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ABSTRACT
Memory disclosure vulnerabilities enable an adversary to success-
fully mount arbitrary code execution attacks against applications
via so-called just-in-time code reuse attacks, even when those appli-
cations are fortified with fine-grained address space layout random-
ization. This attack paradigm requires the adversary to first read
the contents of randomized application code, then construct a code
reuse payload using that knowledge. In this paper, we show that
the recently proposed Execute-no-Read (XnR) technique fails to
prevent just-in-time code reuse attacks. Next, we introduce the de-
sign and implementation of a novel memory permission primitive,
dubbed No-Execute-After-Read (NEAR), that foregoes the problems
of XnR and provides strong security guarantees against just-in-
time attacks in commodity binaries. Specifically, NEAR allows all
code to be disclosed, but prevents any disclosed code from subse-
quently being executed, thus thwarting just-in-time code reuse. At
the same time, commodity binaries with mixed code and data re-
gions still operate correctly, as legitimate data is still readable. To
demonstrate the practicality and portability of our approach we im-
plemented prototypes for both Linux and Android on the ARMv8
architecture, as well as a prototype that protects unmodified Mi-
crosoft Windows executables and dynamically linked libraries. In
addition, our evaluation on the SPEC2006 benchmark demonstrates
that our prototype has negligible runtime overhead, making it suit-
able for practical deployment.

1. INTRODUCTION
Despite constant hopes to the contrary, research in computer se-

curity has yet to produce a foolproof method for preventing mali-
cious users from exploiting one the most commonplace and nec-
essary components of a computer: its memory. This is certainly
not for lack of effort–after all, it was fewer than 20 years ago that
non-executable (NX) memory, a staple of modern memory safety,
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was introduced in response to rampant but trivial attacks in which
an attacker could leverage a single stack corruption vulnerability
to trigger execution of arbitrary machine code. NX memory suc-
ceeded in preventing these code injection attacks, which allowed
attackers to run arbitrary code of their choice, but failed to prevent
code reuse attacks.

In the new wave of memory exploits, the attacker redirects exe-
cution to portions of existing benign code, but manipulates inputs
or the order of execution in order to carry out malicious behavior.
These so-called code reuse attacks leverage entire functions, as in
return-to-libc attacks, or they may reuse small fragments of exist-
ing functions, as in the case with return-oriented or jump-oriented
programming attacks [30, 10, 7]. Since early code-reuse attacks
required foreknowledge of code addresses, a natural defense was
Address Space Layout Randomization (ASLR), which shifts the
addresses of blocks of memory by a randomized offset at runtime,
theoretically removing attackers’ abilities to create code reuse pay-
loads consisting of known code addresses. Soon after, however,
the rise of scripting environments in exploitable applications un-
dermined the ability of ASLR to prevent code reuse attacks, due to
the availability of memory disclosure vulnerabilities.

In response, further attempts were made to strengthen ASLR,
collectively known as fine-grained ASLR, which limit the amount
of information an attacker can infer from a single memory disclo-
sure. We discuss these in more detail in §2, but for now it is suf-
ficient to say that all the status quo was shown to be ineffective in
the face of just-in-time code reuse attacks [34], which use multiple
memory disclosures to read not only pointers to executable code,
but also the code itself.

Thus, in today’s feature-rich landscape, it is now abundantly
clear that randomization alone is not sufficient to protect appli-
cations’ memory. In contrast with randomization, over the past
several years the security community has revisited the notion of
control-flow integrity (CFI) originally proposed by Abadi et al. [1].
CFI aims to mitigate attacks at the time of the control-flow pivot,
e.g., when initially returning to or calling an arbitrary code pointer
controlled by the adversary. Just recently, however, Carlini et al.
[9] demonstrated that CFI can be defeated—even when considering
a “perfect” implementation—by constructing a form of mimicry
attack [39] wherein code reuse payloads make use of commonly
called library functions. Since these functions are similarly called
in normal program operation, control-flow integrity is preserved by



these malicious payloads, and thus they fundamentally bypass the
CFI protection [15].

Other recent works [3, 4, 17, 12] have proposed additional pro-
tections on top of fine-grained ASLR in order to cope with just-
in-time code reuse attacks. Unfortunately, as we will elaborate on
later, these protections either inherently suffer from prohibitively
poor runtime performance, have weak or undefined security guar-
antees, or do not provide binary compatibility to support legacy
applications. We instead propose a memory primitive that allows
disclosure of code, but prevents the subsequent execution of that
code. Redefining the problem in this way enables us to forgo all
the aforementioned shortcomings while still mitigating just-in-time
code reuse attacks. Specifically, we make the following contribu-
tions in this paper:

• We introduce the concept of NEAR, a new protection primi-
tive that prevents the execution of previously disclosed code.

• We describe a practical design and implementation of the
NEAR primitive using commodity hardware, operating sys-
tems and applications.

• We catalog instances of mixed code and data and describe
algorithms for reliably identifying and separating a majority
of these instances.

• We demonstrate how to leverage the extended page tables
(EPT) feature on x86, the upcoming Intel Memory Protec-
tion Keys (MPK), and ARMv8 memory permissions—all of
which support execute-only memory—to provide NEAR ca-
pabilities. We also show how to gracefully handle legitimate
data reads in code regions.

The remainder of the paper is organized as follows. Background
and pertinent related work is presented in §2. We then show that
XnR is not effective in defeating just-in-time code reuse attacks
in §3. Our goals and assumptions are presented in §4, followed
by a description in §5 of the design and implementation of NEAR
for various platforms. We provide an extensive evaluation in §6 to
demonstrate the power and practicality of our approach. We follow-
up with a discussion of limitations in §7 and conclude in §8.

2. BACKGROUND AND RELATED WORK
The key to understanding our work’s motivation and design lies

in the complex history of low-level defenses and the attacks war-
ranting them. For brevity, we assume that the reader is already
familiar with a typical code injection attack, where a snippet of
malicious code is written directly into memory, and non-executable
memory (NX), which prevents such attacks by rendering executable
memory unwritable. Instead, we begin by discussing Address Space
Layout Randomization–a defense that arose to counter code reuse
attacks, which invoke existing benign code in order to carry out
malicious activity.

Address-Space Layout Randomization: The concept of address-
space layout randomization dates back to Forrest et al. [16], but
most implementations in current use such as PaX [38] only ran-
domize the starting address of large chunks of contiguous memory
(often referred to as regions). Unfortunately, these implementations
suffer from several serious problems. First, ASLR is susceptible to
brute force attacks on 32-bit systems, as the entropy of possible re-
gion locations is small [25, 31]. As alluded to earlier, adversaries
can also actively take advantage of in-built scripting of applications
to defeat this coarse-grained randomization via memory disclosure
attacks [29, 35]. In short, one leverages the disclosure vulnerability
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Figure 1: An adversary first requests that code is disclosed to gen-
erate a ROP payload on-the-fly (step ¶), then redirects program
control-flow to execute the gadgets of the payload (step ·).

to reveal the value of a function pointer in a program data section,
such as a function callback address on the heap or a return address
on the stack. Additionally, one must precompute the offset from
the leaked function pointer to necessary ROP gadgets in an offline
analysis step. Combining this offset information with the leaked
function pointer allows the adversary’s script to adjust a predefined
ROP payload by adding the offset to each gadget pointer in their
payload. Fundamentally, leaking the value of a single code pointer
in the data section provides enough information for one to infer the
location of ROP gadgets.

