Optimizing Triangulations By Curvature Equalization

Lori L. Scarlatos
Grumman Data Systems
1000 Woodbury Rd., D12-237
Woodbury, NY 11797

Abstract

Triangulated irregular networks (TINs) are an attractive
Jorm of surface approximation because triangle vertices
and edges may be adaptively selected to produce a good fit
with a minimal number of triangles. Finding methods for
selecting these vertices and edges, however, is still an
active area of research. Numerous refinement algorithms
have been proposed, but these may produce more triangles
than necessary. In this paper we present an algorithm that
attempts to improve a triangulation by shifting the
vertices so that curvature within the triangles is nearly
equal. In addition, unnecessary triangles are removed. We
finish with results produced by running this algorithm on
simple geometric surfaces and real terrain data.

1. Introduction

Triangulated irregular networks (TINs) provide an
excellent means of approximating surfaces. Any three
points on a surface may provide the three vertices of a
triangle without restrictions on placement or size. This
gives us the potential to produce a good approximation
while minimizing the number of surface patches required.
However the optimal placement of triangle vertices and
edges in a triangulation is still an area of active research,

Many triangulation techniques rely on refinement
methods to find a set of triangles that approximates a
surface to within given error constraints [1-5]. In general,
these methods start with a coarse triangulation and
iteratively refine it by strategically adding points used to
create new triangles in the model. One of these methods
was developed by the authors [5].

Although adding points in such a manner does
eventually produce the desired goodness-of-fit, this does
not guarantee that the resulting set of triangles cannot be
improved. For example, the triangulation may contain
more triangles than are needed, which would increase
storage space and time required to render the surface. It
may also contain too many slivery triangles -
characterized by at least one very acute angle - which
cause artifacts in the display and anomalies in some
analysis functions like finite element analysis.

0-8186-2897-9/92 $03.00 © 1992 IEEE

333

Theo Pavlidis
State University of New York
Department of Computer Science
Stony Brook, NY 11794-4400

LAV N
[\

() (d)
Figure 1. Approximating a curve using
split-and-merge reflnement.

An analogy to this problem may be found in the one-
dimensional case where a curve is approximated with a
series of straight line segments, as shown in Figure 1.
Starting with a line segment connecting the two
endpoints of the curve (Figure 1a), an approximation may
be produced by successively splitting line segments at
points of greatest error (Figure 1b) until the line segments
fit the curve within a given tolerance (Figure 1c).
Although the resulting approximation is error-free, it
contains more points than necessary. In the one-
dimensional case, this problem is solved by merging line
segments (Figure 1d). As shown, the two middle
segments are merged so that the curvature of each interval
represented by a line segment is roughly the same.
Pavlidis' text {6] describes this split-and-merge technique
in greater detail.

The literature on polygonal approximations is
extensive [6, 10-14]. Some of these methods are based on
the result that in an optimal polygonal approximation
vertices are placed so that an integral of the curvature
takes the same value over all intervals [10]. In contrast,
the literature on triangulated approximations is
comparatively limited [7-9]. Extending polygonal
approximation techniques to triangulations is difficult
because there is no direct counterpart of merging triangles
when we look at the two-dimensional case. Consider, for

example, the solid in Figure 2 which has a square base
and a smaller square top. An initial triangulation may be
created by connecting the four base points to a point of
greatest error found anywhere on the top plane. As shown,
using such an initial approximation can produce more
triangles than necessary.

I\

Figure 2. Surface approximations using
refinement techniques can produce more
trlangles than necessary.

We have developed a novel approach to triangulation
optimization that extends the ideas of polygonal
approximation. Since it is not feasible to extend the split-
and-merge algorithm to triangulations, we follow the
alternative strategy of moving vertices. We move these
vertices - and collapse very thin pairs of triangles - so that
the triangles approximate surface patches of similar
curvature,

This paper describes our strategy for moving triangle
vertices to produce the desired approximation with a
minimal number of triangles. Although our strategy is to
equalize curvature, our goal is to produce a triangulation
that meets given error constraints using as few triangles
as possible, all as nearly equilateral as possible. We
assume that the triangulation corresponds to a known
underlying surface or bivariate function which is sampled
at regular intervals, such as a digital terrain model. This
essentially extends the work of McClure and Shwartz [7],
presenting an algorithm for producing triangulations that
meet their criteria for good surface approximations.

