Authentication

Michalis Polychronakis
Stony Brook University

Authentication

The process of verifying someone's identity or role User, device, service, request, ...

What is identity?
Which characteristics uniquely identify an entity?
Authentication is a critical service
Enables communicating parties to verify the identity of their peers
Many other security mechanisms rely on it
Two main types
Human to computer
Computer to computer

Credentials

Evidence used to prove an identity

User Authentication: credentials supplied by a person
Something you know
Something you have
Something you are
Computer authentication: cryptography, secret tokens, location, ...
Computers (in contrast to humans) can "remember" large secrets (keys or tokens) and perform complex cryptographic operations
Location: evidence that an entity is at a specific place (IP, subnet, switch port, ...)
Authentication can be delegated
The verifying entity relies on a trusted third party to establish authentication \rightarrow Identity and Access Management (IAM) services (e.g., Okta, Duo, OneLogin)

Something You Know: Password-based Authentication

Passwords, passphrases, pins, key-phrases, access codes, ...
Good passwords are easy to remember and hard to guess
Easy to remember \rightarrow easy to guess
Hard to guess \rightarrow hard to remember
Bad ideas: date of birth, SSN, zip code, favorite team name, ...
Password space (bits) depends on:
Password length
Character set
Better way to think about strong passwords: long passphrases
Can be combined with custom variations, symbols, numbers, capitalization, ...

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THIAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.
"online_throttling_100_per_hour": "3600000000036.000199840144435",
"online_no_throttling_10_per_second": "10000000000.1"
"online_no_throttling_10_per_second": "10000000000.1",
"offline_slow_hashing_1e4_per_second": "10000000.0001",
\}, "of
"crack_times_display": \{
"online_throttling_100_per_hour": "centuries",
"online_no_throttling_10_per_second": "centuries",
"offline_slow_hashing_1e4_per_second": "4 months" "offline_fast_hashing_1e10_per_second": "10 seconds"
\},
$\}^{\}}$

Deductions	Type	Rate	Count	Bonus
Letters only	Flat	$-n$	0	0
Numbers only	Flat	$-n$	0	0
Repeat Characters (case insensitive)	Comp	-	2	-1
Consecutive uppercase letters	Flat	$-\left(n^{\star} 2\right)$	0	0
Consecutive lowercase letters	Flat	$-\left(n^{\star} 2\right)$	3	-6
Consecutive numbers	Flat	$-\left(n^{\star} 2\right)$	0	0
Sequential letters (3+)	Flat	$-\left(n^{\star} 3\right)$	0	0
Sequential numbers (3+)	Flat	$-\left(n^{\star} 3\right)$	0	0
Sequential symbols (3+)	Flat	$-\left(n^{\star} 3\right)$	0	0

 "online_throttling_100_per_hour": "7697230882272000427282.147568",
 "online_throttling_100_per_hour
 "online_no_throttling_10_per_second": "21381196895200000000
 "offline_fast_hashing_1e10_per_second": "21381196895.2"
 \},
"crack_times_display": \{
"online_throttling_100_per_hour": "centuries",
"online_no_throttling_10_per_second": "centuries",
"offline_slow_hashing_1e4_per_second": "centuries",
"offline_fast hashing_1e10_per_second": "centuries"
\},

Additions	Type	Rate	Count	Bonus
Number of characters	Flat	$+\left(n^{\star} 4\right)$	28	+112
Uppercase letters	Cond/lncr	$+\left((l e n-n)^{\star} 2\right)$	0	0
Lowercase Letters	Cond/lncr	$+\left((l e n-n)^{\star} 2\right)$	25	+6
Numbers	Cond	$+\left(n^{\star} 4\right)$	0	0
Symbols	Flat	$+\left(n^{\star} 6\right)$	0	0
Middle numbers or symbols	Flat	$+\left(n^{\star} 2\right)$	0	0
Requirements	Flat	$+\left(n^{\star} 2\right)$	2	0

Deductions	Type	Rate	Count	Bonus
Letters only	Flat	$-n$	28	-28
Numbers only	Flat	$-n$	0	0
Repeat Characters (case insensitive)	Comp	-	20	-2
Consecutive uppercase letters	Flat	$-\left(n^{\star} 2\right)$	0	0
Consecutive lowercase letters	Flat	$-\left(n^{*} 2\right)$	24	-48
Consecutive numbers	Flat	$-\left(n^{\star} 2\right)$	0	0
Sequential letters $(3+)$	Flat	$-\left(n^{*} 3\right)$	0	0
Sequential numbers $(3+)$	Flat	$-\left(n^{*} 3\right)$	0	0
Sequential symbols $(3+)$	Flat	$-\left(n^{*} 3\right)$	0	0

Password Policies (often have the opposite effect)

Password rules (miss the point)
"At least one special character," "Minimum/Maximum length of 8/12 characters," "Must contain at least one number," "Must contain at least one capital letter"
Makes passwords hard to remember! \rightarrow encourages password reuse
Better: encourage long passphrases, and evaluate strength on-the-fly
Periodic password changing (does more harm than good)
"You haven't changed your password in the last 90 days"
Probably too late anyway if password has already been stolen
Makes remembering passwords harder \rightarrow more password resets
Hinders the use of password managers (!)
What users do: password $1 \rightarrow$ password $2 \rightarrow$ password $3 \rightarrow \ldots$

If the chosen secret is found in the list, the CSP or verifier SHALL advise the subs

Abstract

provide the reason for rejection, and SHALL require the subscriber to choose a di

 Verifiers SHOULD offer guidance to the subscriber, such as a password-strength memorized secret. This is particularly important following the rejection of a memo modification of listed (and likely very weak) memorized secrets [Blacklists].
Digital Identity Guidelines

Authentication and Lifecycle Management

Verifiers SHALL implement a rate-limiting mechanism that effectively limits the number of failed authentication attempts that can be made on the subscriber's account as described in Section 5.2.2.

