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Relations on sets

* A (binary) relation R from A to B is a subset of AXB (Section 1.3)
For (x,y) € AXB, x is related to y by R if, and only if, (x,y) € R.
R is a subset of all pairs (x,y), xinA,yinB. xRy < (x,y) ER

© Example:

A less-than relation on real numbers: relation L from R to R:

forallxandyinR, xLy & x<y
Examples: (—17) L (—14), (—17)L(—10), (—35)L1

The graph of L 1
as a subset of Cartesian plane R X R:

It includes all points (x, y) with y > x,
that is, all points above the line x = y.

L
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Relations: example 1

® The congruence modulo 2 relation:
Detfine relation E from Z to Z: for all (m,n) € Z X Z,
mEn & m — niseven.
* Examples: 4 E 0 because 4 — 0 = 4 and 4 is even.
2 E 6 because 2 — 6 = —4 and —4 is even.
3 E (—3) because 3 — (—3) = 6 and 6 is even.
® Prove that if n is any odd integer, thenn E 1.
Proof: Suppose n is any odd integer.
Then n = 2k + 1 for some integer k.
By definition of E, n E 1 & n — 1 is even.
By substitution,n — 1 = (2k + 1) — 1 = 2k.

@ Since k is an integer, 2k is even. That is, n — 1 is even. Hence n E 1. Y
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Relations: example 2

e A relation on a power set:

X={ab,cl, POO=1D, {a}, (b}, (e}, {a, bl fa ¢}, fbich, fabic} )
Define relation S from P(X) to P(X): (textbook says P(X) to Z)

for all sets A and B in P(X),
A SB & A has at least as many elements as B.

* Examples:
{a,b} S {b, c}

fal S @ because {a} has one element, @ has zero elements,1 2 0.

CHEREY
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Inverse of a relation, and an example

® Let R be a relation from A to B.
The inverse relation R™! from B to A:
R = {(y,x) EBXA | (x,y) ER}.
Forallx EA,yEB, (y,x) ER™'& (x,y) ER. Logical
* Example: A = {2,3,4}, B = {2,6,8}, R is the “divides” relation
from A to B: for all (x,y) EAXB, x Ry & x|y (xdividesy).
R=1{(2,2),(2,6),(2,8),(3,6),#,8)} R ={(2,2),(6,2),(8,2),(6,3), (8,4}

B A R- B
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For all (y, x) € B XA, y R7! x & y is a multiple of x.
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R={(x,y)|y=2|x]}

X y
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Inverse of a relation: example 2

®* RfromRtoR :forall (x,y) ERXR, xRy & y=2-[x|.
R and R7!in the Cartesian plane:

R = {(y,x) |y = 2lx]}

y X
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R~ is not a function because. for instance. both (2. 1) and (2. —1) are in R~!.
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Directed graph of a relation

* A relation on a set A is a relation from A to A.
Arrow diagram of the relation can be made into a directed graph.
For all points x and y €A,

there is an arrow fromxtoy & xRy & (x,y) ER

* Example:
LetA = {3,4,5,6,7,8}.
Define relation R on A:
for all xand y €A,
xRy < 2] (x7y)

L
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\\6 {(x.PatiendID, x.Name): x in S, x.AdmissionDate = 120111} da ideay

~
N-ary relations and relational databases

® GivensetsA,, A,,...,A , an n-ary relation R on A; XA, X:--A isa
subset of A XA, XA |

® Special cases: 2-ary, 3-ary, 4-ary, called binary, ternary, quaternary

* Example database: (a,, a,, a;, a,) € R & a patient with patient [D
a;, hame a,, was admitted on date a;, with primary diagnosis a,

EX&IIIP]CSi (011985, John Schmidt, 120111, asthma)

(244388, Sarah Wu, 010310, broken leg)
(574329, Tak Kurosawa, 120111, pneumonia)

In the database language SQL:

SELECT PatientID, Name FROM S WHERE AdmissionDate = 120111
011985 John Schmidt, 574329 Tak Kurosawa

setof((x.PatiendID, x.Name), x in S, x.AdmissionDate == 120111) da
da/py
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Reflexivity, symmetry, and transitivity

© Properties of relations

* An example first:
LetA = {2,3,4,6,7,9}. Detine arelation R on A:
forallxandy €A, xRy & 3| (x —y).