In the next section, we briefly describe the theoretical
work of McClure and Shwartz [7] which forms the
foundation of this work. The section following that
presents our practical approach and implementation of that
concept. Results of the implementation, applied to both
geometric test cases and real-world terrain data, are
described in the last section.

2. Foundations

In a recent paper [7], McClure and Shwartz discuss
methods of surface reconstruction based on triangulations.
Although their focus is on image data compression, they

view this as being analogous to the problem of defining
concise and accurate approximations for surfaces. One of
the questions that they explore is how fine a regular
triangulation needs to be in order to provide a consistent
representation of an underlying surface. To determine this
level of detail, they develop an estimator for the surface
which is based on the Hessian matrix of second partial
derivatives H(pj, ;). On a discretely sampled surface where
each p; j maps to a single elevation f(x;,y;), the second
partial derivatives of p; j may be approximated as follows:

fxx = f(xi-1.yj) + f(xi+1,¥3) - 2(xi.y;)
fyy = f(xi.¥;-1) + f(xi.yj+1) - 2£(xi.y;5)

fxy =fyx = f(xi-l’Yj-l) + f(xi+1ij+1)
- f(xi-1.¥j+1) - £Xi415¥5-1)-

Then for each point pj ;, the curvature estimator at that
point may be expressed by

MS(p;,)) = 3(trace H(p;)2 - 8(det H(p;).

Although this is not curvature in the classical sense,
we use the term loosely because this measure detects the
salient features of a surface. In fact, the above measure
incorporates both the mean curvature (approximated by
the trace of the Hessian) and the Gaussian curvature
(approximated by the determinant of the Hessian). This
improves on simpler measures such as the determinant of
the Hessian which fail to detect many critical features in
real-world situations. Consider, for example, the edge of a
cliff as shown in Figure 3. Although points along this
edge are clearly critical to the model, the determinant of
the Hessian at these points is zero.

Figure 3. The Hesslan of a point on the
edge of a cliff may be zero.

Given the curvature of each point on the surface, the
curvature of a triangle can be expressed as an integral of
this measure over the entire triangle. When the surface is
represented by a set of discrete sample points, the

curvature of each triangle may be approximated by
summing these measures for all points within the
triangles.

In their extensions section of [7], McClure and
Shwartz discuss how this estimator relates to the selection
of nonhomogeneous (irregular) triangles for
approximating the surface. Although they provide an
expression for the ideal density of distributed sample
points and triangles, they do not give an actual algorithm
for selecting these points and triangles. This paper extends
their work by providing one such algorithm,

3. Approach

Refinement techniques often fail to find the optimal
solution because critical features are not always evident at
the coarser levels of detail. Instead, several refinement
iterations are required before these features are revealed.

Our approach is to start with a triangulation that
already meets error constraints, but is not optimal. It
may, for example, contain more triangles than are needed
and/or too many slivery triangles. We assume that this
triangulation approximates a surface represented by
regularly spaced discrete sample points, such as those
found in a digital terrain model. Error in the triangulation
is measured by projecting each of these sample points to
the appropriate triangle.

We attempt to improve the model by moving triangle
vertices so that curvature within each of the triangles is as
nearly equivalent as possible without introducing errors to
the model. The curvature of each triangle is approximated
by summing the curvature estimates for all sample points
interior to the triangle. Points coincident with triangle
edges are not included in these sums. Indeed the goal of
the algorithm is to place such boundaries over areas of
high curvature, keeping triangle interiors relatively flat.

Figure 4. A trlangulation with equalized
curvature may contain too many triangles.

We use a two-step procedure for moving vertices. The
algorithm of the first step shifts triangle vertices,
attempting to equalize the curvatures within the triangles.
However, as shown in Figure 4, the resulting
triangulation may still contain too many triangles. In this

335

picture, points of high curvature occur only along the
ridge (represented by a dark line). This surface would be
best represented with two triangles with a shared edge
corresponding to the ridge. Our algorithm for the second
step remedies this by attempting to remove pairs of
triangles without introducing additional errors to the
model. Both algorithms are described in greater detail
below.