Verifiers SHOULD NOT impose other composition rules (e.g., requiring mixtures of different character types or prohibiting consecutively repeated characters) for memorized secrets. Verifiers SHOULD NOT require memorized secrets to be changed arbitrarily (e.g., periodically). However, verifiers SHALL force a change if there is evidence of compromise of the authenticator.

Verifiers SHOULD permit claimants to use "paste" functionality when entering a memorized secret. This facilitates the use of password managers, which are widely used and in many cases increase the likelihood that users will choose stronger memorized secrets.

In order to assist the claimant in successfully entering a memorized secret, the verifier SHOULD offer an option to display the secret - rather than a series of dots or asterisks - until it is entered. This allows the claimant to verify their entry if they are in a location where their screen is unlikely to be observed. The verifier MAY also permit the user's device to display individual entered characters for a short time after each character is typed to verify correct entry. This is particularly applicable on mobile devices.

The verifier SHALL use approved encryption and an authenticated protected channel when requesting memorized secrets in order to provide resistance to eavesdropping and MitM attacks.

Verifiers SHALL store memorized secrets in a form that is resistant to offline attacks. Memorized secrets SHALL be salted and hashed using a

Attacking Passwords

Offline cracking
Online guessing
Brute force attacks

Eavesdropping
Capturing

Password Storage

Storing passwords as plaintext is disastrous

Better way: store a cryptographic hash of the password

Even better: store the hash of a "salted" version of the password

Defend against dictionary attacks: prevent precomputation of hash values (wordlists of popular passwords, rainbow tables, ...)
Unique salt per user (no need to be secret): even if two users happen to have the same password, their hash values will be different \rightarrow need to be cracked separately
Salting does not make brute-force guessing a given password harder!

Username	Salt	Password hash
Bobbie	4238	h(4238, \$uperman)
Tony	2918	h(2918, 63\%TaeFF)
Mitsos	6902	h(6902, zour1da)
Mark	1694	h(1694, Rockybrook\#1)

Password databases are still getting leaked...

Password Cracking

Exhaustive search \rightarrow infeasible for large password spaces
Dictionary attacks (words, real user passwords from previous leaks, ...)
Variations, common patterns, structure rules
Prepend/append symbols/numbers/dates, weird capitalization, I33tspeak, visually similar characters, intended misspellings, ...

Target-specific information
DOB, family names, favorite team, pets, hobbies, anniversaries, language, slang, ...
Easy to acquire from social networking services and other public sites
Particularly effective against "security questions"
Advanced techniques
Probabilistic context-free grammars, Markov models, ...
hashcat
advanced
password
recovery
hashcat Forums Wiki Tools Events

Example hashes

If you get a "line length exception" error in hashcat, it is often because the hash mode that you have requested does not match the hash. To verify, you can test your commands against example hashes.

Unless otherwise noted, the password for all example hashes is hashcat
Generic hash types

Hash- Mode	Hash-Name	Example
0	MD5	8743b52063cd84097a65d1633f5c74f5
10	md5(\$pass.\$salt)	01dfae6e5d4d90d9892622325959afbe:7050461
20	md5(\$salt.\$pass)	f0fda58630310a6dd91a7d8f0a4ceda2:4225637426
30	md5(utf16le(\$pass).\$salt)	b31d032cfdcf47a399990a71e43c5d2a:144816
40	md5(\$salt.utf16le(\$pass))	d63d0e21fdc05f618d55ef306c54af82:13288442151473
50	HMAC-MD5 (key $=$ \$pass)	fc741db0a2968c39d9c2a5cc75b05370:1234
60	HMAC-MD5 (key $=$ \$salt)	bfd280436f45fa38eaacac3b00518f29:1234
100	SHA1	b89eaac7e61417341b710b727768294d0e6a277b
110	sha1(\$pass.\$salt)	2fc5a684737ce1bf7b3b239df432416e0dd07357:2014
120	sha1(\$salt.\$pass)	cac35ec206d868b7d7cb0b55f31d9425b075082b:5363620024
130	sha1(utf16le(\$pass).\$salt)	c57f6ac1b71f45a07dbd91a59fa47c23abcd87c2:631225
140	sha1(\$salt.utf16le(\$pass))	5db61e4cd8776c7969cfd62456da639a4c87683a:8763434884872
150	HMAC-SHA1 (key $=\$$ \$pass)	c898896f3f70f61bc3fb19bef222aa8600e5ea717:1234
160	HMAC-SHA1 (key $=\$$ salt)	d89c92b4400b15c39e462a8caa939ab40c3aeeea:1234
200	MySQL323	7196759210defdc0
300	MySQL4.1/MySQL5	fcf7c1b8749cf99d88e5f34271d636178fb5d130

50 Most-used (Worse) Passwords

123456	1234567	123	ashley	evite
123456789	qwerty	omgpop	987654321	$123 a b c$
picture1	abc123	123321	unknown	123qwe
password	Million2	654321	zxcvbnm	sunshine
12345678	000000	qwertyuiop	112233	121212
111111	1234	qwer123456	chatbooks	dragon
123123	iloveyou	$123456 a$	20100728	$1 q 2 w 3 e 4 r$
12345	aaron431	a123456	123123123	5201314
1234567890	password1	666666	princess	159753
senha	qqww1122	asdfghjkl	jacket025	0123456789

