
Defeating Zombie Gadgets by
Re-randomizing Code Upon Disclosure

Micah Morton,1 Hyungjoon Koo,2 Forrest Li,1 Kevin Z. Snow,3

Michalis Polychronakis,2 and Fabian Monrose1

1 University of North Carolina at Chapel Hill
2 Stony Brook University
3 ZeroPoint Dynamics

Abstract. Over the past few years, return-oriented programming (ROP) attacks
have emerged as a prominent strategy for hijacking control of software. The full
power and flexibility of ROP attacks was recently demonstrated using just-in-
time ROP tactics (JIT-ROP), whereby an adversary repeatedly leverages a mem-
ory disclosure vulnerability to identify useful instruction sequences and compile
them into a functional ROP payload at runtime. Since the advent of just-in-time
code reuse attacks, numerous proposals have surfaced for mitigating them, the
most practical of which involve the re-randomization of code at runtime or the
destruction of gadgets upon their disclosure. Even so, several avenues exist for
performing code inference, which allows JIT-ROP attacks to infer values at spe-
cific code locations without directly reading the memory contents of those bytes.
This is done by reloading code of interest or implicitly determining the state of
randomized code. These so-called “zombie gadgets” completely undermine de-
fenses that rely on destroying code bytes once they are read. To mitigate these
attacks, we present a low-overhead, binary-compatible defense which ensures an
attacker is unable to execute gadgets that were identified through code reloading
or code inference. We have implemented a prototype of the proposed defense for
closed-source Windows binaries, and demonstrate that our approach effectively
prevents zombie gadget attacks with negligible runtime overhead.

Keywords: Code Reuse, JIT-ROP, Code Inference, Destructive Reads

1 Introduction

In recent years, memory corruption attacks have become increasingly sophisticated. For
example, present day exploits on commodity systems must circumvent Address Space
Layout Randomization (ASLR), a widely deployed defense which requires the adver-
sary to use memory disclosure to compute the addresses of useful gadgets in a program
before repurposing them for malicious means. Researchers and practitioners recently
proposed further approaches to harden vulnerable applications against memory disclo-
sure, through focusing on more fine-grained forms of code diversification [26, 31]. In
turn, attackers responded with the development of “just-in-time” ROP (JIT-ROP), a
style of attack that leverages the dynamic scripting capabilities of document renderers
and web browsers to repeatedly disclose memory in order to build exploit payloads at

runtime, all the while making no assumptions about the layout of code and thus circum-
venting fine-grained ASLR [28].

Not willing to be outdone, defenders developed several new mechanisms in order
to stay one step ahead of attackers armed with scripted memory disclosure capabili-
ties. In this vein, proposed compile-time defenses [7, 12] effectively mitigate JIT-ROP
attacks by enforcing code memory to be executable but not readable—eliminating an
attacker’s ability to use memory disclosure to enumerate and read code pages. In an
effort to be more readily deployable to closed-source software, other binary-compatible
defenses have attempted to apply on-demand code randomization [6, 10, 33] or gadget
destruction [30, 32] at runtime in order to protect against JIT-ROP.

Unfortunately, the most promising JIT-ROP defenses either have major hurdles to
overcome in achieving widespread deployability [29], due to their reliance on source
code access and compiler support [7, 12, 13], or have been shown to be vulnerable
to ingenious advancements in JIT-ROP capabilities. In particular, Snow et al. [27]
demonstrated that existing execute-only memory protections applicable at the binary
level based on the concept of destructive code reads [30, 32] can be bypassed using
code reloading, JIT code generation, or implicit code disclosure attacks. As explained
in §4, these clever evasion techniques are made possible through the attacker’s ability
to re-load a given code module multiple times or to deduce the values of certain code
bytes based on values of related instructions. That said, the shortcomings of previous
binary-compatible defenses do not indicate that the task of defending against code reuse
is insurmountable. Rather, in this work we propose further advancements to existing de-
fense paradigms that aptly harden them against these powerful code reloading and code
inference strategies.