Fine-grained randomization, on the other hand, seeks to limit or
completely prevent the adversary’s ability to infer the location of
ROP gadgets given known code pointers. Many fine-grained ASLR
approaches have been proposed [26, 21, 41, 18]. The idea underly-
ing all of these works is to not only randomize the memory region
locations, but also to shuffle functions, basic blocks, instructions,
registers or even the overall structure of code and data. While each
instantiation of fine-grained randomization may carry out different
subsets of these actions, all implementations achieve their goal of
enforcing a policy to prevent the adversary from simply calculat-
ing ROP gadget locations using offsets from a single leaked code
pointer. Unfortunately, this policy was shortly thereafter shown to
be insufficient in preventing all types of code reuse.

Just-in-Time Code Reuse Attacks: Snow et al. [34] demon-
strated a new attack paradigm in which the attacker doesn’t only
leak the location of code, but also the code itself. Figure 1 gives
a high-level overview of this type of attack. In step ¶, a memory
disclosure vulnerability is first invoked to obtain a code pointer in a
similar manner to attacks bypassing coarse-grained randomization.
The major change in the behavior of just-in-time code reuse attacks
comes in what follows–rather than attempting to infer locations of
ROP gadgets, the attack recursively reads and disassembles code
pages in order to find both potential ROP gadgets and references to
further code pages. In step · of Figure 1, the attack combines dis-
covered gadgets into a new ROP payload and executes this payload
in order to carry out the malicious behavior requested by the at-
tacker. This attack is fundamentally enabled by the attacker’s abil-
ity to read actual code in addition to code pointers, so a knee-jerk
reaction is to design a method for making code regions executable
but not readable, preventing the disclosure in step ¶.

Execute-only Memory: Along these lines, a number of defenses
have been proposed to prevent the disclosure step of the just-in-time
code reuse attack by inhibiting step ¶. Two general approaches
have been explored: either inhibit the ability to recursively dis-
cover additional code pages or prevent the reading of code entirely.
Backes and Nürnberger [3] presented an example of the former,
which eliminates pointers in code to additional executable pages.
This is accomplished by forcing all code-to-code references to go
through an additional translation step, where offsets are stored in a
table unavailable to the attacker. This approach has several draw-
backs, however. First, it requires access to source code in order to



achieve the necessary transformations. Second, it requires use of
the x86 segment registers, which are not only being phased out in
x86-64 hardware, but also are already in use in Microsoft Windows
for several other essential operations. Finally, the greatest weak-
ness of the work proposed by Backes and Nürnberger [3] is the fact
that it fails to account for multiple code pointers in non-executable
memory, such as return addresses on the stack or function pointers
on the heap. Davi et al. [13] demonstrated that such code pointers
on the stack and heap are sufficient for constructing a just-in-time
code reuse payload, even if code pointers in executable memory
are ignored. Davi et al. [13] proposed a strategy to account for this
weakness which relies on code-path randomization, but this also re-
quires the existence of secret data regions, which is not necessarily
feasible in practice.

Backes et al. [4] attempt a different approach, called XnR, which
directly blocks reading from executable memory, even assuming
the adversary knows the locations of code pages. They note that
x86 and ARM architectures do not provide hardware support for
execute-only memory, so their solution attempts to emulate execute-
only memory in software. They do so by blocking all accesses to
executable regions of memory, so that any access will cause a page
fault in the kernel. Within the page fault handler, a process is ter-
minated if the access is due to a read, or allowed if the access is
due to execution. In order to improve performance, XnR can be
configured to allow a sliding window of several accessible pages at
a time, where, as newer pages are accessed, older pages within the
window are made inaccessible again.

While XnR [4] is interesting in theory, it suffers from a number
of practical weaknesses that are completely overlooked. Intuitively,
multi-threaded applications that make use of many libraries will
necessarily jump between code pages (e.g., when switching threads
or calling APIs) with a higher frequency than the single-threaded,
self-contained, programs used in their evaluation. A much bigger
problem, however, is the failure to directly address applications that
contain data mixed into the code section, which has significant per-
formance and security implications. Mixed code and data occur
for a number of reasons discussed in §5. Rather than attempting
to eliminate this challenge, XnR increments a counter for each first
instance of a code page read while decrementing on execution. The
application is terminated if some threshold is reached, presumably
indicating that too many code page reads have occurred. Not only
do the authors fail to provide a threshold value, but this thresh-
olding is ill-conceived. We further elaborate on these problems in
section §3 with a systematic evaluation of the effectiveness of the
approach proposed by Backes et al. [4].

Gionta et al. [17] present another implementation of execute-
only memory, but, unlike Backes et al. [4], dedicate significant
effort to dealing with readable data in code sections. This ap-
proach requires making use of symbol information and disassembly
to identify data in code sections prior to runtime. During runtime,
execute-only memory is achieved by placing all data and all code
in separate caches for executable and data memory. Unfortunately,
many modern processors no longer have separate code and data
caches, making this approach impractical. Additionally, the nec-
essary static analysis can not always identify all possible pieces of
data in an executable, potentially requiring manual identification of
code and data for complex closed source binaries.

In Readactor, Crane et al. [12] also make use of execute-only
memory, but guarantee code and data separation by instrumenting
the LLVM compiler to emit code-only and data-only sections. En-
forcement logic is therefore greatly simplified, as any read from
a code section can be treated as malicious. Readactor makes use
of Intel’s Extended Page Tables (EPT) for hardware enforcement

of execute-only memory. Being a compiler modification, however,
means that this work requires access to source code and can not
support legacy closed-source software.

Brookes et al. [8] also provide execute-only memory support, but
has a slightly differing objective of protecting kernel code pages,
and therefore would not prevent userspace just-in-time code reuse
attacks. Like Readactor, ExOShim [8] makes use of Intel’s Ex-
tended Page Tables to support execute-only memory.

Widespread Adoption Criteria: Despite decades of research
into application defenses and a torrent of proposed approaches,
only a handful of techniques have ever been widely adopted. Szek-
eres et al. [36] examine the criteria for widespread adoption and
find three main factors affecting the outcome: (1) protection, (2)
cost and (3) compatibility. Thus, we align our design and imple-
mentation with these factors. Specifically, we aim to enforce a
strong protection policy that prevents control-flow hijacking with
the combination of DEP, fine-grained ASLR and NEAR. Our de-
sign ensures that acceptable performance overhead is achievable.
We also impose a requirement of binary compatibility with modu-
larity support, as Szekeres et al. [36] note that defenses requiring
source code, recompilation, or human intervention are impractical,
unscalable and too costly. We note that no prior work meets all
these criteria. Oxymoron [3] and XnR [4] do not strongly enforce
the execute ⊕ read security policy, while the approach of Gionta
et al. [17] requires human intervention for closed-source software
and Readactor [12] requires source code and recompilation.