Distribution of 4-digit
sequences within RockYou passwords

Wordlists

ce\#ebc.dk	4637324	gea8mw4yz	fujinshan	masich	gothpunksk8er	20081010
goddess5	bugger825	kukumbike	counter	pengaiwei	rftaeo48	leelou44
20071002	marmaris	260888	N8mr0n	coalesce	8d7R0K	8UfjeGb0
271075711	jinjin111	jordi10	520057	56402768	5172032	200358808
zs3cu7za	170383gp	lexusis	adc123	thesis	aics07	dellede
scoopn	3484427	kj011a039	bmaster	aabbcc894	34mariah	liang123.
frygas1411	fl33321	c84bwlrb	qbjh04zg	marion\&maxime	dongqinwei	captainettekt
SL123456sl	zwqrfg	priyanka05	ueldaa79	614850	samarica	kwiki-mart
12345687ee123	67070857	loveneverdies	EMANUELLI	ydz220105	cap1014	mdovydas
xuexi2010	432106969	u8Aqebj576	yanjing	584521584521	0167387943	tigmys2001
daigoro	6856	FGYfgy77	assynt	txudecp	AE86Trueno	denial
12345614	704870704870	659397	62157173	84410545	19700913	678ad5251
DICK4080	pv041886	327296	0704224950753	pietro.chiara	mcsuap	woaiwuai
567891234	20060814	74748585	6903293	jman1514	bu56mpbu	1591591591212
tilg80	512881535	19720919	axaaxa	heryarma	danbee	hNbDGN
6z08c861	milanimilani	050769585	hilall	39joinmam	passw<>	cardcap
:zark:	472619	nicopa	30091983	timelapse	money521	13985039393
ravishsneha	dbyxw888	2232566	2510618981	mwinkar	conan83	001104
150571611369	85717221	bearss	soukuokpan	251422	nxfjpl	desare11
661189	cc841215	n0tpublic	tosecondlife	willrock	rateg143	412724198
passme	ariana19321	isitreal00	p4os8m6q	YHrtfgDK	kojyihen	nibh1kab
trolovinasveta	bbbnnn	ashraf19760	015614117	xys96exq	058336257	asferg
abdulkhaleque	ang34hehiu	48144	acw71790	mercadotecnia	sarah4444	hqb555
007816	wj112358	22471015	lsyljm2	8s5sBEx7	7363437	xgames7
xLDSX	Brenda85	antyzhou115	2xgialdl	0125040344	freindship	muckerlee
Florida2011	786525pb	0167005246	gaybar9	margitka	JytmvW0848	choqui67
037037	shi461988	ec13kag	88203009	omaopa	sb inbau	12130911
WestC0untry	pingu	226226226226	MKltyh87	dfTi6nh	30907891	lierwei120
hitsugaiya	yeybozip	6767537/33	quiggle	1314520521	0515043111	skytdvn
955998126	71477nak	mimilebrock	2063775206	pixma760	1973@ati	milena1995
$3 n 3 r m a x$	stokurew	gueis8850	fr3iH3it	pearpear	wlxgjf	kambala11

LEAKED LISTS

Complete left lists from public leaks

ID	Name	Last Update	Num of Hashes	Progress	Left Hashes	Found
6505	H4v3 1 b33n pwn3d (SHA1)	02.10.2017-02:03:24	320'294'464	$319^{\prime} 837$ '535 (99.86\%)	Get	Get
5638	P4y4sUGym (MD5)	02.10.2017-02:04:19	241'266	221 '152 (91.66\%)	Get	Get
4920	L1nk3d1n (SHA1)	02.10.2017-03:24:58	61'829'262	$60^{\prime} 1477^{\prime} 825$ (97.28\%)	Get	Get
3282	4mzr3v13w7r4d3r.c0m (MYSQL5)	02.10.2017-03:25:32	41'823	$39^{\prime} 166$ (93.65\%)	Get	Get
3186	X5pl17 (SHA1)	02.10.2017-03:32:38	2'227'254	$2^{\prime} 162^{\prime} 101$ (97.07\%)	Get	Get
2499	Hashkiller 32-hex left total	02.10.2017-11:48:14	9'976'651	1'723'709 (17.28\%)	Get	Get
2498	Hashkiller 40-hex left total	02.10.2017-13:22:34	$1^{\prime} 739^{\prime} 204$	$350 ' 788$ (20.17\%)	Get	Get
1619	4m4t3urc0mmuni7y.com	02.10.2017-13:33:26	197'302	$57^{\prime} 407$ (29.1\%)	Get	Get
1535	b73r.c0m (MD5)	02.10.2017-13:34:43	$63^{\prime} 070$	$32^{\prime} 543$ (51.6\%)	Get	Get
1427	4v17r0n.fr	02.10.2017-13:34:43	$2^{\prime} 405$	2'334 (97.05\%)	Get	Get
1366	v0d4f0n3 (MD5(\$pass."s+(_a*)")	02.10.2017-13:34:44	322	307 (95.34\%)	Get	Get

755
pwned websites

13,044,161,748
pwned accounts

115,769
pastes
paste accounts

Largest breaches

772,904,991 Collection \#1 accounts
$763,117,241$ Verifications.io accounts
711,477,622 Onliner Spambot accounts
622,161,052 Data Enrichment Exposure From PDL Customer accounts

