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Abstract

Graphics processing units (GPUs) are a powerful plat-

form for building high-speed network traffic processing

applications using low-cost hardware. Existing systems

tap the massively parallel architecture of GPUs to speed

up certain computationally intensive tasks, such as cryp-

tographic operations and pattern matching. However,

they still suffer from significant overheads due to critical-

path operations that are still being carried out on the

CPU, and redundant inter-device data transfers.

In this paper we present GASPP, a programmable net-

work traffic processing framework tailored to modern

graphics processors. GASPP integrates optimized GPU-

based implementations of a broad range of operations

commonly used in network traffic processing applica-

tions, including the first purely GPU-based implementa-

tion of network flow tracking and TCP stream reassem-

bly. GASPP also employs novel mechanisms for tackling

control flow irregularities across SIMT threads, and shar-

ing memory context between the network interface and

the GPU. Our evaluation shows that GASPP can achieve

multi-gigabit traffic forwarding rates even for computa-

tionally intensive and complex network operations such

as stateful traffic classification, intrusion detection, and

packet encryption. Especially when consolidating mul-

tiple network applications on the same device, GASPP

achieves up to 16.2× speedup compared to standalone

GPU-based implementations of the same applications.

1 Introduction

The emergence of commodity many-core architectures,

such as multicore CPUs and modern graphics proces-

sors (GPUs) has proven to be a good solution for accel-

erating many network applications, and has led to their

successful deployment in high-speed environments [10,

12–14, 26]. Recent trends have shown that certain net-

work packet processing operations can be implemented

efficiently on GPU architectures. Typically, such opera-

tions are either computationally intensive (e.g., encryp-

tion [14]), memory-intensive (e.g., IP routing [12]), or

both (e.g., intrusion detection and prevention [13, 24,

26]). Modern GPU architectures offer high computa-

tional throughput and hide excessive memory latencies.

Unfortunately, the lack of programming abstractions

and GPU-based libraries for network traffic processing—

even for simple tasks such as packet decoding and

filtering—increases significantly the programming ef-

fort needed to build, extend, and maintain high-

performance GPU-based network applications. More

complex critical-path operations, such as flow tracking

and TCP stream reassembly, currently still run on the

CPU, negatively offsetting any performance gains by the

offloaded GPU operations. The absence of adequate OS

support also increases the cost of data transfers between

the host and I/O devices. For example, packets have

to be transferred from the network interface to the user-

space context of the application, and from there to kernel

space in order to be transferred to the GPU. While pro-

grammers can explicitly optimize data movements, this

increases the design complexity and code size of even

simple GPU-based packet processing programs.

As a step towards tackling the above inefficiencies, we

present GASPP, a network traffic processing framework

tailored to modern graphics processors. GASPP inte-

grates into a purely GPU-powered implementation many

of the most common operations used by different types

of network traffic processing applications, including the

first GPU-based implementation of network flow track-

ing and TCP stream reassembly. By hiding complicated

network processing issues while providing a rich and ex-

pressive interface that exposes only the data that matters

to applications, GASPP allows developers to build com-

plex GPU-based network traffic processing applications

in a flexible and efficient way.

We have developed and integrated into GASPP novel

mechanisms for sharing memory context between net-

work interfaces and the GPU to avoid redundant data

movement, and for scheduling packets in an efficient way



that increases the utilization of the GPU and the shared

PCIe bus. Overall, GASPP allows applications to scale

in terms of performance, and carry out on the CPU only

infrequently occurring operations.

The main contributions of our work are:

• We have designed, implemented, and evaluated

GASPP, a novel GPU-based framework for high-

performance network traffic processing, which

eases the development of applications that process

data at multiple layers of the protocol stack.

• We present the first (to the best of our knowl-

edge) purely GPU-based implementation of flow

state management and TCP stream reconstruction.

• We present a novel packet scheduling technique that

tackles control flow irregularities and load imbal-

ance across GPU threads.

• We present a zero-copy mechanism that avoids re-

dundant memory copies between the network in-

terface and the GPU, increasing significantly the

throughput of cross-device data transfers.

2 Motivation

The Need for Modularity. The rise of general-purpose

computing on GPUs (GPGPU) and related frameworks,

such as CUDA and OpenCL, has made the implemen-

tation of GPU-accelerated applications easier than ever.

Unfortunately, the majority of GPU-assisted network ap-

plications follow a monolithic design, lacking both mod-

ularity and flexibility. As a result, building, maintaining,

and extending such systems eventually becomes a real

burden. In addition, the absence of libraries for network

processing operations—even for simple tasks like packet

decoding or filtering—increases development costs even

further. GASPP integrates a broad range of operations

that different types of network applications rely on, with

all the advantages of a GPU-powered implementation,

into a single application development platform. This al-

lows developers to focus on core application logic, alle-

viating the low-level technical challenges of data trans-

fer to and from the GPU, packet batching, asynchronous

execution, synchronization issues, connection state man-

agement, and so on.

The Need for Stateful Processing. Flow tracking and

TCP stream reconstruction are mandatory features of a

broad range of network applications. Intrusion detec-

tion and traffic classification systems typically inspect

the application-layer stream to identify patterns that

span multiple packets and thwart evasion attacks [9, 28].

Existing GPU-assisted network processing applications,

however, just offload to the GPU certain data-parallel

tasks, and are saturated by the many computationally

heavy operations that are still being carried out on the
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Figure 1: GASPP architecture.

CPU, such as network flow tracking, TCP stream re-

assembly, and protocol parsing [13, 26].