In this paper, we identify two concepts as the pillars of any effective JIT-ROP de-
fense that seeks to prevent the execution of disclosed gadgets. We refer to these as the
trigger and countermeasure of a defense, respectively. These terms come from the fact
that part of the defense must be triggered when an attacker has disclosed potentially use-
ful executable bytes in memory, and some subsequent countermeasure must be taken
to ensure those bytes cannot be leveraged by an attacker for hijacking control of the
application. The purpose of this work is to adapt ideas put forth by existing defenses
that implement runtime gadget destruction [30, 32] by making novel extensions to both
the trigger and countermeasure components. At its core, our defense features the ability
to efficiently and robustly re-randomize program instructions in response to their code
bytes being disclosed by an attacker. Specifically, to deal with code reloading attacks,
our approach detects when code modules that could contain fresh usable copies of gad-
gets (that were previously disclosed and destroyed in another instance of that module)
are about to be loaded, and replaces them with new randomized versions. In addition,
to deal with the more sophisticated code inference attacks, our approach re-randomizes
upon each destructive read the subset of the code that could potentially be implicitly
disclosed.

2 Goals and Adversarial Model
Our goal is to provide a binary-compatible defense against just-in-time code reuse at-
tacks [28]. We are particularly interested in sound defenses that have low runtime over-
head and are applicable to real world programs and their complexities. We assume the

2

attacker has full power of scripted arbitrary memory disclosure as well as the ability
to cause arbitrary code modules to be loaded or unloaded, per the attacks recently pre-
sented by Snow et al. [27]. Specifically, we assume that i. Data Execution Prevention,
ii. Fine-grained Address Space Layout Randomization (e.g., [7, 15, 19, 26, 31]) and iii.
Destructive read capabilities that leverage execute-only memory (e.g., [8, 30, 32]) are
in use. We also assume that adversary have at their disposal a memory disclosure vul-
nerability that allows them to read and write arbitrary memory locations. By now, these
assumptions are commonly accepted as being no stronger than the capabilities already
leveraged by skilled adversaries (e.g., [6, 9, 12, 18, 28]) to defeat contemporary ASLR.

3 Background & Related Work
Over the past several years, a number of defenses (e.g., [4, 6, 7, 10, 11, 12, 15, 16, 19,
20, 21, 30, 32, 33]) have been suggested as ways to curtail the power of just-in-time
code reuse attacks. Interested readers are referred to Crane et al. [13] for an excellent
review of the current state of the art in return oriented programming attacks. Here, we
instead focus on existing defensive strategies in terms of the triggers they utilize and
their runtime countermeasures. To date, a myriad of triggers have been proposed, such
as invoking countermeasures as a result of file I/O [6], process forking [24], or elapsed
wall-time [10, 33]. At the same time, the runtime countermeasures involve either re-
randomizing code layout [6, 10, 24, 33] or overwriting disclosed code bytes as a way to
ensure they cannot be leveraged in a ROP payload [30, 32].

Unfortunately, the existing approaches all have significant shortcomings. For exam-
ple, Bigelow et al. [6] assumes that scripting environments are out of scope, and so their
approach cannot protect widely used applications like modern browsers or document
renderers; the work of Chen et al. [10] only offers a probabilistic defense, and the recent
proposals of Tang et al. [30] and Werner et al. [32] have been undermined using only
modest enhancements to the original JIT-ROP framework [27]. Additionally, many of
these proposed defenses suffer from shortcomings in terms of real-world applicability
(e.g., such as poor performance guarantees or lack of compatibility with multi-threaded
programs) or require the ability to re-compile code from source in order to enable the
proposed protections [7, 12, 13]. Although the ability to recompile software for added
security enforcement is often an ideal avenue for mitigating software threats, such de-
fenses that require access to source code are not positioned for near-term deployability
in the same way as binary-compatible defenses. Since binary-compatible defenses only
require updating core system components rather than all commodity software running
on a device, wide-spread deployability is more feasible. Our defense is motivated by the
need to protect vulnerable systems in the near-term, and so many of our design choices
prioritize deployability.