593,427,119 Exploit.In accounts
509,458,528 Facebook accounts
457,962,538 Anti Public Combo List accounts
393,430,309 River City Media Spam List accounts
tayspace
359,420,698 MySpace accounts
268,765,495 Wattpad accounts

Recently added breaches

49,102,176 Alleged AT\&T accounts
$3,262,980$ ClickASnap accounts
552,094 Flipkart accounts
3,517,679 Habib's accounts
2,451,197 APK.TW accounts
3,805,265 Online Trade (Онлайн Трейд) accounts

21,994 WoTLabs accounts
27,123 Mr. Green Gaming accounts
19,972,829 Cutout.Pro accounts
243,462 Tangerine accounts

Password Hashing Functions

Hash functions are very fast to evaluate \rightarrow facilitate fast password cracking
Solution: slow down the guessing process (password "stretching")
Benefit: cracking becomes very inefficient (e.g., 10-100ms per check)
Drawback: increased cost for the server if it must authenticate many users
Make heavy use of available resources
Fast enough computation to validate honest users, but render password guessing infeasible
Adaptable: flexible cost (time/memory complexity) parameters

Bcrypt [Provos and Mazières, 1999]

Cost-parameterized, modified version of the Blowfish encryption algorithm
Tunable cost parameter (exponential number of loop iterations)

Alternatives: Scrypt (memory-hard), PBKDF2 (PKCS standard)

Online Guessing

Similar strategy to offline guessing, but rate-limited
Connect, try a few passwords, get disconnected, repeat...

Prerequisite: know a valid user name

Credential stuffing: try username + password combinations from previous breaches

Many failed attempts can lead to a system reaction

Introduce delay before accepting future attempts (exponential backoff)
Shut off completely (e.g., ATM capturing/disabling the card after 3 tries)
Ask user to solve a CAPTCHA

Very common against publicly accessible SSH, VPN, RDP, and other servers

Main reason people move sshd to a non-default port
Fail2Ban: block IP after many failed attempts \rightarrow attackers may now be able to lock you out Better: disable password authentication altogether and use a key pair \rightarrow cumbersome if having to log in from several devices or others' computers


```
LOGIN: mitch LOGIN: carol
PASSWORD: FooBar!-7 INVALID LOGIN NAME
SUCCESSFUL LOGIN
(a)
```

LOGIN: carol INVALID LOGIN NAME LOGIN:
(b)

LOGIN: carol PASSWORD: Idunno INVALID LOGIN LOGIN:
(c)

```
(a) Successful login
(b) Login rejected after name is entered
(c) Login rejected after name and password are typed \(\rightarrow\) less information makes guessing harder
```


RouterPasswords.com

Welcome to the internets largets and most updated default router passwords database,

Select Router Manufacturer:		Before guessing, try the default first...			
CISCO					
Find Passwo					
Manufacturer	Model	Protocol	Username	Password	
CISCO	CACHE ENGINE	CONSOLE	admin	diamond	
CISCO	CONFIGMAKER	cmaker		cmaker	
CISCO	CNR Rev. ALL	CNR GUI	admin	changeme	
CISCO	NETRANGER/SECURE IDS	MULTI	netrangr	attack	
CISCO	BBSM Rev. 5.0 AND 5.1	TELNET OR NAMED PIPES	bbsd-client	changeme2	
CISCO	BBSD MSDE CLIENT Rev. $\text { 5.0 AND } 5.1$	TELNET OR NAMED	bbsd-client	NULL	\checkmark

Eavesdropping and Replay

Physical world

Post-it notes, notebooks, ...
Lift fingerprints (e.g., Apple Touch ID)
Network
Sniffing (LAN, WiFi, ...)
Man-in-the-Middle attacks
Defenses
Encryption
One-time password schemes

Kerberos Network Authentication Protocol

Most widely used (non-web) single sign-on system
Originally developed at MIT, now used in Unix, Windows, ...

Long-lived vs. session keys

Use long-lived key for authentication and negotiating session keys
Use "fresh," ephemeral session keys for encrypted communication, MACs, ...
Prevent replay, cryptanalysis, old compromised keys
Authenticate users to services: using their password as the initial key, without having to retype it for every interaction

A Key Distribution Center (KDC) acts as a trusted third party for key distribution
Online authentication: variant of Needham-Schroeder protocol
Assumes a non-trusted network: prevents eavesdropping
Assumes that the Kerberos server and user workstations are secure...
Use cases: workstation login, remote share access, printers, ...

Password Capture

Hardware bugs/keyloggers
Software keyloggers/malware
Shoulder surfing
Cameras (e.g., ATM skimmers)

KeyGrabber

Social engineering

Press Ctrl-Alt-Delete to begir.

Requiring this key combination at startup helps keep computer secure. For more information, click Help.

(a) Correct login screen
(b) Phony login screen

Something You Have: Authentication Tokens

One-time passcode tokens
Time-based or counter-based
Various other authentication tokens

Store certificates, encryption keys, challenge-response, ...
Smartcards (contact or contactless)
Identification, authentication, data storage, limited processing
Magnetic stripe cards, EMV (chip-n-pin credit cards), SIM cards, RFID tags, ...
USB/BLE/NFC tokens, mobile phones, watches, ...
Can be used as authentication devices

Something You Are: Biometrics

Fingerprint reader

Face recognition
Depth sensing, infrared cameras, ...
Liveness detection (pulse, thermal) to foil simple picture attack
Retina/iris scanner
Voice recognition \rightarrow broken

Related concept: continuous authentication
Keystroke timing, usage patterns, ...
"The probability that a random person the population [sic] could look at your iPhone X and unlock it using Face ID is approximately 1 in 1,000,000 (versus 1 in 50,000 for Touch ID).
For additional protection, Face ID allows only five unsuccessful match attempts before a passcode is required to obtain access to your iPhone.
The probability of a false match is different for twins and siblings that look like you as well as among children under the age of 13, because their distinct facial features may not have fully developed. If you're concerned about this, we recommend using a passcode to authenticate."