3.1. Equalizing Curvature

The algorithm of the first step attempts to equalize
curvature by iteratively reducing the size of the triangles
with greatest curvature. This size reduction is achieved by
moving each vertex of the triangle inward, one at a time.
If a neighbor sharing that vertex also has high curvature,
then the point is moved along the common edge.
Otherwise, it is moved along the bisectrix of that angle of
the wriangle. Note that points along the boundary of the
domain of the triangulation may only move along that
boundary, and that points defining the corners of the
boundary may not move at all.

Initially the point is moved by some set distance. If
this move makes the triangle very thin and slivery then
we collapse the triangle and one of its neighbors,
effectively removing them both. This is done by merging
two of its vertices as shown in Figure 5.

Figure §. Slivery trlangles are eliminated by
sliding one vertex along an edge and merging
it with another vertex .

After determining where the vertex moves to, we
recalculate the curvatures of the affected triangles to see if
the overall curvature of the surface is more equalized.
Because points on the triangle edges do not contribute to
this overall curvature measure, positioning triangle edges
over critical edges on the surface will reduce overall
curvature for the surface. If the resulting triangulation is
no worse than the previous one, then the triangulation is
updated to reflect this move. Otherwise, we try moving
the vertex half the distance we tried earlier. Eventually,
either the vertex will move, or the distance will become

negligible, causing the algorithm to skip to the next
triangle vertex.

Because we allow moves that make the triangulation
no worse, there is a danger of cycling. To prevent this, we
keep a record of all attempted moves. Any move that has
been tried before is automatically rejected, and the
algorithm proceeds to the next triangle/vertex.

Sometimes we are unable to move any of the vertices
on the triangle with greatest curvature. This is generally
due to constraints imposed by the area border. Consider,
for example, the ridge in Figure 6, indicated by the dark
line. Because points of high curvature occur only along
this ridge, curvature cannot be equalized in any
triangulation in which this ridge corresponds to a triangle
edge. Hence, this algorithm can only go so far in
equalizing the curvatures.

Figure 6. Due to constraints imposed by a
finite boundary, curvature cannot be equalized
without introducing errors.

Our algorithm continues to try moving vertices until
the triangle with "maximum” curvature has curvature
equal to the smallest curvature in the triangulation. If it is
unable to move any vertices on the triangle of highest
curvature, it proceeds to the triangle of next-highest
curvature and considers that as the triangle of "maximum"
curvature. Because the algorithm skips over triangles in
this manner - and doesn’t allow repeated moves - either
the curvature within the triangulation will become equal,
or the "maximum” triangle will eventually be the same as
the "minimum", and the algorithm will halt.

This algorithm for the first step is summarized in the
pseudo-code below.

EQUALIZE_CURVATURES(Point, Npt, Triangle, Ntri,
Member, Curvature, TriList)

7* Point - array of Npt points (x,y,z) */

/* Triangle - array of Ntri triangles, each with 3 point & 3
neighbor references */

/* Member - triangle(s) each point projects to */

336

I* Curvature - overall curvature of each triangle */
/* TriList - triangles using each point as a vertex */
{
Sort triangles on Curvatures in descending order;
max_tri = triangle at head of the sorted list;
min_tri = triangle at tail of the sorted list;
While Curvature[max_tri] > Curvature [min_tri}{
For each point P on Triangle[max_tri] {
Set distance;
Try moving point P inward by distance to point Q;
If P can't be moved or this was already tried then {
if no vertices on this triangle could move then
max_tri = next triangle on sorted list;
}
Else repeat {
Record attempt to move P to Q in history;
Determine whether resulting new triangle is too
skinny and must be removed;
If this is a good move to make then {
Update triangulation;
Fix sorted list;
Reassign max_tri;
}
else {
Cut distance in half;
Try moving P inward by distance to point Q;
If P can't be moved or this was tried then {
If no triangle vertices could be moved then
max_tri = next triangle on list;
Done with point P;
}
}
} until vertex moves or Done with point P;
}
}
}

3.2. Removing Unnecessary Triangles

The algorithm of the second step attempts to further
improve the triangulation by removing unnecessary pairs
of triangles. Although this may increase the curvature
measures within triangles, it must not increase actual
error in the model. Error is measured by projecting points
from the original discrete sampling to the triangulated
surface and finding the difference.