3. ON THE INEFFECTIVENESS OF XnR
To highlight the fundamental limitations of the XnR approach,

we now present a detailed performance and security analysis of the
approach described by Backes et al. [4]. To perform that analysis,
we implemented a Windows kernel module following the guide-
lines given in the paper (as well as those observed in the Linux
kernel patch made available by the authors); unfortunately, even
after repeated requests, we were not able to obtain their Windows
implementation. Our implementation includes support for 32-bit
Windows because the just-in-time code reuse attacks presented by
Snow et al. [34] targeted this platform.

3.1 On Performance
First, we revisit the performance analysis using the same CPU

SPEC 2006 [20] benchmark programs listed in Figure 6 of the XnR
paper [4]. The results of our tests are shown in Table 1.

The performance overhead that we observed for bzip2, mcf,
hmmer and astar benchmarks is similar to the results presented
by Backes et al. [4]. However, two of the benchmarks, namely
sjeng and h264ref, incur a significantly higher performance
penalty for the recommended window size of n = 8. Some indi-
cation that these programs cause higher overhead is depicted in the
original paper (i.e., sjeng induces a 25% overhead at n = 2), but
no details are given. We observed that the page faults caused by
the data reads induced significantly higher overhead than the faults
caused by code execution.

To help the reader better understand the cause of the increase
in overhead, we present the distribution of page faults observed
in a 20 second time frame after starting the benchmark. The re-
sults are shown as a heat-map in Figure 2 for a window size of
n = 8. Each dot represents an access to the specific page outside
of the “sliding window” that resulted in a page fault. The darker the
color, the more page faults that were induced. Notice that there are
clearly more than 8 frequently accessed pages active within a small
window of time. The dark horizontal bands in Figure 2 represent
the page faults on the pages that are rapidly evicted and added to



CPU SPEC
Benchmark

XnR
off

XnR-32
(n = 8) Overhead Execute

Faults/s
Read

Faults/s
bzip2 466 449 0.5% 325 101
mcf 247 249 1.1% 15898 26

astar 322 328 1.7% 16096 305
hmmer 591 605 2.7% 72302 1937

h264ref 524 1187 126.5% 876872 24964
sjeng 506 3166 526.5% 16548 196164

Table 1: CPU SPEC 2006 benchmark results

Figure 2: Fault distribution. Gaps in page numbers are due to the
specific mapping of modules (e.g., h264ref vs ntdll).

the “sliding window” in every epoch. The presence of those bands
demonstrates that the “sliding window” approach based on the code
locality assumption is only valid for a small set of applications
whose main code path fits completely within the “sliding window.”
In Figure 2, the code pages in the 0x00A60 − 0x00EBB range
belong to the h264ref application, whereas pages in the range of
0x756A5 − 0x7769A belong to system libraries (ntdll.dll,
kernelbase.dll) used by h264ref.

The observant reader would notice that read faults seem to incur
a higher penalty that execute faults in Table 1. To better understand
why the read faults cause higher performance overhead we per-
formed a static analysis of the sjeng benchmark. We found that
some of the jump tables being read by these programs are not lo-
cated within the page containing the instructions referring to them.
Examining the number of mis-predicted branches, we surmise that
the high cost of read faults stem from the processor instruction
pipeline flushes.1 In short, these findings indicate that code locality
plays a tremendous role in the performance of XnR.

1To arrive at this finding we used the
MIS-PREDICTED-BRANCHES counter available using the
Intel Vtune Amplifier toolkit. [24]

3.2 On Security
Recall that from a security perspective, the heuristic of Backes

et al. [4] (that allows code pages to be read, as long as the number of
read operations does not exceed some unspecified threshold) claims
to defeat just-in-time code reuse attacks. To assess this claim, we
experimentally determined the threshold value for running Internet
Explorer 10 and navigating to www.google.com. In this case,
n is set to 8, as this is the smallest window size where the applica-
tion correctly operates, and no threshold is chosen. The maximum
value observed is then selected as the threshold needed by XnR.
Our analysis (shown as the blue line in Figure 3) reveals that the
counter quickly peaks to 2487, meaning that there are 2487 consec-
utive read operations from distinct pages made by a short section of
code reading the imports and export directories for various libraries
used by IE. The counter value fluctuates as instructions on accessed
pages are read or executed. Deeper inspection revealed that the
number of execute operations that decrease the counter value is on
average 5.9 times higher than read operations. Per the methodology
suggested by Backes et al. [4], we set the threshold value of 2487
for the window size n = 8 for the subsequent security analyses.

In accordance with Backes et al. [4], the idea is that if the thresh-
old value is exceeded during a just-in-time code reuse attack, XnR
will terminate the process and thwart the attack. To test this as-
sertion, we recreated the just-in-time code reuse attack described
by Snow et al. [34] by leveraging a memory disclosure vulnerabil-
ity (CVE-2013-2551) in Internet Explorer 10 on Windows 8. The
attack first sprays the heap with objects, then sets the length of
an array within one of those objects to the maximum 32-bit inte-
ger (the vulnerability lies in the fact that one can set an arbitrary
length for this array), thus enabling one to disclose memory at any
address by indexing into the array. We read just past the array’s
original boundary—into data representing the subsequent object—
to obtain a virtual table (vtable) address. The initial code pointer
is disclosed from the vtable contents to initialize the memory map-
ping step described by Snow et al. [34]. The first page of code
is read byte by byte, additional code pointers are identified from
a disassembly of that page, and this process is recursively applied
until no new pages are identified. The attack successfully discloses
599 pages, constructs the code reuse payload (which simply exe-
cutes the Windows calculator) and transfers execution to the pay-
load without ever approaching this threshold.

Figure 3: JIT-ROP memory disclosure over time;n = 8. Best
viewed in color. Benign application (blue), JIT-ROP attack (red).



The red line in Figure 3 shows the counter as the attack proceeds.
The number of pages disclosed by the attack is also depicted on
that graph. The first spike in the counter is similar to that observed
when simply visiting www.google.com, while the second oc-
curs during an early stage of the attack where the heap is manipu-
lated. The counter never substantially increments during the attack
due to the fact that there exists a code path consisting of more than
8 pages that is executed between subsequent disclosures of each
byte. That is, while the counter increments once for each byte dis-
closed, it also decrements one or more times while executing code
in-between those disclosures.

Figure 4: JIT-ROP attack that includes the execution of nop in-
structions per byte read during the attack. Best viewed in color.

Notice that even in this simplistic case with one benign appli-
cation (IE), there is no threshold value that could be set to thwart
the attack without incurring false positives with IE. Just visiting
www.youtube.com, for example, the counter would need to be
set to 4953 at n = 8. We experimented with a number of sliding
window sizes, but found no threshold value that could be set for n
up to 5000 that would thwart just-in-time code reuse.