The most common approach for stateful processing is

to buffer incoming packets, reassemble them, and deliver

“chunks” of the reassembled stream to higher-level pro-

cessing elements [6, 7]. A major drawback of this ap-

proach is that it requires several data copies and signif-

icant extra memory space. In Gigabit networks, where

packet intervals can be as short as 1.25 µsec (in a 10GbE

network, for a MTU of 1.5KB), packet buffering requires

large amounts of memory even for very short time win-

dows. To address these challenges, the primary objec-

tives of our GPU-based stateful processing implementa-

tion are: (i) process as many packets as possible on-the-

fly (instead of buffering them), and (ii) ensure that pack-

ets of the same connection are processed in-order.

3 Design

The high-level design of GASPP is shown in Figure 1.

Packets are transferred from the network interfaces to

the memory space of the GPU in batches. The captured

packets are then classified according to their protocol

and are processed in parallel by the GPU. For stateful

protocols, connection state management and TCP stream

reconstruction are supported for delivering a consistent

application-layer byte stream.

GASPP applications consist of modules that control

all aspects of the traffic processing flow. Modules are

represented as GPU device functions, and take as input

a network packet or stream chunk. Internally, each mod-

ule is executed in parallel on a batch of packets. After

processing is completed, the packets are transferred back

to the memory space of the host, and depending on the

application, to the appropriate output network interface.

3.1 Processing Modules

A central concept of NVIDIA’s CUDA [5] that has influ-

enced the design of GASPP is the organization of GPU

programs into kernels, which in essence are functions

that are executed by groups of threads. GASPP allows
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is executed by a different thread for every incoming

packet.

users to specify processing tasks on the incoming traf-

fic by writing GASPP modules, applicable on different

protocol layers, which are then mapped into GPU kernel

functions. Modules can be implemented according to the

following prototypes:

__device__ uint processEth(unsigned pktid,

ethhdr *eth, uint cxtkey);

__device__ uint processIP(unsigned pktid,

ethhdr *eth, iphdr *ip, uint cxtkey);

__device__ uint processUDP(unsigned pktid,

ethhdr *eth, iphdr *ip, udphdr *udp, uint cxtkey);

__device__ uint processTCP(unsigned pktid,

ethhdr *eth, iphdr *ip, tcphdr *tcp, uint cxtkey);

__device__ uint processStream(unsigned pktid,

ethhdr *eth, iphdr *ip, tcphdr *tcp, uchar *chunk,

unsigned chunklen, uint cxtkey);

The framework is responsible for decoding incoming

packets and executing all registered process*() mod-

ules by passing the appropriate parameters. Packet de-

coding and stream reassembly is performed by the un-

derlying system, eliminating any extra effort from the

side of the developer. Each module is executed at the

corresponding layer, with pointer arguments to the en-

capsulated protocol headers. Arguments also include a

unique identifier for each packet and a user-defined key

that denotes the packet’s class (described in more de-

tail in §5.3). Currently, GASPP supports the most com-

mon network protocols, such as Ethernet, IP, TCP and

UDP. Other protocols can easily be handled by explicitly

parsing raw packets. Modules are executed per-packet

in a data-parallel fashion. If more than one modules

have been registered, they are executed back-to-back in

a packet processing pipeline, resulting in GPU module

chains, as shown in Figure 2.

The processStream() modules are executed when-

ever a new normalized TCP chunk of data is available.

These modules are responsible for keeping internally the

state between consecutive chunks—or, alternatively, for

storing chunks in global memory for future use—and

continuing the processing from the last state of the previ-

ous chunk. For example, a pattern matching application

can match the contents of the current chunk and keep the

state of its matching algorithm to a global variable; on

the arrival of the next chunk, the matching process will

continue from the previously stored state.

As modules are simple to write, we expect that users

will easily write new ones as needed using the function

prototypes described above. In fact, the complete imple-

mentation of a module that simply passes packets from

an input to an output interface takes only a few lines

of code. More complex network applications, such as

NIDS, L7 traffic classification, and packet encryption,

require a few dozen lines of code, as described in §6.

3.2 API

To cover the needs of a broad range of network traffic

processing applications, GASPP offers a rich GPU API

with data structures and algorithms for processing net-

work packets.

Shared Hash Table. GASPP enables applications to

access the processed data through a global hash table.

Data stored in an instance of the hash table is persis-

tent across GPU kernel invocations, and is shared be-

tween the host and the device. Internally, data objects

are hashed and mapped to a given bucket. To enable

GPU threads to add or remove nodes from the table in

parallel, we associate an atomic lock with each bucket,

so that only a single thread can make changes to a given

bucket at a time.

Pattern Matching. Our framework provides a GPU-

based API for matching fixed strings and regular expres-

sions. We have ported a variant of the Aho-Corasick al-

gorithm for string searching, and use a DFA-based im-

plementation for regular expression matching. Both im-

plementations have linear complexity over the input data,

independent of the number of patterns to be searched.

To utilize efficiently the GPU memory subsystem, packet

payloads are accessed 16-bytes at a time, using an int4

variable [27].

Cipher Operations. Currently, GASPP provides AES

(128-bit to 512-bit key sizes) and RSA (1024-bit and

2048-bit key sizes) functions for encryption and decryp-

tion, and supports all modes of AES (ECB, CTR, CFB

and OFB). Again, packet contents are read and written

16-bytes at a time, as this substantially improves GPU

performance. The encryption and decryption process

happens in-place and as packet lengths may be modified,

the checksums for IP and TCP/UDP packets are recom-

puted to be consistent. In cases where the NIC controller

supports checksum computation offloading, GASPP sim-

ply forwards the altered packets to the NIC.

Network Packet Manipulation Functions. GASPP

provides special functions for dropping network pack-

ets (Drop()), ignoring any subsequent registered user-



defined modules (Ignore()), passing packets to the

host for further processing (ToLinux()), or writing

their contents to a dump file (ToDump()). Each func-

tion updates accordingly the packet index array, which

holds the offsets where each packet is stored in the packet

buffer, and a separate “metadata” array.