Our algorithm removes two triangles by collapsing
their common edge into a single point as shown in Figure
5. It tries to remove every pair of triangles within the
triangulation, resulting in less than 3/2T iterations, where
T is the number of triangles initially. Because an edge
may be collapsed into either of its endpoints, the

algorithm tries merging both ways and chooses the better
way.

This algorithm for the second step is summarized in
the pseudo-code below.

REMOVE_UNNECESSARY_TRIANGLES(Point, Npt,
Triangle, Ntri, Member, Curvature, TriLlist)
* Point - array of Npt points (x,y,z) */
I* Triangle - array of Ntri triangles, each having 3 point & 3
neighbor references */
* Member - triangle(s) each point projects to */
I* Curvature - overall curvature for each triangle */
I* TriLlist - triangles using each point as a vertex */
{
For each edge PQ shared by 2 triangles {

Try moving point P to point Q;

Try moving point Q to point P;

Select the better move to make;

If this doesn't introduce errors then {

Update triangulation;

}
}
}
(b) (c)
Figure 7. Limitations.
3.3. Limitations

There are limitations on this approach imposed by the
constraint that points must never leave the edge bounding
the convex hull of the triangulation. Consider, for
example, the surface triangulation depicted in Figure 7a,
where a ridge runs along the diagonal. If the initial
triangulation has a single edge crossing the ridge
perpendicularly as shown in Figure 7b, then none of the
vertices may be moved. The only solution is to use a
triangulation that has considered the surface features, such

337

as [5]. Then the situation shown in Figure 7¢ would
occur, and the center vertex could slide along the ridge to
produce the desired triangulation.

4. Results

We first ran our algorithms using the test samples
illustrated in Figure 8. These samples represent a ridge, a
pyramid, and a paraboloid. In this figure, column A
shows the original triangulations. Column B shows the
results after equalizing curvature in the first step of our
procedure. Column C shows the results after removing
unnecessary triangles in the second step of our procedure.
In these diagrams darkened lines represent ridges and
highlighted points move in the next step. As shown, our
algorithms produced optimal triangulations in all cases.
This demonstrates that our methods work well for curved

as well as polyhedral surfaces.
A B C
RIDGE

PARABOLOID
Figure 8. Results of applying the algorithm to

artificlal surfaces.

Next we ran our algorithms on triangulations produced
by our program [5] which considers terrain features in the
triangulation. Although this algorithm produces good
triangulations within a given error tolerance, we suspected
that by moving the vertices we could reduce sliveriness of
the triangles as well as the number of triangles in the
model.

We ran our program on 24 triangulations representing
different types of terrain and different degrees of
refinement. We then measured the success of this
operation using 3 criteria: number of triangles removed,
reduction in sliveriness, and reduction in error of the
model.

In our tests, our algorithm reduced the number of
triangles in 70% of the triangulations tested. In the best
case, the final triangulation contained 22% fewer
triangles. However in most cases the reduction was
nominal. As expected, the greatest reductions occurred
with triangulations of terrain with sharp features such as
plateaus and mountain ridges, and on coarser triangulation
models.

Slivery triangles - characterized by one very acute angle
- produce visual artifacts in the rendered surface model and
anomalies in some analysis functions such as finite
clement analysis. It is therefore desirable to reduce
sliveriness. We measure sliveriness of a triangle with the
following value, which is smallest when the triangle is
equilateral:

Perimeter 2
Area.

However, as shown in [9], slivery triangles are
sometimes inevitable in an accurate surface model. In our
tests, we found that the triangles became less slivery in
50% of the cases. The greatest improvement occurred for a
region of steep plateaus, where average sliveriness was
reduced by 50% and maximum sliveriness was reduced by
77%.

While using this real data, we discovered that
equalizing curvature may indiscriminately add intolerable
errors to the surface model. However, we found that by
testing for this possibility, we are able to equalize
curvature without adding error to the model. In fact, the
statistics on the final curvature (maximum, average, and
variance) were the same as for when the errors increased.
Maximum error in the model actually decreased in 20% of
our test cases.