Lastly, we modified the original JIT-ROP attack to additionally
execute a series of nop instructions after every byte read. To focus
in on just the read operations, we set n to 2500; which is the first
value at which the movement of the counter mirrors the read faults.
The results are shown in Figure 4. The shaded region shows that
the counter never surpases the read faults (which directly influence
XnR’s choice of a prescribed threshold value) because the execu-
tion of the nop instructions (green dotted lines) force the counter to
decrease. The number of nop instructions executed can be arbitrar-
ily set, thereby making it impossible to set an appropriate threshold
that would not result in exceedingly high false positives, even for
simple benign applications. Consequently, we argue that XnR of-
fers little, if any, protection against just-in-time code reuse attacks.

4. GOALS AND ASSUMPTIONS
We now turn our attention to the overall goals and assumptions

we impose on our approach. We deliberately attempt to align our
goals with the criteria set forth by Szekeres et al. [36] and, in do-
ing so, ensure our approach is practical for widespread adoption.
Specifically, we design NEAR to have:

• Strong Security Policy: NEAR’s security policy should pre-
vent all control-flow hijacking attacks that result in arbitrary
code execution.

• Strong Security Policy Enforcement: Our approach should
guarantee this security policy by using DEP to prevent code

injection, fine-grained randomization to prevent code reuse,
and NEAR to prevent just-in-time code reuse. Note that NEAR
does not prevent code disclosure, but rather prevents the arbi-
trary code execution that occurs when the adversary attempts
to execute their gadgets.

• Binary and Module Compatibility: NEAR should protect
closed-source commercial off-the-shelf (COTS) binaries with-
out the need for symbols or other debug information. Further,
complex multi-threaded applications using shared libraries,
such as web browsers and document readers should be fully
supported. JIT-ROP operates on such applications, and so
must we.

• No Human Intervention: NEAR should not require human
intervention at any step. Once deployed, any application can
be protected without the need for any application-specific
pre-computation or manual analysis.

• Negligible Performance Overhead: NEAR should have an
average performance overhead inline with the recommenda-
tions of Szekeres et al. [36]. Memory overhead should be
negligible as well.

• Application-Wide Protection: The NEAR primitive should
be tunable on a per-application basis such that only user-
specified applications are protected to avoid a system-wide
performance penalty.

We make several necessary assumptions in this work to support
these goals. In particular, we assume the following application-
level defenses are already in place for each protected process:

• Non-Executable Memory: We assume that writable data
sections of application memory, such as the heap and stack,
are non-executable and that executable regions are not writable.
This protection is widely available–called DEP in Windows,
or W⊕X in Linux. Thus, one can neither rewrite existing
code or directly inject new code into a protected application.

• JIT Mitigations: We assume JIT-spraying [6, 27] mitiga-
tions such as JITDefender [11] are in place—that is, one can-
not successfully convince an in-built JIT compiler (JavaScript
for instance) within the vulnerable application to generate
arbitrary malicious logic. Combined with non-executable
memory, this assumption ensures that the adversary does not
have any avenues for directly injecting malicious code.

• Fine-grained ASLR: We assume in-place fine-grained ran-
domization is in use for preventing one from inferring the lo-
cation of gadgets from a leaked code pointer alone. Further-
more, we assume once executable code has been loaded into
memory and randomized using in-place fine-grained ASLR,
it is not unloaded from memory.

On the Necessity of Fine-grained Randomization: We em-
phasize that the assumption of fine-grained randomization is not
unique to our approach. Indeed, all the aforementioned works on
execute ⊕ read [3, 4, 17, 12] implicitly or explicitly rely on a strong
fine-grained randomization implementation. To understand why,
consider that the goal of this line of defenses is to prevent one
from disclosing instructions on code pages. However, without fine-
grained randomization the adversary does not gain any new knowl-
edge from reading the contents of code pages. That is, the use
of coarse-grained randomization, which randomizes module loca-
tions as a single large block of memory, only forces the adversary



to leak the value of a single code pointer from a data region. Gadget
locations can then be computed with a relative offset from the dis-
closed pointer without reading any code page. Thus, any execute
⊕ read defense is moot without a strong fine-grained randomiza-
tion implementation forcing the adversary to disclose code pages.
We note, however, that fine-grained randomization is still an active
area of research orthogonal to our own work and further discuss the
state of this research in §7.

Given that non-executable memory and JIT mitigations are al-
ready widely deployed, and some practical prototype fine-grained
randomization schemes have been described and publicly released [26],
we argue that these assumptions are quite realistic. In turn, we de-
fine the attacker by assuming an adversary with extraordinary (but
achievable) capabilities:

• Repeated Memory Disclosure: We assume the adversary
can leak the value of any address in the vulnerable appli-
cation’s memory. Moreover, one can repeatedly apply this
memory disclosure to reveal an arbitrary number of bytes.
We impose no restrictions on how this memory is disclosed,
e.g. it could be conveyed through in-built scripting (as with
JIT-ROP), leaked over a network service (as with the Heart-
Bleed SSL vulnerability), or through some other means.

• Memory Map Knowledge: We assume the adversary has
a means of learning the overall memory layout of the active
instantiation of the vulnerable application. That is, one can
use the memory disclosure vulnerability without risk of in-
advertently causing a memory access violation when reading
an invalid address.

• Control-Flow Hijacking: We assume that the adversary can
hijack program control-flow, e.g., via overwriting a func-
tion return address, virtual table pointer, function callback
pointer, or some other means. Further, we assume the adver-
sary can use this hijacking to appropriately perform a stack
pivot to attempt to execute any code reuse payload that may
be generated.

Next, we describe our approach to achieving the aforementioned
goals in face of a skilled adversary.

5. OUR APPROACH
As alluded to earlier, merely forbidding read access to program

code regions fails to address the fact that commodity binaries and
libraries contain data embedded within their code sections. In-
deed, ignoring this challenge leads to a false sense of security, as
demonstrated in §3. Thus, we take an approach that allows such
data to be read, but prevents the subsequent execution of any data
read from an executable region. Our memory permission primitive,
coined no-execute-after-read (NEAR), ensures the following prop-
erty: code or data can be executed if and only if it has not been
previously read. As a result, gadgets revealed via memory disclo-
sure cannot be later executed, hence preventing just-in-time code
reuse. Independent from our work, Tang et al. [37] proposed a con-
cept (albeit for the x86 platform only) that shares similar design
principles with ours. We return to a comparison in §6.

While the NEAR principle is simple in theory, a number of chal-
lenges need to be overcome, not the least of which is the seeming
lack of hardware features to support an efficient design. In what
follows, we describe our design and implementation of NEAR to
overcome these challenges and meet the goals set forth in §4.
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Figure 5: Workflow of NEAR enforcing application protection.