4 Stateful Protocol Analysis

The stateful protocol analysis component of GASPP is

designed with minimal complexity so as to maximize

processing speed. This component is responsible for

maintaining the state of TCP connections, and recon-

structing the application-level byte stream by merging

packet payloads and reordering out-of-order packets.

4.1 Flow Tracking

GASPP uses a connection table array stored in the global

device memory of the GPU for keeping the state of TCP

connections. Each record is 17-byte long. A 4-byte hash

of the source and destination IP addresses and TCP ports

is used to handle collisions in the flow classifier. Con-

nection state is stored in a single-byte variable. The

sequence numbers of the most recently received client

and server segments are stored in two 4-byte fields, and

are updated every time the next in-order segment arrives.

Hash table collisions are handled using a locking chained

hash table with linked lists (described in detail in §3.2).

A 4-byte pointer points to the next record (if any).

The connection table can easily fill up with adversar-

ial partially-established connections, benign connections

that stay idle for a long time, or connections that failed to

terminate properly. For this reason, connection records

that have been idle for more than a certain timeout, set to

60 seconds by default, are periodically removed. As cur-

rent GPU devices do not provide support for measuring

real-world time, we resort to a separate GPU kernel that

is initiated periodically according to the timeout value.

Its task is to simply mark each connection record by set-

ting the first bit of the state variable. If a connection

record is already marked, it is removed from the table.

A marked record is unmarked when a new packet for this

connection is received before the timeout expires.

4.2 Parallelizing TCP Stream Reassembly

Maintaining the state of incoming connections is simple

as long as the packets that are processed in parallel by the

GPU belong to different connections. Typically, how-

ever, a batch of packets usually contains several packets

of the same connection. It is thus important to ensure

that the order of connection updates will be correct when

processing packets of the same connection in parallel.

TCP reconstruction threads are synchronized through

a separate array used for pairing threads that must pro-

cess consecutive packets. When a new batch is re-
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Figure 3: Ordering sequential TCP packets in parallel.

The resulting next packet array contains the next in-order

packet, if any (i.e. next packet[A] = B).

ceived, each thread hashes its packet twice: once us-

ing hash(addr s, addr d, port s, port d, seq), and a sec-

ond time using hash(addr s, addr d, port s, port d, seq+

len), as shown in Figure 3. A memory barrier is

used to guarantee that all threads have finished hash-

ing their packets. Using this scheme, two packets x

and y are consecutive if: hashx(4-tuple, seq + len) =

hashy(4-tuple, seq). The hash function is unidirectional

to ensure that each stream direction is reconstructed sep-

arately. The SYN and SYN-ACK packets are paired

by hashing the sequence and acknowledge numbers cor-

respondingly. If both the SYN and SYN-ACK pack-

ets are present, the state of the connection is changed

to ESTABLISHED, otherwise if only the SYN packet is

present, the state is set to SYN RECEIVED.

Having hashed all pairs of consecutive packets in the

hash table, the next step is to create the proper packet

ordering for each TCP stream using the next packet

array, as shown in Figure 3. Each packet is uniquely

identified by an id, which corresponds to the index

where the packet is stored in the packet index array. The

next packet array is set at the beginning of the current

batch, and its cells contain the id of the next in-order

packet (or -1 if it does not exist in the current batch),

e.g., if x is the id of the current packet, the id of the

next in-order packet will be y = next packet[x]. Fi-

nally, the connection table is updated with the sequence

number of the last packet of each flow direction, i.e., the

packet x that does not have a next packet in the current

batch.

4.3 Packet Reordering

Although batch processing handles out-of-order packets

that are included in the same batch, it does not solve the

problem in the general case. A potential solution for in-

line applications would be to just drop out-of-sequence

packets, forcing the host to retransmit them. Whenever

an expected packet would be missing, subsequent pack-
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Figure 4: Subsequent packets (dashed line) may arrive

in-sequence ((a)–(d)) or out of order, creating holes in

the reconstructed TCP stream ((e)–(f)).

ets would be actively dropped until the missing packet ar-

rives. Although this approach would ensure an in-order

packet flow, it has several disadvantages. First, in sit-

uations where the percentage of out-of-order packets is

high, performance will degrade. Second, if the endpoints

are using selective retransmission and there is a high rate

of data loss in the network, connections would be ren-

dered unusable due to excessive packet drops.

To deal with TCP sequence hole scenarios, GASPP

only processes packets with sequence numbers less than

or equal to the connection’s current sequence number

(Figure 4(a)–(d)). Received packets with no preceding

packets in the current batch and with sequence numbers

larger than the ones stored in the connection table im-

ply sequence holes (Figure 4(e)–(f)), and are copied in a

separate buffer in global device memory. If a thread en-

counters an out-of-order packet (i.e., a packet with a se-

quence number larger than the sequence number stored

in the connection table, with no preceding packet in the

current batch after the hashing calculations of §4.2), it

traverses the next packet array and marks as out-of-

order all subsequent packets of the same flow contained

in the current batch (if any). This allows the system to

identify sequences of out-of-order packets, as the ones

shown in the examples of Figure 4(e)–(f). The buffer size

is configurable and can be up to several hundred MBs,

depending on the network needs. If the buffer contains

any out-of-order packets, these are processed right after

a new batch of incoming packets is processed.