Ay
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R is reflexive, symmetric, and transitive, to be defined next

@ y
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@ point to the third.

Reflexivity, symmetry, and transitivity

® Let R be arelation on a setA.

1. Risreflexive iff forall x € A x R x, thatis, (x,x) ER

2. Ris symmetric iff for all x, y €A, if x R y then y R x

3. Ris transitive iff forall x,y,z €A it x R yand y R z then x R z

® Directed graph properties:
1. Reflexive: each point of the graph has a loop by itself.

2. Symmetric: whenever there is an arrow from one point to a second,

there is an arrow from the second point back to the first.

3. Transitive: whenever there is an arrow from one point to a second

and from the second point to a third, there is an arrow from the first

_/




-

® R is not reflexive &

there is x in A such that x R x, that is, (x, x) € R.

® R is not symmetric <
there are x and y in A such that x Ry buty R x,
that is, (x, y) € R but (y, x)& R.

® R is not transitive &
there are x, y and z in A such that x Ryand y R zbut x R z,
that is, (x, y) € R and (y, z) € R but (x, z) € R

o

Reflexivity, symmetry, and transitivity: not

_/
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Properties of relations: example 1

e LetA = {0, 1,2, 3}.
R = {(09 O)a (Oa 1)9 (Oa 3)9 (1> O)) (19 1)) <2> 2)) (39 O)) <3> 3)}

% o
R is reflexive: \\i PERRECY, )
. . [}/ o _-e--’ﬁ Tf
There is a loop at each point of the graph. ‘u
| |
R is symmetric: Whenever there is an \ (" %
A\ W,

arrow from one point of to a second,

there is an arrow from the second point back to the first.

R is not transitive: There is an arrow from 1 to 0 and

\\@ an arrow from O to 3, but there is no arrow going from 1 to 3.
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Properties of relations: example 2

° LetA = {0,1,2,3}.
S={(0,0), (0,2), (0,3), (2, 3)}

S is not reflexive: 0 ol
There is no loop at 1.
e

S is not symmetric:

There is an arrow from 0O to 2 but not from 2 to O.

S is transitive!

-




p
Properties of relations: example 3

° LetA = {0, 1,2,3}. 0o e
T=1(0,1),(2,3)]

30« e

T is not reflexive:

There is no loop at 0.

T is not symmetric:

There is an arrow from 0O to 1 but not from 1 to O.

T is transitive:

The transitivity condition is Vacuously true for T.

L
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Properties of relations: example 4

* Equality relation on real numbers, an infinite set
R is a relation on real numbers, for all real numbers x and vy,

xRyex=y
R is reflexive: For all x € R, x R x (x=x).

R is symmetric: For all x, y €R, it x Ry then y R x
(if x = y then y = x).

R is transitive: Forall x,y,z € R,if x Ryand y R zthen x R z
(if x = y and y = z then x = z).

-
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Properties of relations: example 5

* Less-than relation: Forallx, yER, xRy & x <y

R is not reflexive: R is reflexive iff, Vx € R,x R x.
By definition of R, this means that Vx € R, x < x.
This is false: 3x = 0 € R such that x < x.

R is not symmetric: R is symmetric ift Vx, y € R, if x R y then y R x
By definition of R, this means that Vx, y € R, it x<<y then y<x

This is false: 3x =0,y = 1 € R such that x <y and y <« x.

R is transitive: R is transitive iff Vx,y,z € R, it x Ry,y R z, then x R z

@ By definition of R, this means Vx,y,z € R, it x<y, y<z, then x < Z/
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Properties of relations: example 6

* Congruence modulo 3

Forallxandy €Z, m Tn < 3 | (m — n).

T is retlexive: Suppose m is any integer. [We must show that m T m.]

m —m = 0. And 3 | O because 0 = 3 - 0.
Hence 3 | (m — m). By definition of T, mT m
T is symmetric: Suppose m and n are integers that satisty m T n.
[ We must show that n T m.]
By definition of T, mT n implies 3 | (m — n).
By definition of “divides,” m — n = 3k, for some integer k.

Multiplying both sides by —1 givesn —m = 3(—k).

Since —k is an integer, this equation shows 3 | (n — m).

@ By detinition of T, nT m. Y
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Properties of relations: example 6 (ll)

* Congruence modulo 3

Forallx,y €EZ, mTn& 3 | (m —n).