5.1 Protected Program Workflow
Prior to detailing specific hardware features beneficial for our

design, we first discuss the overall application workflow we aim to
produce with a NEAR-protected application to convey the overall
strategy. Figure 5 depicts this workflow, wherein a protected appli-
cation both makes use of legitimate intermixed code and data and
is also exploited by a just-in-time code reuse style attack wherein
code is first disclosed, then later executed as a ROP gadget.

Beginning with a legitimate code disclosure, the NEAR primi-
tive is notified that the application is attempting to read byte(s) on
a code page. As we further elaborate on in the next section, this
notification is implemented by forcing a read exception on every
code page read. Our security policy is enforced by replacing the
data read with invalid opcodes. To do so, we allow the read to oc-
cur, then force the CPU to single-step, e.g. via the machine trap
flag feature. Upon regaining control, we read application register
state and disassemble the instruction that performed the read. The
instruction opcode and operands inform our system of the location
and the size of the data read. Then, we save the original data bytes
read (within a kernel data structure) and overwrite those bytes in
application code with invalid opcodes. We call this process the
data-swap. As a result, a later execution of those bytes causes an
invalid opcode exception and the process is terminated, thus pre-
venting the use of leaked code in a code reuse attack.

On the other hand, if those bytes are read again—due to legiti-
mate program data embedded in the program code region, such as a
jump table—we gain control once again through a read exception.
At that point we swap the invalid opcodes with the original data
and once again use the machine trap flag to allow reading the orig-
inal data. Data-swapping allows us to gracefully handle legitimate
embedded data in commodity applications. This does not compro-
mise security because no code byte that is read at any point dur-
ing process execution can later be executed and used in an attack.
However, our approach introduces performance overhead associ-
ated with data reads in the code section. Indeed, each byte, word
or double word of data that is read leads to costly read exceptions
at run time. We examine the cost of data-swaps in Section 6, but
now turn our attention to techniques for implementing code read
exceptions on commodity hardware.

5.2 Code Read Notification
The goal of this step is to provide a mechanism in which our

system is notified each time a code page is read. This presents
a challenge, as the memory management units available with x86
and x86-64 CPUs do not provide permissions at this granularity.
That is, any memory page marked as executable is required to also



be readable. Past approaches have proposed marking pages as
completely inaccessible to receive kernel-mode faults when code
is read (as in the work of Backes et al. [4]). Unfortunately, that ap-
proach requires that at least one page, the currently executing page,
is available for both execute and read. In practice, more than one
page must be made available to remain performant. Further, we
seek an approach that does not leave any code accessible to the ad-
versary whatsoever, much less an entire page of code. In what fol-
lows, we describe several techniques for implementing code read
notification on x86, x86-64, and ARM architectures.

5.2.1 Enforcing NEAR on x86
On this architecture, we take advantage of the fact that read,

write, and execute permissions can be individually applied using
the dedicated virtual machine extension called Extended Page Ta-
bles (EPT) [22]. EPT maps physical memory pages for hardware
virtualized guest virtual machines (VMs).2 Thus, this approach ap-
plies to hardware virtualized VMs, but non-virtualized systems can
also leverage EPT by starting a thin hypervisor and transparently
virtualizing the running system as the so-called “host domain.”3
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Figure 6: Using Extended Page Tables to implement support for
code read notification on the x86 architecture.

This hypervisor approach, combined with a host-level kernel mod-
ule, marks physical pages representing the code of protected pro-
cesses as execute-only. We identify code regions to protect by
first hooking the kernel’s page fault handler. We use this hook to
observe all page faults and identify code pages as they are made
available to the process. We note faults that move a page from the
not-present state to the present state, have the execute bit set, and
belong to a process we wish to protect. When all these conditions
occur we instruct the hypervisor to protect the given physical page.
We protect the page by marking it as execute-only using EPT.

2EPT is the part of the virtualization extensions VT-x and VT-d
introduced by Intel.
3We note that NEAR is compatibile with the commodity hardware
virtualization that supports nested virtual machines.

One problem with this approach is dealing with shared libraries.
By protecting a shared page in one process, all other processes us-
ing this library would also be protected. Since our goal is to only
protect a subset of processes, we require a solution to this problem.
At first we attempted to allocate a copy of the faulting page and as-
sign it to the protected process. This approach works on Linux (as
a source code modification), but unfortunately the Windows kernel
performs checks within strategic memory management functions
to verify the consistency of pages used. When an inconsistent state
is observed the OS faults and a reboot is required. This path is
therefore infeasible without the ability to modify the closed-source
Windows kernel. When a not-present fault occurs on Windows, we
instead change the fault reason to a write fault and call the system’s
original fault handler. Since shared pages are marked with copy-
on-write (COW), the system fault handler creates a new page copy
on our behalf. In doing so, it also handles all the necessary changes
to ensure a consistent page-mapping state.

Figure 6 gives a high-level overview of how this hypervisor-
based approach is implemented on x86 Windows. We evaluate the
performance of this implementation in §6. While this approach
works in practice, the use of virtualization has performance impli-
cations and overly complicates the seemingly simple task of pro-
viding code read notifications. Fortunately, upcoming hardware
features on the x86-64 architecture offer a more straightforward
path towards this goal. Unlike prior work [37, 4, 12], we show how
our approach can be readily adapted to other architectures.

5.2.2 Enforcing NEAR on x86-64
Upcoming 64-bit Intel processors include a feature called Mem-

ory Protection Keys (MPK) [19], which enables finer-grained con-
trol of memory protections by userspace processes. MPKs are ap-
plied to individual pages of process memory [23]. There are 16
possible keys, and each key supports enabling or disabling writing
and accessing whichever pages it is applied to. As applications are
unable to directly modify page tables, they cannot directly change
which protection keys are applied to which pages. Applications
can, however, modify the meaning of each of the 16 memory pro-
tection keys, by writing to an application-accessible 32-bit regis-
ter, where each key is assigned one bit to enable or disable writing
and another bit to enable or disable reading. Of particular impor-
tance, however, is that if both bits are cleared instruction fetches
are still enabled, making the memory execute-only as long as the
pages would have been otherwise executable. Thus, we anticipate
that moving forward, MPKs provide a simpler and more efficient
mechanism for implementing code read notification than the afore-
mentioned hypervisor approach. Unfortunately, this hardware is
not yet available. Instead, we noted that recent ARM processors in-
clude functionally similar features (for our purposes), and thus we
implement an ARM version of NEAR to both showcase the porta-
bility of our approach and to elaborate on how one could leverage
MPKs in the future.

5.2.3 Enforcing NEAR on ARMv8
The ARMv8-A architecture offers several important benefits over

earlier ARM processors, but most importantly for NEAR, it is the
first version of ARM processors that offers hardware support for
execute-only pages. That is, the memory management unit directly
supports the ability to mark memory as execute-no-read. This means
that NEAR on ARMv8 only requires kernel modifications to en-
able the new protection (that is, no hypervisor is needed). While
ARMv8, announced in 2011, is still a relatively new architecture,
it is the first 64-bit ARM processor and seems likely to see in-
creased usage in the future as mobile devices have increased pro-



cessing requirements and support greater amounts of memory. Sev-
eral devices are already available with ARMv8 processors, includ-
ing Google’s Nexus 9 tablet, which serves as our test platform, and
the newest Apple iPad and iPhone devices.

