corresponds to R.

Examples:

x xx x xy

yxy yxyxxx x y

xx xyx xxxy xy

ε x ε xyxyyx
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Hasse diagrams
 A Hasse diagram is a graph to present a partial order relation

 Example:  Let A = {1, 2, 3, 9, 18}. Consider relation | on A:

For all a, b A,  a | b  b = k·a for some integer k.

Draw a directed graph of the relation, 

such that all arrows except loops point up.  

Remove
1. loops at all vertices
2. arrows that are implied by the transitive property
3. direction indicators on the arrows

40



Hasse diagrams: example
 The “subset” relation on set P({a, b, c}): 

for all U and V in P({a, b, c}),  U V x, if x U then x V

Draw directed graph of such that all arrows except loops point up.

Remove all loops, unnecessary arrows, and direction indicators.
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Hasse diagrams: back to directed graph
 Obtain original directed graph from Hasse diagram:

1. Insert direction markers on the edges, making all arrows point up.

2. For each pair of arrows from one point to a second and from that 
second point to a third, add an arrow from the first point to the 
third; do so repeatedly until no more can be added.

3. Add loops at each vertex.
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Partially and totally ordered sets
 Let be a partial order relation on a set A. Elements a and b of A 

are comparable if, and only, either a b or b a. 

Otherwise, a and b are noncomparable.

 Let R is a partial order relation on a set A. If every two elements in 
A are comparable, then R is a total order relation on A.

 Hasse diagram for a total order relation is a single vertical “chain”.

 Set A is called a partially ordered set (or poset) with respect to 
a relation if, and only if,  is a partial order relation on A.

 Set A is called a totally ordered set with respect to a relation 
if, and only, A is a poset with respect to and is a total order.
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Partially and totally ordered sets (II)
 Let A be a poset with respect to a relation . Subset B of A is called 

a chain if, and only if, each pair of elements in B is comparable.

 The length of a chain is one less than the number of elements in 
the chain.

 Example: 

Chain of subsets

The set P({a, b, c}) is partially ordered with respect to .

A chain of length 3: {a} {a, b,} {a, b, c}
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Partially and totally ordered sets (III)
 An element a in A is called a maximal element of A if, and only if,   

for all b in A, either b a or b and a are not comparable.

 An element a in A is called a greatest element of A if, and only if,
for all b in A, b a. maximum

 An element a in A is called a minimal element of A if, and only if,
for all b in A, either a b or b and a are not comparable.

 An element a in A is called a least element of A if, and only if    
for all b in A, a b.              minimum

 Example:
 a maximal element g 
 greatest element: also g
 minimal elements: c, d, i
 there is no least element45



Topological sorting  (partial to total order)
 Given partial order relations and ’ on a set A, 

’ is compatible with if, and only if, 

for all a and b in A, if a b then a ’b.

 Given partial order relations and ’ on a set A, 

’ is a topological sorting for if, and only if,

’ is a total order that is compatible with .

 Example:  P({a, b, c}) with partial order 

Total order: , {a},{b},{c},{a, b}, {a, c}, {b, c}, {a, b, c}
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Topological sorting: algorithm
 Constructing a topological sorting

1. Pick any minimal element x in A with respect to . 

[Such an element exists since A is nonempty.]

2. Set A’ = A − {x}

3. Repeat steps a to c while A’ ≠ :
a. Pick any minimal element y in A’.
b. Define x ’ y.
c. Set A’ = A’−{y} and x = y.
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