Although packets are copied using the very fast

device-to-device copy mechanism, with a memory band-

width of about 145 GB/s, an increased number of out-of-

order packets can have a major effect on overall perfor-

mance. For this reason, by default we limit the num-

ber of out-of-order packets that can be buffered to be

equal to the available slots in a batch of packets. This

size is enough under normal conditions, where out-of-

order packets are quite rare [9], and it can be configured

as needed for other environments. If the percentage of

out-of-order packets exceeds this limit, our system starts

to drop out-of-order packets, causing the corresponding

host to retransmit them.
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Figure 5: Normal (a) and zero-copy (b) data transfer be-

tween the NIC and the GPU.

5 Optimizing Performance

5.1 Inter-Device Data Transfer

The problem of data transfers between the CPU and the

GPU is well-known in the GPGPU community, as it re-

sults in redundant cross-device communication. The tra-

ditional approach is to exchange data using DMA be-

tween the memory regions assigned by the OS to each

device. As shown in Figure 5(a), network packets are

transferred to the page-locked memory of the NIC, then

copied to the page-locked memory of the GPU, and from

there, they are finally transferred to the GPU.

To avoid costly packet copies and context switches,

GASPP uses a single buffer for efficient data sharing be-

tween the NIC and the GPU, as shown in Figure 5(b), by

adjusting the netmap module [20]. The shared buffer is

added to the internal tracking mechanism of the CUDA

driver to automatically accelerate calls to functions, as

it can be accessed directly by the GPU. The buffer is

managed by GASPP through the specification of a pol-

icy based on time and size constraints. This enables real-

time applications to process incoming packets whenever

a timeout is triggered, instead of waiting for buffers to

fill up over a specified threshold. Per-packet buffer al-

location overheads are reduced by transferring several

packets at a time. Buffers consist of fixed-size slots, with

each slot corresponding to one packet in the hardware

queue. Slots are reused whenever the circular hardware

queue wraps around. The size of each slot is 1,536 bytes,

which is consistent with the NIC’s alignment require-

ments, and enough for the typical 1,518-byte maximum

Ethernet frame size.

Although making the NIC’s packet queue directly ac-

cessible to the GPU eliminates redundant copies, this

does not always lead to better performance. As previ-

ous studies have shown [12, 26] (we verify their results

in §7.1), contrary to NICs, current GPU implementations

suffer from poor performance for small data transfers. To

improve PCIe throughput, we batch several packets and

transfer them at once. However, the fixed-size partition-

ing of the NIC’s queue leads to redundant data transfers

for traffic with many small packets. For example, a 64-
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byte packet consumes only 1/24th of the available space

in its slot. This introduces an interesting trade-off, and as

we show in §7.1, occasionally it is better to copy pack-

ets back-to-back into a second buffer and transferring it

to the GPU. GASPP dynamically switches to the optimal

approach by monitoring the actual utilization of the slots.

The forwarding path requires the transmission of net-

work packets after processing is completed, and this is

achieved using a triple-pipeline solution, as shown in

Figure 6. Packet reception, GPU data transfers and

execution, and packet transmission are executed asyn-

chronously in a multiplexed manner.

5.2 Packet Decoding

Memory alignment is a major factor that affects the

packet decoding process, as GPU execution constrains

memory accesses to be aligned for all data types. For ex-

ample, int variables should be stored to addresses that

are a multiple of sizeof(int). Due to the layered na-

ture of network protocols, however, several fields of en-

capsulated protocols are not aligned when transferred to

the memory space of the GPU. To overcome this issue,

GASPP reads the packet headers from global memory,

parses them using bitwise logic and shifting operations,

and stores them in appropriately aligned structures. To

optimize memory usage, input data is accessed in units

of 16 bytes (using an int4 variable).

5.3 Packet Scheduling

Registered modules are scheduled on the GPU, per pro-

tocol, in a serial fashion. Whenever a new batch of pack-

ets is available, it is processed in parallel using a number

of threads equal to the number of packets in the batch

(each thread processes a different packet). As shown in

Figure 2, all registered modules for a certain protocol are

executed serially on decoded packets in a lockstep way.

Network packets are processed by different threads,

grouped together into logical units known as warps (in

current NVIDIA GPU architectures, 32 threads form a

warp) and mapped to SIMT units. As threads within

the same warp have to execute the same instructions,

load imbalance and code flow divergence within a warp

can cause inefficiencies. This may occur under the fol-

lowing primary conditions: (i) when processing differ-

ent transport-layer protocols (i.e., TCP and UDP) in the

same warp, (ii) in full-packet processing applications

when packet lengths within a warp differ significantly,

and (iii) when different packets follow different process-
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Figure 7: Packet scheduling for eliminating control flow

divergences and load imbalances. Packet brightness rep-

resents packet size.

ing paths, i.e., threads of the same warp execute different

user-defined modules.

As the received traffic mix is typically very dynamic,

it is essential to find an appropriate mapping between

threads and network packets at runtime. It is also cru-

cial that the overhead of the mapping process is low, so

as to not jeopardize overall performance. To that end,

our basic strategy is to group the packets of a batch

according to their encapsulated transport-layer protocol

and their length. In addition, module developers can

specify context keys to describe packets that belong to the

same class, which should follow the same module exe-

cution pipeline. A context key is a value returned by a

user-defined module and is passed (as the final param-

eter) to the next registered module. GASPP uses these

context keys to further pack packets of the same class to-

gether and map them to threads of the same warp after

each module execution. This gives developers the flexi-

bility to build complex packet processing pipelines that

will be mapped efficiently to the underlying GPU archi-

tecture at runtime.

To group a batch of packets on the GPU, we have

adapted a GPU-based radix sort implementation [1].

Specifically, we assign a separate weight for each packet

consisting of the byte concatenation of the ip proto

field of its IP header, the value of the context key re-

turned by the previously executed module, and its length.