One related work which shares similar deployability goals is a defense proposed by
Williams-King et al. [33] which offers a binary-compatible solution for constantly re-
randomizing code at prescribed intervals (of wall-clock time) in order to break JIT-ROP
payloads. Their approach requires relocating functions using complex pointer tracking
techniques in order to avoid creating stale pointers that can no longer be safely derefer-
enced; however, such analysis is known to be an unsolvable problem in the general case,
and raises a slew of challenges for real-world deployment. The approach of Williams-
King et al. [33] makes strides in advancing the robustness of pointer tracking based

3

defenses by leveraging program analysis and assuming access to debug symbols in or-
der to bolster the accuracy of moving functions around at runtime within the address
space of a protected process. Unfortunately, there are corner cases in deployable pointer
tracking that are not handled by their work, thereby lessening the near-term deployabil-
ity of the defense. For instance, even when instructing the compiler/linker to preserve
as much information as possible, certain information is not retained, such as locations
of static functions (for which the known offset within a module can be hard-coded by
the compiler), alignment of jump tables, or existence of functions which implicitly fall
through to the next function. This lack of information complicates the prospect of re-
ordering functions in applications that feature these program constructs. Certain aspects
of data flow tracking are also not supported (e.g., when an object is initialized in one li-
brary and memcpy’d to a different library). Our work does not share these drawbacks, as
we avoid pointer tracking altogether. In another related code-shuffling style approach,
Chen et al. [10] attempt to provide a probabilistic defense against JIT-ROP attacks by
applying time-based binary stirring [31] to a process in an attempt to re-randomize all
code in the entire program. Unfortunately, since Chen et al. [10] provide no guidance on
how to determine realistic intervals for triggering their defense, it remains unclear what
the incurred overhead is for thwarting real-world JIT-ROP attacks that have a lifetime
of a few seconds [28].

Destructive Reads Of late, several defenses that rely on the notion of execute-only
memory (i.e., to enforce that any given location in a code section can be either read
or executed—but not both) have been suggested as a mechanism for preventing code
reuse attacks. Indeed, instead of attempting to solve the difficult problem of separating
code and data and preventing code from being read recursively (e.g., [4, 5, 19]), the
idea behind destructive reads [30, 32] is to allow all code to be disclosed, but to prevent
any disclosed code from subsequently being executed. Sadly, while the notion of de-
structive reads was thought to be an effective technique for mitigating just-in-time code
reuse attacks as originally proposed by Snow et al. [28], several ingenious attacks have
surfaced that leverage the ability to load and unload modules at will—or for selectively
disclosing bytes of memory as a means of inferring surrounding gadgets—to undermine
any afforded protection [27].

Even with these attacks in mind, we show how the notion of destructive reads can be
effectively combined with load-time randomization to provide strong protection against
powerful code reuse attacks. Our solution for doing so is discussed next.

4 Approach
In what follows, we propose a practical defense against just-in-time code reuse attacks
that take advantage of an adversary’s ability to disclose and execute code bytes whose
values were learned by loading and unloading code modules, or performing so-called
code inference attacks like those recently presented by Snow et al. [27]. At a high-
level, our approach centers around the ability to place randomized versions of code in
a process at key trigger points during the execution of a just-in-time code reuse attack.
Specifically, we replace the code upon which an attack relies with logically equivalent
code of a different form that will break the attacker’s ROP payload. To achieve this,
we apply binary-compatible in-place randomization to code modules in order to obtain

4

multiple diversified copies of the code which are kept in kernel-space memory where
they are not accessible to user-level processes. With swappable versions of a module
available at our disposal, we can then efficiently replace disclosed code at runtime with
minimal complexities while assuring correct program execution. Specifically, when a
module is loaded into memory from disk, we ensure that a randomized copy of that
module is mapped into the user-space process, thwarting code reloading attacks. Fur-
thermore, individual reads to executable addresses in the module trigger our system to
swap localized code sequences within functions for semantically-equivalent random-
ized code sequences from one of the alternate versions maintained in kernel-space.
This technique prevents adversaries from making use of individually disclosed gadgets,
while not requiring any re-routing of control flow or swapping of entire code modules.