How I Broke Into a Bank Account With an AIGenerated Voice

Banks in the U.S. and Europe tout voice ID as a secure way to log into your account. I proved it's possible to trick such systems with free or cheap AI-generated voices.

By Joseph Cox

T
he bank thought it was talking to me; the AI-generated voice certainly sounded the same.

Multi-factor Authentication

Must provide several separate credentials of different types

Most common: two-factor authentication (2FA)
Example: Password + hardware token/SMS message/authenticator app, ...
Example: ATM card + PIN
Motivation: a captured/cracked password is now not enough to compromise a victim's account \rightarrow not always true

Man-in-the-Middle: set up fake banking website, relay password to real website, let the user deal with the second factor...
Man-in-the-Browser: hijack/manipulate an established web session after authentication has been completed (malware, e.g., banking trojans)
Dual infection: compromise both PC and mobile device (rare)
More importantly: the most commonly used 2nd factor (SMS) is the least secure

SMS Is Not a Secure 2nd Factor

(but still better than no 2nd factor)

Social engineering

Call victim's mobile operator and hijack the phone number

Verify

Remember this computer for 30 days. SIM swaping, message/call forwarding, ...

Message interception

Rogue cell towers: IMSI catchers, StingRays,...
Some phones even display text messages on the lock screen (!)
SS7 attacks
The protocol used for inter-provider signaling is severely outdated and vulnerable Allows attackers to spoof change requests to users' phone numbers and intercept calls or text messages

A Hacker Got All My Texts for \$16

A gaping flaw in SMS lets hackers take over phone numbers in minutes by simply paying a company to reroute text messages.

By Joseph Cox

March 15, 2021, 1:10pm
f ShareTweet Snap

I hadn't been SIM swapped, where hackers trick or bribe telecom employees to port a target's phone number to their own SIM card. Instead, the hacker used a service by a company called Sakari, which helps businesses do SMS marketing and mass messaging, to reroute my messages to him. This overlooked attack vector shows not only how unregulated commercial SMS tools are but also how there are gaping holes in our telecommunications infrastructure, with a hacker sometimes just having to pinky swear they

The US indicts a Chicago man who allegedly led a SIM-swap gang;
ain Martin / forbes:
Blockchain Capital co-founder Bart Stephens sues a hacker who stole 6.3M in crypto via a SIM-swap attack; $\mathrm{FBI}: \$ 72 \mathrm{M}$ was stolen via SIM
 ug 21, 2023, 1:06 PM-In coneet
Emma Roth / The verge: members stole millions and posed as other people in Apple, I-Mobile,
AT\&T, and Verizon stores - Schene allegedy yargeed ppple, ATIE, veizon, and T-

The US SEC says the January 9 hack of it X a account was via a SIM
swap attack to reset its password; it had disabled 2FA in July 2023 over account access issues - The US. Securities and Exchange Commission sid

CISA releases a report detailing Lapsuss's key techniques, calls for passwordess logins, and asks the FTC and the FCC for stricter SIM

sloomberg
Gary Miller /The Citizen Latik

How members of the Community, a group of teenage SIM swappers
who met on the forum OGUsers, stole millions in crypto in 2018 who met on the forum OGUUsers, stole millions in crypto in 2018
before turning on each other
 Lug 5, 2023,9:45 AM - In conter
David Canellis $/$ he Next Web:
Eederal judge refuses to dismiss $\$ 224 \mathrm{M}$ lawsuit againf ATST for allegedy 2 etting a customer be SIM-swapped twice, leading to the

Indy Greenbery / Wired:
While many foreign phone carriers are sharing real-time SIM swa
data with banks to stop financial fraud, US carriers are dragging the
 Apr $27,2019,12: 00$ PM-In conlex
poseph Cox /VICE:
A look at so-called Russian, encrypted, or "white" SIMs, used by
criminals to spoof phone numbers, add voice manipulation to calls in teal-time, and more - Criminals ses secalleded Russian, enonyputed or or white csus so
 Lug 12, 2020, $11: 15 \mathrm{AM}$ - In con
. vuinerabilities in signaling protocols used by

Oct $29,2023,2: 35 \mathrm{PM}$-In contex

Europol, working with US, UK, and others, says 10 people have been
Europol, working with US, UK, and others, says 10 people have been
arrested for allegedly stealing $\$ 100 \mathrm{M}$ in cryptocurrency from celebr

A collegegestudent whe who solele $\$ 5 M$ in in cryptocurrency via SIM hijacking
gets 10 years in prison and is the first person in the US to be sentenced
3 eb 3, 2019, 7:55 PM-II conext
Brian Kecebs/ Krebs on Security:

Researchers: AT\&T, T-Mobile, Tracfone, US Mobile, and Verizon use vulnerable procedures for customer support that put users at risk of SIM
swapping attacks - Researchess find that 17 of 140 maijo online senices are evineabble to jn 13, 2020, 3:20 PM - In conter
 feb 10, 2021, 2:45 PM - In conter

$$
\begin{aligned}
& \text { stefanie Marota/ / Bloombergs } \\
& \text { Canada arrests a teenager for allegedly stealing } \$ 36.5 \mathrm{M} \text { in crypto fre }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Canada arrests a teenager for allegedly stealing } \$ 36.5 \mathrm{M} \text { in crypto frr } \\
& \text { a US victim using SIM swapping, the largest reported single-person }
\end{aligned}
$$