Weights are calculated on the GPU after each module ex-

ecution using a separate thread for each packet, and are

used by the radix sort algorithm to group the packets.

Moreover, instead of copying each packet to the appro-

priate (i.e., sorted) position, we simply change their order

in the packet index array. We also attempted to relocate

packets by transposing the packet array on the GPU de-

vice memory, in order to benefit from memory coalesc-

ing [5]. Unfortunately, the overall cost of the correspond-

ing data movements was not amortized by the resulting

memory coalescing gains.



Using the above procedure, GASPP assigns dynami-

cally to the same warp any similar-sized packets meant

to be processed by the same module, as shown in Fig-

ure 7. Packets that were discarded earlier or of which

the processing pipeline has been completed are grouped

and mapped to warps that contain only idle threads—

otherwise warps would contain both idle and active

threads, degrading the utilization of the SIMT proces-

sors. To prevent packet reordering from taking place dur-

ing packet forwarding, we also preserve the initial (pre-

sorted) packet index array. In §7.2 we analyze in detail

how control flow divergence affects the performance of

the GPU, and show how our packet scheduling mecha-

nisms tackle the irregular code execution at a fixed cost.

6 Developing with GASPP

In this section we present simple examples of represen-

tative applications built using the GASPP framework.

L3/L4 Firewall. Firewalls operate at the network layer

(port-based) or the application layer (content-based). For

our purposes, we have built a GASPP module that can

drop traffic based on Layer-3 and Layer-4 rules. An

incoming packet is filtered if the corresponding IP ad-

dresses and port numbers are found in the hash table;

otherwise the packet is forwarded.

L7 Traffic Classification. We have implemented a L7

traffic classification tool (similar to the L7-filter tool [2])

on top of GASPP. The tool dynamically loads the pat-

tern set of the L7-filter tool, in which each application-

level protocol (HTTP, SMTP, etc.) is represented by a

different regular expression. At runtime, each incoming

flow is matched against each regular expression indepen-

dently. In order to match patterns that cross TCP segment

boundaries that lie on the same batch, each thread con-

tinues the processing to the next TCP segment (obtained

from the next packet array). The processing of the

next TCP segment continues until a final or a fail DFA-

state is reached, as suggested in [25]. In addition, the

DFA-state of the last TCP segment of the current batch

is stored in a global variable, so that on the arrival of

the next stream chunk, the matching process continues

from the previously stored state. This allows the detec-

tion of regular expressions that span (potentially delib-

erately) not only multiple packets, but also two or more

stream chunks.

Signature-based Intrusion Detection. Modern NIDS,

such as Snort [7], use a large number of regular expres-

sions to determine whether a packet stream contains an

attack vector or not. To reduce the number of packets

that need to be matched against a regular expression, typ-

ical NIDS take advantage of the string matching engine

and use it as a first-level filtering mechanism before pro-

ceeding to regular expression matching. We have im-

Buffer 1KB 4KB 64KB 256KB 1MB 16MB

Host to GPU 2.04 7.12 34.4 42.1 45.7 47.8

GPU to Host 2.03 6.70 21.1 23.8 24.6 24.9

Table 1: Sustained PCIe throughput (Gbit/s) for transfer-

ring data to a single GPU, for different buffer sizes.

Packet size (bytes) 64 128 256 512 1024 1518

Copy back-to-back 13.76 18.21 20.53 19.21 19.24 20.04

Zero-copy 2.06 4.03 8.07 16.13 32.26 47.83

Table 2: Sustained throughput (Gbit/s) for various packet

sizes, when bulk-transferring data to a single GPU.

plemented the same functionality on top of GASPP, us-

ing a different module for scanning each incoming traffic

stream against all the fixed strings in a signature set. Pat-

terns that cross TCP segments are handled similarly to

the L7 Traffic Classification module. Only the matching

streams are further processed against the corresponding

regular expressions set.

AES. Encryption is used by protocols and services,

such as SSL, VPN, and IPsec, for securing communi-

cations by authenticating and encrypting the IP packets

of a communication session. While stock protocol suites

that are used to secure communications, such as IPsec,

actually use connectionless integrity and data origin au-

thentication, for simplicity, we only encrypt all incoming

packets using the AES-CBC algorithm and a different

128-bit key for each connection.

7 Performance Evaluation

Hardware Setup Our base system is equipped with

two Intel Xeon E5520 Quad-core CPUs at 2.27GHz and

12 GB of RAM (6 GB per NUMA domain). Each CPU

is connected to peripherals via a separate I/O hub, linked

to several PCIe slots. Each I/O hub is connected to an

NVIDIA GTX480 graphics card via a PCIe v2.0 x16

slot, and one Intel 82599EB with two 10 GbE ports, via

a PCIe v2.0 8× slot. The system runs Linux 3.5 with

CUDA v5.0 installed. After experimentation, we have

found that the best placement is to have a GPU and a

NIC on each NUMA node. We also place the GPU and

NIC buffers in the same memory domain, as local mem-

ory accesses sustain lower latency and more bandwidth

compared to remote accesses.

For traffic generation we use a custom packet genera-

tor built on top of netmap [20]. Test traffic consists of

both synthetic traffic, as well as real traffic traces.

