Yanhong A. Liu and Scott D. Stoller. Loop optimization for aggregate array computations. In Proceedings of the IEEE 1998 International Conference on Computer Languages, Chicago, Illinois, May 1998. IEEE Computer Society Press. An aggregate array computation is a loop that computes accumulated quantities over array elements. Such computations are common in programs that use arrays, and the array elements involved in such computations often overlap, especially across iterations of loops, resulting in significant redundancy in the overall computation. This paper presents a method and algorithms that eliminate such overlapping aggregate array redundancies and shows both analytical and experimental performance improvements. The method is based on incrementalization, i.e., updating the values of aggregate array computations from iteration to iteration rather than computing them from scratch in each iteration. This involves maintaining additional information not maintained in the original program. We reduce various analysis problems to solving inequality constraints on loop variables and array subscripts, and we apply results from work on array data dependence analysis. Incrementalizing aggregate array computations produces drastic program speedup compared to previous optimizations. Previous methods for loop optimizations of arrays do not perform incrementalization, and previous techniques for loop incrementalization do not handle arrays. Copyright 1998 IEEE. Published in the Proceedings of ICCL'98, May 1998 Chicago, Illinois. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

Array-ICCL98.ps