Also of note is the fact that the ARMv8 MMU is usable regard-
less of whether we build an ARMv7 or ARMv8 version of the ap-
plication. This means that despite ARMv7 and ARMv8 running in
different compatibility modes on ARMv8 [2], applications for both
architectures are still using the same memory management unit and
have access to the same features. Thus, we can provide NEAR pro-
tection for both ARMv7 and ARMv8 applications, so long as the
underlying hardware architecture is ARMv8-A.

In summary, the hardware primitives needed to support NEAR
are highly portable, and support for these primitives appears to be
improving in upcoming hardware revisions. Unfortunately, all of
the primitives for supporting code read notification incur a non-
negligible performance overhead in the form of a context-switch
on each read, either at the kernel-level for x86-64 and ARMv8, or
a virtual machine exit on x86. Therefore, it is imperative that we
minimize the total number of code read notifications. To do so, we
apply binary code analysis techniques to separate as much code as
possible prior to launching an application.

5.3 Separating Mixed Code and Data
The goal of this step is to modify loaded executables on the fly,

eliminating data from the executable regions of an application. We
call this process purification (see Figure 7). This allows us to re-
duce runtime overhead incurred by programs with mixed code and
data protected by NEAR by reducing the total number of code read
notifications. Unfortunately, separating code and data on the x86
architecture is provably undecidable [40]. However, a significant
amount of research (e.g. the work of Wartell et al. [40] and Shin
et al. [32]) has been devoted to applying different mechanisms for
correctly disassembling x86 binaries.

Purified Process

New Process
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Mixed Code
and Data

Bytes of Code

Bytes of Data

Separate on load
via kernel module

Figure 7: On-the-fly separation of code and data.

Mixed Code and Data: To highlight the problem of mixed code
and data we examine two x86 Windows binaries and one ARM
Android native library:

1. cryptbase.dll - A windows library providing crypto-
graphic primitives to applications.

2. h264ref.exe - A benchmark derived from a reference im-
plementation of H.264/AVC (Advanced Video Coding) (part
of CPU SPEC2006).

3. libmozglue.so - The native library used to implement
the vast majority of Firefox’s functionality on Android.

The cryptbase.dll library provides various interfaces to DES
and AES encryption routines. The library imports 52 symbols and

exports 12 symbols. The executable region is 30882 bytes and
contains 340 ROP gadgets.4 A static analysis of the binary pro-
vides another interesting insight: the code region contains signifi-
cant amounts of data. Indeed, 45% of the code region is composed
of data—namely, the import address table, import table, export ta-
ble and constant variables. The biggest contributor to data in the
code region are constant S-Boxes used in the encryption routines.

The second binary, h264ref.exe, used in the SPEC2006 bench-
mark suite, is built on-demand on the benchmarked machine using
SPEC’s default Visual Studio compilation parameters. The binary
is statically linked and does not contain any initialized data in its
code region; it imports functions only from the NTDLL base sys-
tem library. Despite that, enabling NEAR protection for this par-
ticular benchmark results in a significant performance overhead for
the non-purified binary. The performance degradation is due to two
jump tables located within the code region.

The last binary, libmozglue.so, serves to demonstrate that
the problem of mixed code and data is not limited to the x86 archi-
tecture, or the Windows platform. On Android, for example, 8 of
the 10 most popular applications make use of native libraries that
contain data mixed into the library’s code regions. Listing 1 high-
lights one example of this in the Firefox native library for ARM.

Listing 1: Native assembly code from Firefox for Android:

0001 baa4 < a l l o c _ s e t _ o o m _ a b o r t _ h a n d l e r > :
; Read a v a l u e r e l a t i v e t o c u r r e n t PC.
1 baa4 : 4b01 l d r r3 , [ pc , #4]
1 baa6 : 447b add r3 , pc
1 baa8 : 6018 s t r r0 , [ r3 , #0]
; R e t u r n s from t h e f u n c t i o n
1 baaa : 4770 bx l r
; Value t o be read a f t e r r e t u r n .
1 baac : .word 0 x0003461e

Data Separation: We opted for a solution based on binary dis-
assembly with additional guidance from metadata available in ex-
ecutable file headers. We implemented these techniques for x86
Portable Executable (PE) executables and libraries. In short, we
identify and relocate function Exports and Imports, jump tables,
and local function data that is often embedded in code directly ad-
jacent to the function code (as highlighted by the preceding exam-
ples). The Exports directory contains the information about the ex-
ported symbols of an image. This data is accessed when a process
loads a library and populates the Import Address Table and when
a process is dynamically loading a library and looking up a spe-
cific symbol (for example using LoadLibrary(), GetProcAddress).
The imports directory contains information about dependencies on
external libraries. This data is used during the process load to pop-
ulate the Import Address Table. The Import Address Table popu-
lated during the image load contains pointers to external functions
imported from other dynamically linked libraries. The import ad-
dress table is accessed during the process runtime every time an
imported function is called.

Purification of the above mentioned structures depends on the
known addresses of the data structures, which is stored in the binary
image header. After the relocation of the Export and Import direc-
tories and the Import Address Table is complete, the PE header is

4Gadgets determined by the ROPShell tool avail-
able at http://www.ropshell.com/ropsearch?h=
e97b4515fc3846cb5c6853c40e71ef28
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Figure 8: We identify function local variables by performing a
backwards disassembly from function entry points (identified via
recursive disassembly) until a control-flow instruction is reached.

updated to reflect the added sections and relocated data structures.
Details of that process are further discussed in the next section.

Identification of jump tables proved to be more challenging. Jump
tables contain the code pointers used to represent C-switch instruc-
tions. After inspecting a variety of applications, we observed that
the array of pointers generated for a switch statement is usually ac-
cessed using the assembly construct of jmp [base + offset

* size_of_word]. Jump targets located in the jump table are
located in the code section to improve the instruction and data fetch
locality. Our jump table search algorithm first scans the code sec-
tion for clusters of two or more consecutive pointers to the analyzed
code section. Those clusters are deemed “candidates.” To verify the
jump table “candidates” the code section is re-scanned in search for
jmp instructions referencing the pointer cluster. Verified jump ta-
bles are relocated to a new, read-only section and the address used
by the jmp instruction is adjusted to reflect the new location of the
jump table.

Finally, we identify function-local data by performing a recur-
sive disassembly of the entire binary. First, we identify gaps be-
tween known function code. Then, we identify references to data
within these gaps and perform a backwards disassembly up to the
first possible control-flow instruction (as in Figure 8), with the idea
being that valid code preceding the identified data must invoke a
control-flow instruction prior to valid data. We label all bytes be-
tween the control-flow instruction and the data reference as data.
To relocate the data, we move it to a non-executable section and
update any pre-existing references to it to point to that new region.
Missing references to the data does not cause program errors, as
it is still available for the program to read (but not execute) in its
original location; any missed references will incur the performance
penalty imbued by the code read notification operation.