T is transitive: Suppose m, n, and p are any integers that satisfy
mT nand nT p. [We must show that m T p.]
By definition of T, mT nand n'T p means 3 | (m—n) and 3| (n—p).
By definition of “divides,” this means m —n = 3randn — p = 3s,
for some integers r and s.
Adding the two equations gives (m —n) + (n — p) = 3r + 3s,
and simplitying gives that m — p = 3(r + s).

Since r + s is an integer, this equation shows 3 | (m — p).

@ By definition of T, mT p. Yy,
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The transitive closure of a relation

® [et A beasetand R arelation on A. The transitive closure of R
is the relation Rt on A that satisfies the following three properties:

1. Rtis transitive

2.R € R!
3. If S is any other transitive relation that contains R, then R'CS
* Example: Oe !
A=1{0,1,2,3}
R=1{0,1),(1,2, (23} . '

R={(0, 1), (0, 2), (0, 3),
(1,2),(1,3), (2, 3)}

@ 3 o= ' 3
.

~
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follows: for all x, y EA,

O R 3 because both 0 and 3 are in {0, 3, 4}
O R 4 because both 0 and 4 are in {0, 3, 4}
3 R 4 because both 3 and 4 are in {0, 3, 4}

0 R 0 because both 0 and 0 are in {0, 3, 4}
4 R 4 because both 4 and 4 are in {0, 3, 4}

1 R 1 because both 1 and 1 are in {1}

Equivalence relations

* An example first: Given a partition of a set A (Section 6),
the relation induced by the partition, R, is defined on A as

x Ry & d subset A, of the partition, x € A;and y € A,.

* Example: A = {0,1,2,3,4}. Consider partition: {0,3,4}, {1},

@ R={(0,0),(0,3),(0,4), (1, 1), (3,0),(3,3),3,4),#,0),(#,3), 44} )

3 R 0 because both 3 and 0 are in {0, 3, 4}
4 R 0 because both 4 and 0 are in {0, 3, 4}
4 R 3 because both 4 and 3 are in {0, 3, 4}

3 R 3 because both 3 and 3 are in {0, 3, 4}

2 R 2 because both 2 and 2 are in {2}
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Relation induced by a partition

® [et A be aset with a partition. Let R be the relation induced by the

partition. Then R is reflexive, symmetric, and transitive.
Proof: for finite partition but same for infinite except for notation
Suppose A is a set with a partition A|,A,,...,A

ANA=D Whenever|i =j, and A/ UA,U---UA_ =A,

Forall x,y €A, x Ry <& dsetA, in the partition, x €A and y EA,

(Reflexive) Suppose xEA. Since A;UA,U---UA_=A xEA, for some i.

That is, d setA,, x € A;and x € A,. By definition of R, x R x.
(Symmetric) Suppose x and y are in A and x R y.

Then by definition of R, 3 set A, in the partition, x €A, and y EA,.
@ Then, d setA,, y €A, and x €A,. By definition of R, y R x.

~

/
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Relation induced by a partition (ll)

(Transitive) Suppose X, y, and zare in A and x R yand y R z.
Then by definition of R, 3 sets A, and A;in the partition such that

x and y are in A, and y and z are in A,

Suppose A; # A;. [We will deduce a contradiction. ]

Then AiﬂAj:® since {A, A,,A;,..., A} is a partition of A.
But y is in A, and y is in AJ.. Thus AiﬂAj # @. Contradicts AiﬂAjZQ.
Thus A, = A,

So, X, y, and z are all in A,.

That is, d set A, x € A, and z € A,. By definition of R, x R z.
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Equivalence relation

® Let A be a set, R be arelation on A. R is an equivalence relation

if, and only if, R is reflexive, symmetric, and transitive.