[^0]
SMS as 2nd Factor vs. SMS for Account Recovery

Despite its shortcomings, SMS as a 2nd factor is better than nothing
Data point (Google): prevented 100\% of 3.3B automated password stuffing attacks, 96% of 12 M bulk phishing, and even 76% of $<10 \mathrm{k}$ targeted attacks seen over a year

Unfortunately, the convenience of phone numbers has led many services to overload SMS as the sole authentication factor

SMS-based onboarding
SMS-based authentication (login with phone number)
SMS-based password reset/account recovery
These are disastrous: a simple SIM-swap attack can take over an account without knowing the password

Password reset via email is much more secure

Better Alternative: Authenticator Apps

Time-based one-time password (TOTP)
Six/eight digit code provided after password validation HMAC of a shared secret key and the current time
The key is negotiated during registration
Requires "rough" client-server synchronization

dauthy Google Code constantly changes in 30 -second intervals

User-friendly alternative: push notification (e.g., Duo Push) MFA "fatigue" attacks: flood a user with push notifications

More importantly: Phishing is still possible!
The attacker just needs to proxy the captured credentials in real time (rather than collecting them for later use)

MFA fatigue attacks：Users tricked into allowing device access due to overload of push notifications

Jessica Haworth 16 February 2022 at 15：40 UTC
02 March 2023
Updated： 18 February 2022 at 14：24 UTC

노（ in

Social engineering technique confuses victims to gain entry to their accounts
Malicious hackers are targeting Office 365 users with a spare of＇MFA fatigue attacks＇，bombarding victims with 2FA push notifications to trick them into authenticating their login attempts．

This is according to researchers from GoSecure，who have warned that there is an increase in attacks that are exploiting human behavior to gain access to devices．
Multi－factor authentication（MFA）fatigue is the name given to a technique used by adversaries to flood a user＇s authentication app with push notifications in the hope they will accept and therefore enable an attacker to gain entry to an account or device．

Uber：Lapsus\＄Targeted External Contractor With MFA Bombing Attack

The ride－sharing giant says a member of the notorious Lapsus\＄hacking group started the attack by compromising an external contractor＇s credentials，as researchers parse the incident for takeaways．

Jai Vijayan，Contributing Writer September 19， 2022

Uber has attributed last week＇s massive breach at U Lapsus\＄hacking group and released additional deta Researchers say the incident has highlighted the ris trusting too much in multifactor authentication（MFA risk around cloud－service adoption．

The attacker then repeatedly tried to log in to the Uber account using the illegally obtained credentials，prompting a two－factor login approval request each time．After the contractor initially blocked those requests，the attacker contacted the target on WhatsApp posing as tech support，telling the person to accept the MFA prompt－thus allowing the attacker to log in．

[^1]
Evilginx2 https://github.com/kgretzky/evilginx2

Man-in-the-middle attack framework for phishing login credentials along with session cookies

Bypasses 2-factor authentication
No need for HTML templates: just a web proxy
Victim's traffic is forwarded to the real website
TLS termination at the proxy (e.g., using a LetsEncrypt certificate)

Google

Sign in

with your Google Account

Email or phone

Forgot email?

Not your computer? Use Guest mode to sign in privately. Learn more

Create account
NEXT

English (United States)
Help
Privacy
Terms

Even Better Alternative: U2F Tokens (AKA Security Keys)

Universal Second Factor (U2F)
FIDO (Fast IDentity Online) alliance: Google, Yubico, ...
Supported by all popular browsers and many online services
A different key pair is generated for each origin during registration
Origin = <protocol, hostname, port>
Private key stored re-generated on device Public key sent to server

Additions to the authentication flow:
Origin (URI): prevents phishing
TLS Channel ID (optional): prevents MitM

done!

Key Generation

Storing a private key + metadata per service would require a lot of storage Alternative: store only a master symmetric key

Generated on-device upon first startup, and never leaves the YubiKey in any form

Registration

YubiKey generates a random key pair per credential
YubiKey encrypts the private key + metadata with the master key \rightarrow key handle
Key handle + public key sent to server

Authentication

The server presents the key handle to the YubiKey, along with a challenge
YubiKey decrypts the key handle and reveals the private key (authenticated encryption: ensures integrity, and that the credential is used with the correct AppID)
YubiKey signs the challenge with the private key to complete the authentication

U2F tokens

Benefits

Easy: just tap the button (no typing)
Works out of the box (no drivers to install)
USB, NFC, Bluetooth communication
No shared secret between client and server
Origin checking \rightarrow prevents phishing!

Drawbacks

Can be lost \rightarrow need a fallback (backup codes, 2nd U2F token, authenticator app, ...)
Cumbersome: have to pull keychain out and plug token in (or have an always pugged-in token, in which case though it can be stolen along with the device)
Cost (\$10-\$70)

－

Google＇s strongest security helps keep your private information safe．

The Advanced Protection Program safeguards users with high visibility and sensitive information from targeted online attacks．New protections are automatically added to defend against today＇s wide
range of threats．

自 G Advanced Protection

Get security keys
First，you need 2 security keys，one of them for backup．Your security
key will be used in addition to your password to sign in to your accoun
You can use keys that you already own or buy new ones．Learn more
Ship to：United States ＊

Make sure to
your devices．

Buy now

Because you use a physical key instead of the six-digit code, security keys strengthen the two-factor authentication process and help prevent your second authentication factor from being intercepted or requested by an attacker.