We note that our code and data separation heuristics are by no
means perfect. Thankfully, perfection is not required as imperfect
separation has no bearing on the security of NEAR. Moreover, as
we show in §6 our heuristics prove to be quite practical for meeting
our performance and compatibility goals.

5.4 Platform Integration
To demonstrate the portability and practicality of NEAR on com-

modity systems, we implemented prototypes on Windows, Linux
and Android for x86 and ARMv8. In what follows we detail the en-
gineering of NEAR on each platform to ensure that future research
efforts can reproduce our results.

5.4.1 Windows Prototype on x86
This prototype implementation operates on 32-bit Microsoft Win-

dows 7, although nothing prohibits the overall approach from func-
tioning on other platforms, e.g. Linux or with a 64-bit architecture.
For simplicity, NEAR is implemented with two Windows kernel
modules—the hypervisor module and the purification module. The
hypervisor module implements a thin hypervisor that supports run-
ning the host as a “host domain,” as described in §5.2. In addition to
providing the hypervisor functionality, this module also hooks the
system fault handler by installing a JMP hook at the MmAccess-
Fault function entry. The Capstone library5 provides kernel-mode
disassembly which we used to determine the operand size of code
read operations. Protected processes are configured via a Registry
key entry specifying executable names to protect and, when started,
are tracked at runtime via their process ID. The hypervisor module
is composed of 2824 lines of new kernel-level C code.

The purification module handles all separation of mixed code
and data as described in §5.3. As previously alluded to, we im-
plemented purification as a kernel module in order to provide this
functionality on-the-fly as processes and shared libraries are loaded.
This on-load functionality is essential to its practicality, as manu-
ally purifying each binary and library offline (as done in Heisen-
byte [37]) is prohibitive, due to possible human errors and sheer
volume of binaries requiring purification. This module triggers its
code purification routine using hooks on ZwCreateFile, ZwOpen-
File, ZwCreateSection, ZwOpenSection and ZwMapViewOfSection
system calls. The hooks are installed by replacing their entries in
the System Service Descriptor Table (SSDT). NTDLL is purified
early in the boot process by hooking PspLocateSystemDll with a
JMP instruction at function entry. To do so, we replace the given lo-
cation string with a path leading to our purified version of NTDLL.
Finally, since the Windows kernel verifies integrity of loaded li-
braries, we temporarily disable these checks when loading a puri-
fied library by toggling the g_CiEnabled kernel variable. The pu-
rification module consists of 2500 lines of new kernel-level C code.

5.4.2 Android and Linux Prototype on ARM
To implement code read notifications on ARMv8-A we patched

the Linux and Android (for Nexus 9) kernels to make use of the
execute-only permission. To do so, we defined the execute-no-read
permission bits in pgtable.h. Next, we inserted a call to our own
code into do_page_fault in fault.c. We handle page faults only
when they are due to an attempted read of an execute-only region
of memory; all other cases are handled as before by the kernel. We
also inserted our own code into single_step_handler in de-
bug_monitors.h and do_mmap_pgoff in mmap.c to, respectively,
handle single step faults and to apply execute-only permissions to
executable sections of files as they are being loaded into memory.
Our changes to the kernel consist of about 1000 lines of code.

The high-level procedure for handling a page fault in the NEAR-
enabled ARM Android kernel is similar to the procedure used in
our x86 Windows prototype–we restore the original copy of a page’s
data (or make a copy for a given page if we have not previously)
and set the page’s memory permissions to allow it to be read. Next,
we set the userspace process to single step and return from the page
fault. After the read completes, we catch the single step fault, re-
store the page’s execute-only protection, and replace the data being
read with invalid opcodes.

One area in which our ARMv8 prototype differs from our x86
version is that, for some simple instructions, we may choose to
emulate the read operation directly in the page fault handler. This

5Available at http://www.capstone-engine.org/



improves performance of the emulated instructions because we no
longer need to enable reading, single step, and restore execute-only
permissions in order to perform a single read from memory, as all
of these are relatively complex operations. The ARMv8 architec-
ture is more conducive to the addition of basic emulation than x86
because instructions are fixed width and located at aligned offsets
in memory. Additionally, the ARM architecture has a relatively
limited set of instructions that are used to read from memory (gen-
erally grouped under the LDR assembler mnemonic). In our page
fault handler, therefore, we read the instruction responsible for the
faulting read and check it against a set of bitmasks to determine
if it can be emulated. Simpler instructions, such as a single read
from an unsigned PC-relative immediate offset, only require copy-
ing the data from the faulting address into a given register, which
can be quickly determined by examining bits in the instruction.
One convenient aspect of our approach is that we can leave more
complicated instructions to be handled by the default single-step
approach, rather than risk emulation mistakes or potential perfor-
mance degradation in cases where emulation may be slower than
single-stepping.

6. EVALUATION
For the experiments that follow, we evaluated our approach using

a 32-bit version of Windows 7 Professional on a Dell Optiplex 990
powered by an Intel Core i7 CPU running at 3.4 GHz with 4GB of
RAM. The system was configured to use only one physical core.

Recall that our goal is to provide a security guarantee wherein
previously disclosed executable memory can not be executed. To
test that the desired functionality was achieved, we implemented
a naïve application that first reads memory from a location leaked
via a memory disclosure and then attempts to directly invoke the
function whose pointer was previously disclosed. Since the NEAR
protection replaces the disclosed code with an invalid opcode (i.e.,
HLT instruction), the operating system terminates the process rais-
ing the General Protection Fault (GPF) as soon as the control is
transferred. Next, to further evaluate our ability to thwart advanced
memory disclosure attacks, we also applied the same JIT-ROP style
attack described in §3 that defeats XnR. In this case, Internet Ex-
plorer 10 and its prerequisite DLLs were protected using NEAR.
The attack fails as soon as JIT-ROP [34] enters step · of Figure 1.

The purification process separates different types of data embed-
ded in the executable sections of programs. To gauge the impact
that moving the different classes of data regions had on our run-
time performance we re-examined all the CPU-SPEC 2006 bench-
mark programs. Curiously, we found that Imports and Exports di-
rectories and Import Address Tables were not present in the exe-
cutable sections of these programs. This is because the C compiler
provided with Microsoft Visual Studio 2013 places the aforemen-
tioned objects in a read-only section. Additionally, to our surprise,
we observed no initialized data embedded in the text section of the
benchmark binaries (unlike some of the real-world libraries (e.g.,
the cryptbase.dll and libmozglue.so examples in §5)).
Jump tables, on the other hand, were prevalent, and their movement
had a significant impact on our runtime performance.

Table 2 shows the number of jump tables that were found and pu-
rified by our discovery algorithm (see §5.3), their size in bytes, and
the number of EPT faults triggered by a purified versus non-purified
binary. The reason for the significant amount of faults triggered by
h264ref benchmark was explained in section §5.3. Notice that
for the sjeng benchmark the amount of EPT faults was reduced
by six orders of magnitude—which directly translates into a reduc-
tion in runtime overhead from 4084.7% to 1.10%.