° Example: X ={{1},{2},{3}, {1,2},{1,3},{2,3}, {1,2,3}}
A R B & the least element of A = the least element of B
Prove that R is an equivalence relation on X:
(Reflexive) Suppose A is a nonempty subset of {1, 2, 3}
The least element of A = the least element of A. By definition of R, A R A.
(Symmetric) Suppose A and B are nonempty subsets of {1, 2, 3} and A R B.
By A R B, the least element of A = the least element of B.
By symmetry of equality, BR A.
(Transitive) Suppose A, B, C are nonempty subsets of {1,2,3},ARBand BR C.
By A R B, the least element of A = the least element of B. By BR C,
the least element of B = the least element of C. By transitivity of equality,

the least element of A = the least element of C. So A R C. J
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O]
1]
2
@ 10,4}, {1, 3} and {2} are distinct equivalence classes

:{XEA
:{XEA
—{XEA

such that x is related to a by R

[a] = {x EA |x R a}

° Example: LetA = {0, 1, 2, 3,4}, and R be a relation on A:

R = {(0,0),(0,4), (1,1),(1,3), (2,2), (3,1),(3,3), (4,0),(4,4)}

R is an equivalence relation: check.

x R 0}={0,4}.
x R 1}={1, 3}.
x R 2} ={2}

Equivalence classes

® Let A be a set, R be an equivalence relation on A. For each a in A,

[4]=same

[3]=same

4l
)ri*

the equivalence class of a (the class of a) is the set of all x in A
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Equivalence classes: example 2

o Equivalence classes of a relation on a set of subsets

X =315, 424, 435, 11,25, 11,3}, {2,3}, {1,2,3}}
A RB & the least element of A = the least element of B

R is an equivalence relations (proved 3 slides back)

[ =415,41,25,{1,35,41,2,3} .
({1,251 = [{1,35] = [{1,2,3}] = same

(1251 =442, 42,355 [{2,3}] = same

[331=113}}

-
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Equivalence classes: example 3

* Equivalence classes of the identity relation
Let A be any set. Let R be a relation on A: For all x and y in A,

x R y &S x = y
R is an equivalence relation: casy to prove.
Given any a in A, the class of a is:

[a] = {x EA |xRa} = {a}

because the only element of A that equals a is a.
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Equivalence classes: example proof 1

® Let A be a set, R be an equivalence relation on A, and a and b be
elements of A. If a R b, then [a] = [b].

Proof: [a] = [b] & [a] € [b] and [b] € [a].
1. Proof of [a] & [b]:

Let x € [a]. Then x R a, by definition of [a].

a R b by hypothesis =2 by transitivity of R, x R b =2 x € [b]
2. Proof of [b] € [a]:

Let x € [b]. Then x R b, by definition of [b].

b R a by hypothesis and symmetry -> by transitivity of R, x R a
=> x € [a]

o
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Equivalence classes: example proof 2

® Let A be a set, R be an equivalence relation on A, and a and b are
elements of A. Either [a] [ [b] = @ or [a] = [b].
Proof:

Suppose A is a set, R is an equivalence relation on A, a and b are

elements of A, and [a] [ [b] # @. [We must show [a] = [b]]
Since[a] N [b] # @, 3 x in A such that x € [a] N [b]

=>» xE[aJand x E[b]=P soxRaandxRb
By symmetry and transitivity,a R b => [a] = [b].

* If R is an equivalence relation on A, then the distinct equivalence

o

classes of R form a partition of A: union of those classes is all of A,

and intersection of any two distinct classes is empty.
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Equivalence classes: example 4

Let R be the relation of congruence modulo 3 on Z:

forallmandninZ, mRn & 3|(m—n) <& m=n (mod 3).

For each integer a,
[a] = {x €Z]| 3|(x—a)} ={x € Z| x—a = 3k, for some integer k}
= {x €Z| x = 3k + a, for some integer k}.

[0] = {x € Z] x = 3k + 0, for some integer k}
={...—/9,76,-3,0,3,6,9,..}=[3]=[-3]=[6] =[~6] =...
[1] = {x € Z]| x = 3k + 1, for some integer k}
={...—8,=5=2,1,4,7,10,..}=[4] = [2] = [7] = [-5] =...
[2] = {x € Z] x = 3k + 2, for some integer k}
={... =7, 4,—1,2,5,8, 11,..}=[5] = [-1]=[8] = [~4] = ...

/
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Some terminologies

® Let R be an equivalence relation on a set A, S be an equivalence class

of R. A representative of the class S is any element a in A such
that [a] = S.

® Let m and n be integers, and let d be a positive integer.
m is congruent to n modulo d, m =n (mod d), iff d| (m—n).
That is,
m=n(modd) < d| (m—n)
Example:

12=7 (mod 5) because 12 —7=5=5-1=>5 | (12 —7)

L Y
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Equivalence classes: example 6

e Rational numbers are equivalence classes

Let A be the set of all ordered pairs of integers for which the
second element of the pair is nonzero: A =7 X (Z — {0})

R is a relation on A: for all (a, b), (¢, d) EA,
(a,b) R (c,d) & ad =bc (a/b=c/d)

R is an equivalence relation.