Both Heisenbyte [30] and NEAR [32] provide solid foundations for detecting the
most straightforward way an attacker can learn the values of code bytes—i.e., by di-
rectly reading their values in memory—and are able to prevent the execution of those
exact bytes at a later time. Unfortunately, attacks are still possible when scripting en-
vironments can be used to cause modules to be loaded or unloaded at will, exchanging
destroyed gadgets for fresh versions of the previously disclosed bytes and thus render-
ing destructive code reads ineffective. Indeed, the most concerning attacks suggested
by Snow et al. [27] involve the use of implicit code reads that allow an adversary to
infer the values of code bytes indirectly, based on the directly read values of related
code bytes. These two orthogonal attack approaches necessitate two orthogonal com-
ponents of our defense: one for thwarting code reloading and another for defending
against code inference. Figure 1 shows an overview of the proposed approach, depict-
ing how our defense ensures different randomized copies of code modules get mapped
into memory on image load, as well as ensuring code bytes that are disclosed by an
attacker get swapped for a different randomized version of those bytes before they can
be leveraged in an exploit payload.

These two components of our defense extend destructive read capabilities presented
in previous work, which we briefly explain before relaying the specifics of our contri-
butions. Heisenbyte [30] and NEAR [32] both implement what is called a thin hy-
pervisor, allowing them to leverage hardware virtualization support for Extended Page
Tables (EPT) to intercept read accesses to executable sections of a given process. While
this may seem like a drastic means by which to simply mark code pages as execute-
only, at present, it is the only feasible approach for contemporary Intel processors.4 In
both Heisenbyte and NEAR, enforcing destructive reads involves registering an EPT
fault handler that, when invoked, assures the byte values where a fault takes place can
never be subsequently executed (e.g., by overwriting the bytes with invalid opcodes).
In addition, the byte values at those offsets must be preserved so that they can be made
available in the event that an application wants to read the data again at a later time.

4.1 Defeating Code Reloading
The first of the two components of our defense aims to combat so called code reloading
attacks. The approach we take here is straightforward: ensure that adversaries are faced

4 That said, as hardware support [22] is added for more fine-grained control of the memory
protections applied to individual pages, we expect the hypervisor component of execute-only-
memory based defenses to become obsolete.

5

Randomized

Module

Randomized

ModuleRandomized

Module
K Randomized

Copies of

Module

Kernel Module/Thin Hypervisor

Choose a

randomized

copy

Time i:

Module Load

Time i+1:

Code Disclosure

Time i+2:

Re-randomization

User Process

EPT Fault

push edi
push esi

...

pop esi
pop edi
ret

push esi
push edi

...

pop edi
pop esi
ret

Swap affected

region

Read

Fig. 1: At load time, one among many randomized versions of a module is picked at
random. Whenever a potential code disclosure event occurs (due to a destructive read
operation), the locally surrounding region is re-randomized by swapping it with a dif-
ferent randomized instance.

with a different randomized copy of a module each time the module is loaded, thereby
preventing them from disclosing gadgets in one copy of a module and executing them
in a different identical copy. To do this, we apply in-place randomization (using the
techniques of Pappas et al. [26]) to k distinct versions of the module and map the dif-
ferent versions into process memory on load. As shown on the left side of Figure 1,
this can be done by hooking the operating system functions that map executable images
into memory and redirecting the associated OpenFile call to any of the k randomized
versions of the binary that reside on disk. While this straightforward countermeasure by
itself eliminates a significant subset of the attacks presented in the work by Snow et al.
[27], additional special attention must be taken to avoid the pitfalls that opened the door
to attacks based on code inference via implicit disclosure.

4.2 Defeating Code Inference

The idea behind code inference attacks is that in-place code randomization [26] applies
code transformations at such a local level, that reading even one byte where random-
ization has been applied is often enough information to infer how other related nearby
bytes (which may actually contain useful gadgets) have been randomized. The problem
this poses for defenses that leverage destructive code reads is that simply destroying the
code byte that was directly read does nothing to prevent an attacker from leveraging
gadgets that were discovered through implicit code disclosure, enabled by explicit code
disclosure [27].

6

The ability of attackers to mount code inference attacks stems from the nature
of the code transformations applied by binary-compatible fine-grained randomization
techniques [23, 26], and specifically their narrow scope. Specifically, in-place random-
ization [26] applies the following four code transformations: instruction substitution,
which replaces existing instructions with functionally-equivalent ones; basic block in-
struction reordering, which applies a functionally equivalent instruction ordering within
a basic block by maintaining any data dependencies; register preservation code reorder-
ing, which reorders the push and pop instructions of a function’s prologue and epilogue;
and register reassignment, which swaps register operands throughout overlapping live
regions.