7.1 Data Transfer

We evaluate the zero-copy mechanism by taking into ac-

count the size of the transferred packets. The system can

efficiently deliver all incoming packets to user space, re-

gardless of the packet size, by mapping the NIC’s DMA
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Figure 8: Data transfer throughput for different packet

sizes when using two dual-port 10GbE NICs.

packet buffer. However, small data transfers to the GPU

incur significant penalties. Table 1 shows that for trans-

fers of less than 4KB, the PCIe throughput falls below

7 Gbit/s. With a large buffer though, the transfer rate to

the GPU exceeds 45 Gbit/s, while the transfer rate from

the GPU to the host decreases to about 25 Gbit/s.1

To overcome the low PCIe throughput, GASPP trans-

fers batches of network packets to the GPU, instead of

one at a time. However, as packets are placed in fixed-

sized slots, transferring many slots at once results in re-

dundant data transfers when the slots are not fully oc-

cupied. As we can see in Table 2, when traffic consists

of small packets, the actual PCIe throughput drops dras-

tically. Thus, it is better to copy small network pack-

ets sequentially into another buffer, rather than transfer

the corresponding slots directly. Direct transfer pays off

only for packet sizes over 512 bytes (when buffer occu-

pancy is over 512/1536 = 33.3%), achieving 47.8 Gbit/s

for 1518-byte packets (a 2.3× speedup).

Consequently, we adopted a simple selective offload-

ing scheme, whereby packets in the shared buffer are

copied to another buffer sequentially (in 16-byte aligned

boundaries) if the overall occupancy of the shared buffer

is sparse. Otherwise, the shared buffer is transferred di-

rectly to the GPU. Occupancy is computed—without any

additional overhead—by simply counting the number of

bytes of the newly arrived packets every time a new in-

terrupt is generated by the NIC.

Figure 8 shows the throughput for forwarding pack-

ets with all data transfers included, but without any GPU

computations. We observe that the forwarding perfor-

mance for 64-byte packets reaches 21 Gbit/s, out of the

maximum 29.09 Gbit/s, while for large packets it reaches

the maximum full line rate. We also observe that the

GPU transfers of large packets are completely hidden on

the Rx+GPU+Tx path, as they are performed in parallel

using the pipeline shown in Figure 6, and thus they do

not affect overall performance. Unfortunately, this is not

the case for small packets (less than 128-bytes), which

suffer an additional 2–9% hit due to memory contention.

1The PCIe asymmetry in the data transfer throughput is related to

the interconnection between the motherboard and the GPUs [12].

7.2 Raw GPU Processing Throughput

Having examined data transfer costs, we now evalu-

ate the computational performance of a single GPU—

exluding all network I/O transfers—for packet decoding,

connection state management, TCP stream reassembly,

and some representative traffic processing applications.

Packet Decoding. Decoding a packet according to its

protocols is one of the most basic packet processing oper-

ations, and thus we use it as a base cost of our framework.

Figure 9(a) shows the GPU performance for fully de-

coding incoming UDP packets into appropriately aligned

structures, as described in §5.2 (throughput is very sim-

ilar for TCP). As expected, the throughput increases as

the number of packets processed in parallel increases.

When decoding 64-byte packets, the GPU performance

with PCIe transfers included, reaches 48 Mpps, which is

about 4.5 times faster than the computational through-

put of the tcpdump decoding process sustained by a sin-

gle CPU core, when packets are read from memory. For

1518-byte packets, the GPU sustains about 3.8 Mpps and

matches the performance of 1.92 CPU cores.

Connection State Management and TCP Stream Re-

assembly. In this experiment we measure the perfor-

mance of maintaining connection state on the GPU, and

the performance of reassembling the packets of TCP

flows into application-level streams. Figure 9(b) shows

the packets processed per second for both operations.

Test traffic consists of real HTTP connections with ran-

dom IP addresses and TCP ports. Each connection

fetches about 800KB from a server, and comprises about

870 packets (320 minimum-size ACKs, and 550 full-

size data packets). We also use a trace-driven work-

load (“Equinix”) based on a trace captured by CAIDA’s

equinix-sanjose monitor [3], in which the average and me-

dian packet length is 606.2 and 81 bytes respectively.

Keeping state and reassembling streams requires sev-

eral hashtable lookups and updates, which result to

marginal overhead for a sufficient number of simultane-

ous TCP connections and the Equinix trace; about 20–

25% on the raw GPU performance sustained for packet

decoding, that increases to 45–50% when the number of

concurrent connections is low. The reason is that smaller

numbers of concurrent connections result to lower par-

allelism. To compare with a CPU implementation, we

measure the equivalent functionality of the Libnids TCP

reassembly library [6], when packets are read from mem-

ory. Although Libnids implements more specific cases of

the TCP stack processing, compared to GASPP, the net-

work traces that we used for the evaluation enforce ex-

actly the same functionality to be exercised. We can see

that the throughput of a single CPU core is 0.55 Mpps,

about 10× lower than the GPU version with all PCIe data

transfers included.
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Figure 9: Average processing throughput sustained by the GPU to (a) decode network packets, (b) maintain flow state

and reassemble TCP streams, and (c) perform various network processing operations.

Elements 1M buckets 8M buckets 16M buckets

0.1M 463 3,595 7,166

1M 463 3,588 7,173

2M 934 3,593 7,181

4M 1,924 3,593 7,177

8M 3,935 3,597 7,171

16M 7,991 7,430 7,173

32M 16,060 15,344 14,851

Table 3: Time spent (µsec) for traversing the connection

table and removing expired connections.

Removing Expired Connections. Removal of expired

connections is very important for preventing the connec-

tion table from becoming full with stale adversarial con-

nections, idle benign connections, or connections that

failed to terminate cleanly [28]. Table 3 shows the GPU

time spent for connection expiration. The time spent to

traverse the table is constant when occupancy is lower

than 100%, and analogous to the number of buckets; for

larger values it increases due to the extra overhead of it-

erating the chain lists. Having a small hash table with a

large load factor is better than a large but sparsely pop-

ulated table. For example, the time to traverse a 1M-

bucket table that contains up to 1M elements is about

20× lower than a 16M-bucket table with the same num-

ber of elements. If the occupancy is higher than 100%

though, it is slightly better to use a 16M-bucket table.