Example:

I —1 2 =2 3 =3
§=_—2=1=_—4=6=_—6&nd80f01th
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Modular arithmetic

© Example: 12-hour analog clock

5 o’clock + 10 hours: (5 + 10) mod 12 = 15 mod 12 = 3

* Properties of congruence modulo n,
to do arithmetic modulo n.
* Equivalence classes of integers modulo n,
and extend arithmetic to add and multiply such classes, Z

n

® Applications to cryptography: encrypt/ decrypt messages.

RSA: prime factors and modulo arithmetic.

Too hard to find large prime factors—hundreds of digits.

L
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Euclid algorithm and applications

e Euclid algorithm finding GCD
We’ve seen at the end of the topics on number theory

(and even did extra-credit programing, a few lines)

® More proofs and uses

These use modular arithmetic.
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Partial order relations

° Antisymmetry

[et R be a relation on a set A.

N\ "
R is antisymmetric if, and only if, \\R"; ;1__,_,,/
forallaand bin A,
itaRband bR a, thena=b :
R is not antisymmetric & O‘R“\ 1
there are a and b in A such that \\\\\\:\ /
aRbandbRabuta#b Y

OR2and2 RObutQ#2

L
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Antisymmetry: examples using “divides”

* Example 1: Foralla,bEZ" aR, b<a | b

R, is antisymmetric: Suppose a,b € Z" hasa R, band b R, a.
[We must show that a = b]

By definition of R, a|band b|a =» b=k,a and a=k,b, for k,,k,E Z
=> b=k,k,b
Dividing both sides by b gives k k,=1 = k=k,=1=» a=b

°* Example 2: Foralla,bEZ aR,b<a | b.
R, is not antisymmetric:
Counterexample:a =2 andb=—2 =2 a#b
a|b because =2 =(—1)-2=>»aR,b
b |a because2 = (—1)(—2)=» bR, a
° " 2
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Partial order relations

® Let R be arelation onasetA. Risa partial order relation if,

and only if, R is reflexive, antisymmetric, and transitive.
(no cycles besides self cycles)

(partial order vs. total order)

* Example: The “Subset” (&) relation on sets.
Let A be a set of sets. Define & relation on A:
Forall U VEA, UCV & forallx,if x € Uthenx EV.

C is a partial order
Proof: (Antisymmetric) for all sets Uand Vin A,

if UCVandV € U then U =V (by definition of equality of sets
@ (by quality )
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Partial order relations: example 2

® The “less than or equal to” (<) relation on R:

forallxandyinR, x<y & x<yorx=y.

<isa partial order relation
Proof:
(Retlexive) x £ x means that x < x or x = x, and x = x is true.

Thus x < x for all real numbers.
(Antisymmetric) forall x and yin R, if x < yand y S x then x = y.
(Transitive) for all x, y,and zin R, if x <y and y < z then x < z.
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example 3: Lexicographic order

® Order in an English dictionary:

compare letters one by one from left to right in words.
® Let A be a set (of letters, etc) with a partial order relation R.
Let S be a set of strings over A. Define relation < on S:
For any 2 strings in S, aa,...a, and b;b,...b_, where m,n € Z",
1.If m Snanda=Db, foralli=1,2,...,m, thenaa,...a_ <bb,...b,
2. If for some integer k with k< m, k <n,and k = 1, a,=b,for all
i=1,2,...,k—1,and a,#b,, but a, R b, thenaa,...a_<b,b,...b

.
3. It €is the null string, and s is any string in S, then € < s.

(messy, complex cases)
If no strings are related other than by these three conditions, then

@ < is a partial order relation (called lexicographic order for S).

_/
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Lexicographic order. example
® Let A = {x, y}. Let R be the partial order relation on A:

R=1{(x%),x7y), ¥y}

Let S be the set of all strings over A, and < the lexicographic order
for S that corresponds to R.

Examples:

X X XX X X Xy

yXy N yXYXXX XSy

XX X XyX XXXy N Xy
EX X € X XyXyyx
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Hasse diagrams

e A Hasse diagram is a graph to present a partial order relation

* Example: LetA = {1, 2, 3,9, 18}. Consider relation | on A:
Foralla,b€A, a | b & b = k-a for some integer k.