By disclosing a few instructions, an attacker is able to infer the state of related in-
structions that are part of a ROP gadget. For example, an adversary could use code
inference to implicitly learn the precise structure of a gadget that has been randomized
using register preservation code reordering—which involves reordering the push and
pop instructions of a function’s prologue and epilogue. By (destructively) reading in-
structions in the prologue that are affected by the transformation, but which are not part
of the actual gadget, an attacker can accurately infer the structure of the gadget in the
function epilogue. Concretely, if the attacker knows that registers are saved onto the
stack by a function, the order by which these registers are popped in the epilogue is
the reverse order in which they were pushed during the prologue, so reading the pro-
logue allows the adversary to infer the exact gadget contained in the function epilogue.
Since the actual disclosure by the adversary was aimed at the prologue, destructive read
enforcement will only protect those bytes, leaving the epilogue to be freely used as a
useful gadget for the adversary. Similar code inference attacks against the rest of the
transformations are discussed by Snow et al. [27], all of which are mitigated by our
defense.

Crafting a countermeasure that renders implicit code reads ineffective turned out
to be more difficult than it appeared on first blush. The reason is that an important
criterion of ours was to allow for runtime re-randomization without having to deal with
unsound and cumbersome pointer tracking. As noted in §3, other approaches to runtime
re-randomization (e.g., [6, 24, 33]) have also turned to ASLR-style code relocation at
runtime, but these works needed to apply heuristics to deal with the problem of stale
pointers. Re-randomization schemes can introduce stale pointers into a program if they
do not carefully adjust every pointer that references a given code section when that
section is relocated at runtime. The tracking of all pointers is rife with challenges and it
remains an active area of research.

We choose not to introduce such complexity into our work. As an alternative to
moving around large chunks of code in process memory, we opted for a more local-
ized solution that guarantees that any—explicitly or implicitly—disclosed bytes are re-
randomized in response to disclosure, while simplifying as much as possible the prob-
lem of ensuring correct program continuation. As shown on the right side of Figure 1,
we detect when a code disclosure occurs (causing an EPT fault, which is intercepted
by our thin hypervisor) and replace only the part of the code that was disclosed with a
different randomized version. As in our approach for combating code reloading attacks,
we must maintain k different randomized versions of the program code, so we can ran-

7

domly select from k different versions (which reside in kernel module memory) of the
disclosed code to swap in at runtime. The intricacies of ensuring program correctness
when swapping code ranges are discussed further in Section 5.

Critically, to deal with code inference attacks, we ensure that the part of code that is
randomized includes not only the destructively read bytes, but also all other instructions
that could potentially be inferred. The choice of using in-place randomization was a
driving factor in simplifying our solution: with in-place randomization we can know
the exact range of code that is vulnerable to implicit code disclosure for any given
explicit code read. Importantly, we do not have to swap an entire randomized version
of the program every time a disclosure happens, as the vast majority of randomized
locations in a program cannot be inferred from a single disclosure. In other words,
every explicit code read carries with it the potential to infer the values of other code
bytes without actually reading them, but the range of code bytes that can be inferred is
limited and is easy to compute in advance. We refer to this range of addresses as the
scope of randomization, and return to a discussion thereof in Section 4.2.

What is important to understand at this stage is that through offline analysis we
are able to compute the scope of randomization for each byte in a code module. Thus,
when we intercept an explicit code read at a given location, we can look up the scope of
randomization for that byte and swap the code in that range of addresses for a different
randomized version. This necessitates only swapping out localized ranges of code, and
in that way, we sidestep the issue of using broadly scoped runtime re-randomization
techniques that incur a large overhead and rely on complex pointer tracking [6, 10, 33].
Moreover, in-place randomization guarantees that different randomized versions of the
same code will always be the same size. Hence, these bytes can be interchanged without
having to worry about making room for a larger version of logically equivalent code
when the swap takes place.