Packet Processing Applications. In this experiment

we measure the computational throughput of the GPU for

the applications presented in §6. The NIDS is configured

to use all the content patterns (about 10,000 strings)

of the latest Snort distribution [7], combined into a sin-

gle Aho-Corasick state machine, and their correspond-

ing pcre regular expressions compiled into individual

DFA state machines. The application-layer filter applica-

tion (L7F) uses the “best-quality” patterns (12 regular ex-

pressions for identifying common services such as HTTP

and SSH) of L7-filter [2], compiled into 12 different

DFA state machines. The Firewall (FW) application uses

10,000 randomly generated rules for blocking incom-

ing and outgoing traffic based on certain TCP/UDP port

numbers and IP addresses. The test traffic consists of the

HTTP-based traffic and the trace-driven Equinix work-

load described earlier. Note that the increased asymme-

try in packet lengths and network protocols in the above

traces is a stress-test workload for our data-parallel ap-

plications, given the SIMT architecture of GPUs [5].

Figure 9(c) shows the GPU throughput sustained by

each application, including PCIe transfers, when packets

are read from host memory. FW, as expected, has the

highest throughput of about 8 Mpps—about 2.3 times

higher than the equivalent single-core CPU execution.

The throughput for NIDS is about 4.2–5.7 Mpps, and

for L7F is about 1.45–1.73 Mpps. The large difference

between the two applications is due to the fact that the

NIDS shares the same Aho-Corasick state machine to

initially search all packets (as we described in §6). In

the common case, each packet will be matched only once

against a single DFA. In contrast, the L7F requires each

packet to be explicitly matched against each of the 12 dif-

ferent regular expression DFAs for both CPU and GPU

implementations. The corresponding single-core CPU

implementation of NIDS reaches about 0.1 Mpps, while

L7F reaches 0.01 Mpps. We also note that both appli-

cations are explicitly forced to match all packets of all

flows, even after they have been successfully classified

(worst-case analysis). Finally, AES has a throughput

of about 1.1 Mpps, as it is more computationally inten-

sive. The corresponding CPU implementation using the

AES-NI [4] instruction set on a single core reaches about

0.51 Mpps.2

Packet Scheduling In this experiment we measure

how the packet scheduling technique, described in §5.3,

2The CPU performance of AES was measured on an Intel Xeon

E5620 at 2.40GHz, because the Intel Xeon E5520 of our base system

does not support AES-NI.
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Figure 10: Performance gains on raw GPU execution

time when applying packet scheduling (the scheduling

cost is included).

affects the performance of different network applica-

tions. For test traffic we used the trace-driven Equinix

workload. Figure 10(a) shows the performance gain of

each application for different packet batch sizes. We note

that although the actual work of the modules is the same

every time (i.e., the same processing will be applied on

each packet), it is executed by different code blocks, thus

execution is forced to diverge.

We observe that packet scheduling boosts the per-

formance of full-packet processing applications, up to

55% for computationally intensive workloads like AES.

Memory-intensive applications, such as NIDS, have a

lower (about 15%) benefit. We also observe that gains

increase as the batch size increases. With larger batch

sizes, there is a greater range of packet sizes and pro-

tocols, hence more opportunities for better grouping.

In contrast, packet scheduling has a negative effect on

lightweight processing (as in FW, which only processes

a few bytes of each packet), because the sorting over-

head is not amortized by the resulting SIMT execu-

tion. As we cannot know at runtime if processing will

be heavyweight or not, it is not feasible to predict if

packet scheduling is worth applying. As a result, quite

lightweight workloads (as in FW) will perform worse,

although this lower performance will be hidden most of

the time by data transfer overlap (Figure 6).

Another important aspect is how control flow diver-

gence affects performance, e.g., when packets follow dif-

ferent module execution pipelines. To achieve this, we

explicitly enforce different packets of the same batch to

be processed by different modules. Figure 10(b) shows

the achieved speedup when applying packet schedul-

ing over the baseline case of mapping packets to thread

warps without any reordering (network order). We

see that as the number of different modules increases,

our packet scheduling technique achieves a significant

speedup. The speedup stabilizes after the number of

modules exceeds 32, as only 32 threads (warp size) can

run in a SIMT manner any given time. In general, code

divergence within warps plays a significant role in GPU

performance. The thread remapping achieved through
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Figure 11: Sustained traffic forwarding throughput (a)

and latency (b) for GASPP-enabled applications.

our packet scheduling technique tolerates the irregular

code execution at a fixed cost.

7.3 End-to-End Performance

Individual Applications. Figure 11 shows the sus-

tained end-to-end forwarding throughput and latency

of individual GASPP-enabled applications for different

batch sizes. We use four different traffic generators,

equal to the number of available 10 GbE ports in our

system. To prevent synchronization effects between the

generators, the test workload consists of the HTTP-based

traffic described earlier. For comparison, we also evalu-

ate the corresponding CPU-based implementations run-

ning on a single core, on top of netmap.

The FW application can process all traffic delivered

to the GPU, even for small batch sizes. NIDS, L7F,

and AES, on the other hand, require larger batch sizes.