Benchmark EPT faults
pre-purify

EPT faults
post-purify

Jump
tables

Purified
bytes

400.perlbench 1.7B 164,495 183 12651
401.bzip2 2.5M 136,623 18 544

403.gcc 600M 2.3M 1067 73927
429.mcf 175,562 2376 14 320

445.gobmk 1.1M 127,343 51 2770
456.hmmer 2.5M 1.6M 28 1012

458.sjeng 1.6B 2405 31 948
464.h264ref 317M 25M 33 828

471.omnetpp 2.2M 100,349 38 1285
473.astar 689,231 322,440 15 376

483.xalancbmk 1.7B 3.3M 146 5437
IE v10 16.6M 5.9M 1926 106679

Table 2: Impact of purification on the selected programs.

CPU SPEC
benchmark

Heisenbyte
(enforcement)

NEAR
(enforcement)

400.perlbench 61.57% 3.04%
401.bzip2 0.0% 1.21%

403.gcc 35.64% 19.88%
429.mcf 19.26% 4.04%

445.gobmk 0.85% 0.99%
456.hmmer 6.86% 1.81%

458.sjeng 1.06% 1.10%
464.h264ref 0.23% 7.63%

471.omnetpp 11.44% 2.32%
473.astar 5.41% 2.13%

483.xalancbmk 36.15% 5.51%
Average: 16.48% 5.72%

Table 3: Performance overhead on x86.

Table 3 provides a performance comparison to the concurrent
work reported by Tang et al. [37]. Our performance is significantly
better than that of Heisenbyte, which we attribute to our efforts
to better understand the intricacies of code and data intermingling,
and take action to rectify that impact whenever possible. Our over-
head ranges from 0.99% (for 445.gobmk) to 19.88% (gcc).

To provide the reader with a better feel for the overhead of NEAR
on real-world applications, we used an online browser benchmark-
ing tool known as Peacekeeper. The Peacekeeper bench-
mark measures the performance of several aspects of a browser, in-
cluding how quickly it renders HTML5 video, how well it performs
3D rendering, the speed of commonly used text parsing operations,
and the time it takes to navigate to dynamically generated pages. In
short, its tests measure the browser’s ability to render and modify
specific elements used in typical web pages, and does so by manip-
ulating the DOM tree in real-time6. The results in Table 4 shows
that our overhead (of 4.7%, on average) is barely noticeable on x86
for common browser-related tasks.

Peacekeeper
Benchmark Baseline NEAR

Enforcement % overhead

Internet Explorer 10 2133 2020 5.2%
Google Chrome

v45.0.2454 3963 3788 4.4%

Mozilla Firefox
v41.0.11 4719 4285 4.6%

Table 4: Browser performance benchmark results

6See http://peacekeeper.futuremark.com/faq.action for more info.



Lastly, our empirical results in Table 5 show that NEAR incurs a
modest memory overhead for protected processes. Recall that each
executable page of a protected process must have a read-only copy
created when the page is first rolled into memory. In the set of
tested applications, we observed between 100 and 500 additional
pages of memory created per process, which is insignificant when
observed in the context of the size of the working set of these pro-
cesses (i.e., from 60 to 933 megabytes).

CPU SPEC
benchmark Total memory (kB) Allocated

due to NEAR (kB)
400.perlbench 594,944 1352 (0.22%)

401.bzip2 876,544 448 (0.05%)
403.gcc 954,368 1828 (0.19%)
429.mcf 864,256 424 (0.04%)

445.gobmk 29,696 1072 (3.6%)
456.hmmer 61,440 596 (0.97%)

458.sjeng 184,320 488 (0.26%)
464.h264ref 69,632 764 (1.09%)

471.omnetpp 124,928 1108 (0.88%)
473.astar 320,512 520 (0.16%)

483.xalancbmk 348,160 1628 (0.46%)
Table 5: Memory overhead

7. LIMITATIONS
Our proof-of-concept does not support writable pages and so

does not presently offer protection for self modifying programs.
That said, we expect that the protection model offered by NEAR
may be extended to allow for writable code pages without chang-
ing the invariant that code cannot be executed after it was read.

Similar to XnR [4] and Heisenbyte [37], NEAR does not pre-
vent indirect memory disclosure attacks such as return to libc [14]
or COOP [28]. Protection against such attacks could be introduced
with a significant performance impact using binary instrumentation
to rewrite all the code pointers on the stack and the heap. However,
NEAR offers an indirect protection against Blind ROP attacks [5].
The threat model of Blind ROP attack is different than JIT-ROP
(i.e., multiple disclosures crashing the process vs multiple disclo-
sures without crashing a process). An adversary could potentially
discover a useful ROP gadget, but attempts to execute the gadget
would be thwarted by fine grained ASLR. That said, if the assump-
tion in §4 about unloading and reloading of code from memory is
violated, then both Heisenbyte and NEAR are subject to the code-
inference attacks proposed recently by Snow et al. [33].

While NEAR delivers a solution to address the issue of mixed
code and data, more research and engineering effort could be di-
rected at the process of generating binaries. Previously, Backes
et al. [4] suggested modifying the Linux linker to remove the non-
executable header from executable section, while Crane et al. [12]
proposed modifying the LLVM compiler to change the code emit-
ted for jump tables. If such modifications are available, then our
protection mechanism could be simplified even further.

8. CONCLUSION
We present a novel technique that prevents the execution of pre-

viously disclosed code. Our approach, dubbed No-Execute-After-
Read (NEAR) thwarts a dominant class of attacks that rely on mem-
ory disclosures to disassemble code in memory in order to build a
code-reuse attack [34]. We showed how using existing hardware
primitives for x86 processors—as well as hardware support for
ARMv8 memory permissions and recently introduced Intel Mem-

ory Protection Keys—NEAR can meet the three main factors that
limit the wide spread adoption of security technologies [36]. Our
protection is based on a strong security foundation, and our run-
time overhead is comparable to, or better than, contemporary ap-
proaches that also aim to thwart memory disclosure attacks.

9. CODE AVAILABILITY
To enable reproducibility of our results, and to encourage further

research in this area, the thin hypervisor we developed for this work
is available under an open source license at github.com/uncseclab
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APPENDIX
A. BENCHMARK CONFIGURATION

We compiled the CPU SPEC2006 benchmark programs with the
Microsoft Visual Studio 2013 C/C++ compiler using the default
compiler and linker options listed in the benchmark suite. To allow
for direct comparisons with prior work, we used the “base” config-
uration which is an unoptimized variant. For our empirical evalua-
tions, we ran three iterations of all the eleven benchmark programs
and measured the average execution time. Since we also need to
report performance results for the “purified” version of the bench-
mark programs, we disabled the integrity check for the binaries by
setting the configuration switch check_md5 to zero.