Draw a directed graph of the relation, ,494
such that all arrows except loops point up. A | D)
N’
Remove _
18

1. loops at all vertices
2. arrows that are implied by the transitive property

@ 3. direction indicators on the arrows o

N
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Hasse diagrams: example

® The “subset” relation € on set P({a, b, c}):
for all UandV in P({a, b, c}), UEV & Vx,ifx € Uthenx EV
Draw directed graph of & such that all arrows except loops point up.

Remove all loops, unnecessary arrows, and direction indicators.

e I gz {a. b, c}
P G P /
i c e ,
// 4 kh;\ R y \\\
/ N 5 N\ / .
v N\ \ // \\\
y I'. LR \ o “
"I/ — // ;/ [a' C] I'| \‘. \\_ \\ Pl ‘I". /_,/"/ \\\\\
| III,. {\ﬂ\‘l b}/// ,’j P f&\\rl Il".l \\\ X \{\b.;'t'} :: .| y p . “
Voot A N\ ") {a, b}« Aa. c} AN A b.c)
A . / A / . /, ; )
\ % i / g ) o
\\ " /; \;)</ . ><:
7N SN
_— el / . / \\
& N g AN /
| la} & N {cl
\ 3 . J \‘_\\ . /-f )
AN {b} P
. s
~ e
"\\ -
. yd
\\\ /_,f
%)
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Hasse diagrams: back to directed graph
* Obtain original directed graph from Hasse diagram:

I. Insert direction markers on the edges, making all arrows point up.

2. For each pair of arrows from one point to a second and from that
second point to a third, add an arrow from the first point to the
third; do so repeatedly until no more can be added.

3. Add loops at each vertex.
g

\
",
.,
\:. C /_,' ‘Y—

i
rd
:
,
S
.
LY
.
5,
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Partially and totally ordered sets

Let < bea partlal order relation on a set A. Elements a and b of A

are comparable if, and only, either a < b or b < a.

Otherwise, a and b are noncomparable.

Let Risa partial order relation on a set A. If every two elements in

A are comparable, then R is a total order relation on A.

Hasse diagram for a total order relation is a single vertical “chain”.

Set A is called a partially ordered set (or poset) with respect to

a relation <X if, and only if, < isa partlal order relation on A.

Set A is called a totally ordered set with respect to a relation <
if, and only, A is a poset with respect to < and < is a total order.
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Partially and totally ordered sets (ll)

® Let A be a poset with respect to a relation <. Subset B of A is called

a chain if, and only if, each pair of elements in B is comparable.

® The length of a chain is one less than the number of elements in
the chain.

* Example:
Chain of subsets
The set P({a, b, c}) is partially ordered with respect to &.
A chain of length 3: @ € {a} € {a,b,} € {a, b, ¢}

L
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Partially and totally ordered sets (lll)

® An element a in A is called a maximal element of A if, and only if,

for all bin A, either b < a or b and a are not comparable.

® An element a in A is called a greatest element of A if, and only if,

forallbinA, b < a. maximum

® An element a in A is called a minimal element of A if, and only if,

for all bin A, either a < b or b and a are not comparable.

® An clement a in A is called a least element of A if, and only if

forallbin A, a < b. minimum
[ ) °
Example: B
® a maximal element g ; %
ae” of e h
® greatest element: also g J | e I
ba ' -l i

® minimal elements: ¢, d, i

@ ® there is no least element 3 v -
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Topological sorting (partial to total order)

® Given partial order relations < and <" on a setA,
<’ is compatible with < if, and only if,
forallaand bin A, if a < b thena <X’b.

e Given partlal order relations < and <X’ on a set A,
<’isa topologlcal Sortlng for < if, and only if|

<’ is a total order that is compatible with <
* Example: P({a, b, c}) with partial order &

Total order: @, {a},{b},{c},{a, b}, {a, c}, {b,c}, {a, b, c}

L
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Topological sorting: algorithm

° Constructing a topological sorting

1. Pick any minimal element x in A with respect to <.

[Such an element exists since A is nonempty.]
2. SetA’=A — {x}

3. Repeat steps a to ¢ while A’ # @:
a. Pick any minimal element y in A’.
b. Define x Xy.
c. SetA’=A’—{y}andx=y.

L