> You're responsible for maintaining access to your security keys. If you lose all of your trusted devices and security keys, you could be locked out of your account permanently.

Learn more about two-factor authentication >

What's required for Security Keys for Apple ID

- At least two FIDO ${ }^{\circledR}$ Certified* security keys that work with the Apple devices that you use on a regular basis.
- iOS 16.3, iPadOS 16.3, or macOS Ventura 13.2, or later on all of the devices where you're signed in with your Apple ID.
- Two-factor authentication set up for your Apple ID.
- A modern web browser. If you can't use your security key to sign in on the web, update your browser to the latest version or try another browser.

2FA Recap - What threats does it prevent?
SMS: useful against two main threats
Credential stuffing (people tend to reuse passwords across different services)
Leaked passwords (post-it, hardware keyloggers, cameras, shoulder surfing, ...)
Introduces new security/privacy issues: SIM swapping, SMS account recovery, SMS spam...

Authenticator Apps/Push Auth: much better alternative than SMS

Protects against the same threats without relying on phone numbers

U2F: additional protection against phishing

Modern phishing toolkits bypass SMS/Authenticator/Push 2FA through MitM
Humans fall for typosquatting, but U2F's origin check doesn't

None of the above protect against session hijacking and Man-in-the-Browser

Game over anyway if the host is compromised after the user has successfully logged in

Password Managers

Have become indispensable
Encourage the use of complex/non-memorable passwords
Obviate the need for password reuse: unique passwords per site/service
Protection against phishing: auto-fill won't work for incorrect domains
As long as users don't copy/paste passwords out of the password manager (!)
Various options: third-party applications, OS-level, in-browser
Password synchronization across devices
Can the service provider access all my passwords or not?
Preferable option: passwords should be encrypted locally with a master password never visible to the cloud service

Single point of failure (!)
\square

-ars TECHNICA

LastPass says employee's home computer was hacked and corporate vault taken

Already smarting from a breach that stole customer vaults, LastPass has more bad news.

DAN GOODIN - 2/27/2023, 8:01 PM

Already smarting from a breach that put partially encrypted login data into a threat actor's hands, LastPass on Monday said that the same attacker hacked an employee's home computer and obtained a decrypted vault available to only a handful of company developers.

Although an initial intrusion into LastPass ended on August 12, officials with the leading password manager said the threat actor "was actively engaged in a new series of reconnaissance, enumeration, and exfiltration activity" from August 12 to August 26 . In the process, the unknown threat actor was able to steal valid credentials from a senior DevOps engineer and access the contents of a LastPass data vault. Among other things, the vault gave access to a shared cloud-storage environment that contained the encryption keys for customer vault backups stored in Amazon S3 buckets.

Another bombshell drops

Single Sign-on/Social Login

Use a central authentication service for multiple sites Pros

Convenience: fewer passwords to remember
Easier development: outsource user registration/management
Rich experience through social features

Cons

Same credentials for multiple sites: single point of failure
Third-parties gain access to users' profiles
Provider can track users

WebAuthn

W3C Web Authentication standard (FIDO2): Successor of FIDO U2F

Use cases

Low friction and phishing-resistant 2FA (in conjunction with a password)
Passwordless, biometrics-based re-authorization
2FA without a password (passwordless login)
Authenticators: devices that can generate private/public key pairs and gather consent (simple tap, fingerprint read, ...)

Roaming Authenticators:
USB/BLE/NFC security keys
Platform Authentications:
Built-in fingerprint readers, cameras, ...

Relying party

Passkeys

Completely replace passwords with cryptographic key pairs
Server only keeps a user's public key
Based on WebAuthn: rely on biometric identification (Face ID, Windows Hello, ...)
Key enabler: identity providers (Apple, Google, ...) who also sell devices
The device becomes an authenticator: what if it gets lost? \rightarrow recovery through vendor Users have more than one device \rightarrow seamless syncing

SAFETY \＆SECURITY

Passwordless by default：Make the switch to passkeys

Oct 10， 2023Christiaan Brand Group Product Manager

Passkeys.directory

Passkeys.directory is a community-driven index of websites, apps, and services
that offer signing in with passkeys.

Multi-factor vs. Multi-step

Factor: something you know/have/are
Step: user-specific action
Type password, tap fingerprint reader, press security key, look at camera, ...
Example: U2F flow with passwords
Type password + tap security key \rightarrow two factors, two steps
Example: FIDO2 passwordless flow
Tap biometric security key \rightarrow two factors, one step
Phone Face ID \rightarrow two factors, one step

Recap: Crypto-based Authentication

Rely on a cryptographic key to prove a user's identity
User performs a requested cryptographic operation on a value (challenge) that the verifier supplies

Usually based on knowledge of a key (shared secret key or private key)
Can use symmetric (e.g., Kerberos) or public key (e.g., U2F, passkeys) schemes
How can we trust a key? Why is it authentic?
Need to establish a level of trust
Different approaches: TOFU, PKI, Web of Trust

Trust on First Use (aka Key Continuity)

Use case: SSH

Performs mutual authentication

Server always authenticates the client

password, key pair, ...
Client almost always authenticates the server - except the first time!
First connection: server presents its public key
No other option for the user but to accept it: MitM opportunity
Subsequent connections: client remembers server's key, and triggers an alert on key mismatch
Pragmatic solution, but shifts the burden to users
Users must determine the validity of the presented key
Accepting a key change without verifying the new key offers no protection against MitM (unfortunately, that's what most users do)

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@@@@@@@cc
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
df:c8:52:aa:cd:e3:da:8c:ec:50:46:db:4d:21:d9:c7.
Please contact your system administrator.
Add correct host key in /root/.ssh/known hosts to get rid of this message.
Offending key in /root/.ssh/known hosts: $\overline{1}$
RSA host key for 192.168.2.5 has changed and you have requested strict checking. Host key verification failed.