The NIDS application requires batches of 8,192 packets

to reach similar performance. Equivalent performance

would be achieved (assuming ideal parallelization) by

28.4 CPU cores. More computationally intensive appli-

cations, however, such as L7F and AES, cannot process

all traffic. L7F reaches 19 Gbit/s a batch size of 8,192

packets, and converges to 22.6 Gbit/s for larger sizes—

about 205.1 times faster than a single CPU core. AES

converges to about 15.8 Gbit/s, and matches the perfor-
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ning applications.

mance of 4.4 CPU cores with AES-NI support. As ex-

pected, latency increases linearly with the batch size, and

for certain applications and large batch sizes it can reach

tens of milliseconds (Figure 11(b)). Fortunately, a batch

size of 8,192 packets allows for a reasonable latency for

all applications, while it sufficiently utilizes the PCIe bus

and the parallel capabilities of the GTX480 card (Fig-

ure 11(a)). For instance, NIDS, L7F, and FW have a la-

tency of 3–5 ms, while AES, which suffers from an extra

GPU-to-host data transfer, has a latency of 7.8 ms.

Consolidated Applications. Consolidating multiple

applications has the benefit of distributing the overhead

of data transfer, packet decoding, state management, and

stream reassembly across all applications, as all these op-

erations are performed only once. Moreover, through the

use of context keys, GASPP optimizes SIMT execution

when packets of the same batch are processed by differ-

ent applications. Figure 12 shows the sustained through-

put when running multiple GASPP applications. Appli-

cations are added in the following order: FW, NIDS, L7F,

AES (increasing overhead). We also enforce packets of

different connections to follow different application pro-

cessing paths. Specifically, we use the hash of the each

packet’s 5-tuple for deciding the order of execution. For

example, a class of packets will be processed by appli-

cation 1 and then application 2, while others will be pro-

cessed by application 2 and then by application 1; even-

tually, all packets will be processed by all registered ap-

plications. For comparison, we also plot the performance

of GASPP when packet scheduling is disabled (GASPP-

nosched), and the performance of having multiple stan-

dalone applications running on the GPU and the CPU.

We see that the throughput for GASPP converges to

the throughput of the most intensive application. When

combining the first two applications, the throughput re-

mains at 33.9 Gbit/s. When adding the L7F (x=3), per-

formance degrades to 18.3 Gbit/s. L7F alone reaches

about 20 Gbit/s (Figure 11(a)). When adding AES (x=4),

performance drops to 8.5 Gbit/s, which is about 1.93×

faster than GASPP-nosched. The achieved throughput

when running multiple standalone GPU-based imple-

mentations is about 16.25× lower than GASPP, due to

excessive data transfers.

8 Limitations

Typically, a GASPP developer will prefer to port func-

tionality that is parallelizable, and thus benefit from the

GPU execution model. However, there may be parts of

data processing operations that do not necessarily fit well

on the GPU. In particular, middlebox functionality with

complex conditional processing and frequent branching

may require extra effort.

The packet scheduling mechanisms described in §5.3

help accommodate such cases by forming groups of

packets that will follow the same execution path and will

not affect GPU execution. Still, (i) divergent workloads

that perform quite lightweight processing (e.g., which

process only a few bytes from each packet, such as the

FW application), or (ii) workloads where it is not easy

to know which packet will follow which execution path,

may not be parallelized efficiently on top of GASPP. The

reason is that in these cases the cost of grouping is much

higher than the resulting benefits, while GASPP cannot

predict if packet scheduling is worth the case at runtime.

To overcome this, GASPP allows applications to selec-

tively pass network packets and their metadata to the

host CPU for further post-processing, as shown in Fig-

ure 1. As such, for workloads that are hard to build on

top of GASPP, the correct way is to implement them by

offloading them to the CPU. A limitation of this approach

is that any subsequent processing that might be required

also has to be carried out by the CPU, as the cost of trans-

ferring the data back to the GPU would be prohibitive.

Another limitation of the current GASPP implementa-

tion is its relatively high packet processing latency. Due

to the batch processing nature of GPUs, GASPP may not

be suitable for protocols with hard real-time per-packet

processing constraints.

9 Related Work

Click [19] is a popular modular software router that suc-

cessfully demonstrates the need and the importance of

modularity in software routers. Several works focus on

optimizing its performance [10, 11].

SwitchBlade [8] provides a model that allows packet

processing modules to be swapped in and out of recon-

figurable hardware without the need to resynthesize the

hardware. Orphal [18] and ServerSwitch [17] provide

a common API for proprietary switching hardware, and

leverages the programmability of commodity Ethernet

switching chips for packet forwarding. ServerSwitch

also leverages the resources of the server CPU to pro-

vide extra programmability. In order to reduce costs and

enable quick functionality updates, there is an ongoing

trend of migrating to consolidated software running on

commodity “middlebox” servers [11, 15, 22].

GPUs provide a substantial performance boost to

many network-related workloads, including intrusion



detection [13, 24, 26] cryptography [14], and IP rout-

ing [12]. Many recent works also deal with GPU re-

source management in the OS [16, 21]. GPUfs [23] en-

hances the API available to GPU code, allowing GPU

software to access host files directly. Finally, software

mechanisms for tackling irregularities in both control

flows and memory references have been proposed [29].

10 Conclusion

We have presented the design, implementation, and

evaluation of GASPP, a flexible, efficient, and high-

performance framework for network traffic processing

applications. GASPP explores the design space of com-

bining the massively parallel architecture of GPUs with

10GbE network interfaces, and enables the easy integra-

tion of user-defined modules for execution at the cor-

responding L2–L7 network layers. GASPP has been

implemented using solely commodity, inexpensive com-

ponents, and our development experiences further show

that GASPP is easy to program using the C/CUDA lan-

guage. We have used our framework to develop repre-

sentative traffic processing applications, including intru-

sion detection and prevention systems, packet encryption

applications, and traffic classification tools.

As part of our future work, we plan to investigate fur-

ther how to schedule module execution on the CPU, and

how these executions will affect the overall performance

of GASPP. We also plan to implement an opportunis-

tic GPU offloading scheme, whereby packets with hard

real-time processing constraints will be handled by the

host CPU instead of the GPU to reduce latency.
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