Figure 9 illustrates results in one case where this
algorithm reduced sliveriness and error. Figure 9a shows
the original data for a region in Nevada. This triangulated
regular grid contains 10,952 triangles. Figure 9b shows a
triangulation of this surface produced by the algorithm in
[5]. This triangulation contains 1,998 triangles, a
compression ratio of approximately 11:2. Maximum and
average error in this model are 19 and 1.98 meters
respectively. Figure 9c shows this triangulation after
moving the vertices. With the same number of triangles,
maximum and average error are reduced to 15 and 1.89
meters respectively. Additionally, average sliveriness is
reduced by 20%.

338

Filgure 9a. Original Data

Figure 9b. Triangulation Before Moving
Vertices

Figure 9c. Triangulation After Moving Vertices

5. Conclusions

Our method for moving triangle vertices is an effective
way of guaranteeing that the triangle vertices are points of
highest curvature and triangle edges correspond to
distinctive edges on the surface. Triangulations of surfaces
with constant curvature - and hence no distinctive features
- will gain nothing from this algorithm, or any other
optimization algorithm for that matter.

As demonstrated by our results, our technique of
moving triangle vertices can improve some triangulation
models. Greatest improvements occur with surfaces
characterized by sharp edges, such as the pyramid and ridge
models. Less improvement occurs on models that already
approximate the surface topology and/or have less
distinctive features, such as our terrain model examples.
We believe that this method could be effectively used to
create an initial triangulation for our hierarchical
triangulation technique [5] or to improve a regular
triangulation of a surface. Because this technique works
best with surfaces with sharp features, we expect that this
technique could be used to improve three-dimensional
surface models for CAD, animation, and three-
dimensional scientific visualization.

6. Acknowledgements

The authors would like to acknowledge the help of
Professor D.E. McClure of Brown University for
providing us a preprint of [7] and also pointing out
additional references in the appropriate literature. We also
want to thank R. Kelly and H. Tesser of Grumman Data
Systems for their continued support.

7. References

[1] Fowler, R.J. and Little, J.J, "Automatic Extraction of
Irregular Network Digital Terrain Models", Proceedings
of SIGGRAPH 79, pp. 199-207, 1979.

[2] DeFloriani, L., Falcidieno, B., Nagy, C., and Pienovi,
C., "A Hierarchical Structure for Surface
Approximation", Computers and Graphics, 8(2), pp.
183-193, 1984.

[31 DeFloriani, L., "A Pyramidal Data Structure for
Triangle-based Surface Description”, JEEE Computer
Graphics & Applications, 9(2), pp. 67-78, 1989.

[4] Scarlatos, L.L., "A Refined Triangulation Hierarchy for
Multiple Levels of Terrain Detail", Proceedings of
IMAGE V, pp. 115-122, 1990.

[5] Scarlatos, L. and Pavlidis, T., "Hierarchical
Triangulation Using Cartographic Coherence”, CVGIP:

339

[6]

7]

[8]

[91

[10]

[11)

[12]

[13]

[14]

Graphical Models and Image Processing, 54(2), pp.
147-161, 1992.

Pavlidis, T., Structural Pattern Recognition, Springer-
Verlag, New York, 1977.

McClure, D.E. and Shwartz, S.C., "A Method of Image
Representation Based on Bivariate Splines", pre-print,
1988.

Nadler, E., "Piecewise Linear Best L2 Approximation
on Triangulations”, in Approximation Theory V, edited
by Chui, C.K., Schumaker, L.L., and Ward, I.D.,
Academic Press, New York, 1986.

Dyn, N., Levin, D., and Rippa, S., "Data Dependent
Triangulations for Piecewise Linear Interpolation®,
IMA Journal of Numerical Analysis, 10, pp. 137-154,
1990.

McClure, D.E., "Nonlinear Segmented Function
Approximation and Analysis of Line Patterns",
Quarterly of Applied Mathematics, 33, pp. 1-37, 1975.

Slansky, J. and Kibler, D.F., "A Theory of
Nonuniformly Digitized Binary Pictures”, IEEE

Transactions on Systems, Man, and Cybernetics, 6(9),
pp. 637-647, 1976.

Montanari, U., "A Note on Minimal Length Polygonal
Approximation to a Digitized Contour”,
Communications of the ACM, 13, pp. 41-47, 1970.

Tomek, 1., "Piecewise Linear Approximations", JEEE
Transactions on Computers, 23, pp. 445-448, 1974,

Duda, R.O. and Hart, P.E., Pattern Classification and
Scene Analysis, Wiley, New York, 1973.