TODAY

Messages you send to this chat and calls are now secured with end-to-end encryption. Tap for more info.

This is a normal message in a normal conversation.

Now Alice is going to reinstall. 12:31 PM //

Alice's security code changed. Tap for more info.

As soon as Alice reinstalled, I saw the notice above. Impressive.

Now Alice has uninstalled, and this message is being transmitted before Alice reinstalls.

12:34 PM
Alice's security code changed. Tap for more infoType a message


```
56890}599295 61701 15415
38897 13310 80072 75067
50646 41640 61012 94324
```

Scan the code on your contact's phone, or ask them to scan your code, to verify that your messages and calls to them are end-to-end encrypted. You can also compare the number above to verify. This is optional. Learn more.

Certificates

How can we distribute "trusted" public keys?

Public directory \rightarrow risk of forgery and tampering, scalability issues
More practical solution: "certified" public keys
A certificate is a digitally signed message that contains an identity and a public key

Makes an association between a user/entity and a private key
Valid until a certain period
Most common format: X. 509
Why trust a certificate?

Because it is signed by an "authority"
Requiring a signature by a third party prevents straightforward tampering

Public Key Infrastructures (PKI)

Facilitate the authentication and distribution of public keys with the respective identities of entities

People, organizations, devices, applications, ...
Set of roles, policies, hardware, software, and procedures to create, mange, distribute, use, store, and revoke digital certificates and manage public key encryption

An issuer signs certificates for subjects: "Trust anchor"
Methods of certification
Certificate authorities (hierarchical structure - root of trust)
Web of trust (decentralized, peer-to-peer structure)

Certificate Authorities

Trusted third-parties responsible for certifying public keys
Most CAs are tree-structured
A public key for any website in the world will be accepted without a browser warning if it has been certified by a trusted CA

Why should we trust an authority?
How do we know the public key of the Certificate Authority?
CA's public key (trust anchor) must somehow be provided out of band
Operating systems and browsers are pre-configured with tens/hundreds of trusted root certificates (more on this in the TLS lecture)

Single point of failure: CAs can be compromised!

A Dutch certificate authority that suffered a major hack attack this summer has been unable to recover from the blow and filed for bankruptcy this week.

Web of Trust (mainly used in PGP for encrypted email - future lecture)

Entirely decentralized authentication

No need to buy certs from CAs: users create their own certificates
Users validate other users' certificates, forming a "web of trust"
No trusted authorities: trust is established through friends (yay! key signing parties!)

Main problems

Privacy issues: social graph metadata
Bootstrapping: new users are not readily trusted by others
When opinions vary, "stronger set" wins: impersonation through collusion/compromised keys
Scalability: challenging to create a WoT for the whole world

WoT: Finding Public Keys

Public PGP key servers
pgp.mit.edu
keyserver.pgp.com
Cache certificates from received emails
Integration with user management systems (LDAP, IAM/IDP)
Ad-hoc approaches
List public key on home page
Print on business card
Exchange through another medium on a case-by-case basis
Association with social profiles/identities
keybase.io

Online Social "Tracking"

Keybase.io

In essence, a directory associating public keys with names
Identity established through public signatures
Identity proofs: "I am Joe on Keybase and MrJoe on Twitter"
Follower statements: "I am Joe on Keybase and I just looked at Chris's identity"
Key ownership: "I am Joe on Keybase and here's my public key"
Revocations: "I take back what I said earlier"
Keybase identity $=$ sum of public identities
Twitter, Facebook, Github, Reddit, domain ownership, ...
michalis @polychronakis • 28 Aug 2014
Verifying myself: I am mikepo on Keybase.io. NpbEbc8BJOrT4k70TcmM2oA4G24IXVNt89R /

An attacker has to compromise all connected identities
The more connected identities, the harder to impersonate a user

Best Practices

Use long passphrases instead of passwords

Never reuse the same password on different services

Use two-factor authentication

Avoid SMS if possible! Use an authenticator app or even better U2F (or passkeys)
Remove phone number from account after authenticator/U2F setup
Store your backup codes/backup key in a safe location
Use a password manager
Pick non-memorable passwords and avoid copy/pasting them
Password auto-fill helps against phishing! (auto-fill will fail if the domain is wrong)
Use SSH keys instead of passwords

[^0]: Europol, alongside Italian and Spanish police, arrest 106 people

 ccused of working for the Italian Mafia and laundering over $£ 10 \mathrm{M}$ nade through cybercrimes - European poicee accused sereari people of SIM | mepping phishing and hacking in |
 | :--- |
 | Sep 20, 2021, $11: 00$ AM - I contex |

[^1]: In an update on Monday，Uber laid out the attribution：＂We believe that this attacker（or attackers）are affiliated with a hacking group called Lapsus\＄，which has been increasingly active over the last year or so．＂Uber＇s announcement pointed to other companies that had been targeted by the notorious gang via similar techniques，including Cisco，Microsoft，Nvidia，Okta， and Samsung，