Scope of In-Place Randomization The exact range of code that must be swapped
out for a given EPT fault is directly dependent on type of transformation that was ap-
plied by in-place randomization to the surrounding code bytes. For the remaining dis-
cussion, we use the randomization technique of Pappas et al. [26] (called ORP) as an
example since it is representative of the state of the art in this domain. The three possi-
ble scopes for a given transformation include randomizing at the opcode, basic block,
or function level. Thus, if byte x in a module has to be randomized, the randomiza-
tion may involve simply rewriting the opcode containing x, or could involve altering an
entire function’s worth of code that includes x.

There are two ways to think about the scope of randomization for a given byte in a
code module. In one sense it can be considered the range of code bytes that are poten-
tially vulnerable to implicit disclosure should that code byte be explicitly disclosed. In
another sense this term represents the smallest range of code bytes that can be swapped
for a different randomized version while still maintaining correct execution of the pro-
gram. The three different scopes at which ORP applies code randomization determine
the range of bytes that need to be swapped as a result of a given byte being directly
read by an attacker. Note that we never have to swap out more than an entire function’s
worth of bytes for a single EPT violation, since no ORP transformations are applied at
a broader scope than the function level. One caveat with using binary-compatible ran-

8

domization techniques like ORP is that it may not always be possible to randomize all
bytes in a given program. This is due to the fact that commodity binaries can include
data in their executable code sections and disassembly of closed-source software can be
imprecise. That said, the coverage of existing tools is high enough [23] that this limi-
tation does not significantly weaken the security assurance that our defense offers. We
discuss this further in §6.

Notice too that as long as we safely swap the correct amount of code (based on the
type of randomization applied), we can ensure correct program execution. That said,
the preceding discussion assumes that function in which we intend to replace code does
not already have an activation record on the stack. In other words, if a function has been
invoked but not yet returned at the time that a code disclosure targets that function,
we cannot safely change the bytes of that function without potentially causing a crash
when program execution returns to the function. For example, two different randomized
versions of the same function could potentially save and restore registers to the stack
in a different order for their respective function prologues/epilogues. If the registers
are saved in one order during the function prologue and the code of the function gets
randomized before that function invocation has returned, the newly randomized code
may restore registers in a different order than they were saved in the prologue. If we
allow this to happen, we could introduce failures into otherwise correct programs.

To ensure this does not happen, we take a conservative approach and do not ran-
domize any span of bytes that are referenced by a pointer on one of the program stacks
at the time of the disclosure. This simplification ensures that no functions where exe-
cution has already started but not yet completed will be randomized. The approach is
conservative as it assumes that every word on each of the program stacks is a pointer,
but in practice, this is certainly not the case. This conservative approach would seem to
be a weakness, but it turns out not to be the case for two reasons: first, the code and data
separation techniques we leverage from NEAR and Heisenbyte are highly effective in
minimizing legitimate code reads that occur during normal program execution (i.e., by
moving data that does not need to be executed out of the code section of a binary). Sec-
ond, code reads that cannot be eliminated by the “purification” steps of Werner et al.
[32] or Tang et al. [30] are not likely to trigger a stack lookup because they will be
referencing code bytes that cannot be randomized by our approach anyway.

To see why, it is important to keep in mind that the majority of reads directed at
code sections by a program are for reading data that has been embedded in the code
section, rather than reading actual machine instructions. But, as ORP’s conservative of-
fline disassembly should not identify this data as executable instructions, ORP will not
randomize this data and our defense will, by extension, not be able to randomize data
bytes in code sections. Our empirical analysis (§6) confirms that is the case. Nonethe-
less, this restriction could be relaxed by employing more accurate stack unwinding [17]
or shadow stack techniques (implemented either in software or hardware) [2, 14] that
do not assume (as we do here for simplicity) that every word on the stack is a pointer.

9

5 Implementation

As a proof of concept, we chose to build this system for 32-bit x86 Windows, with
all implementation contained in a single loadable kernel module.5 The kernel module
is comprised of code for setting up the thin hypervisor and reacting to EPT faults, as
well as code for hooking operating system routines to ensure that each load results in a
randomized copy of the image being mapped into a process’ memory. In what follows,
we discuss some key decisions we made during our design, as well as implementation
challenges we encountered along the way.

5.1 Adapting Offline Randomization Techniques for Online Defense

One challenge we faced arose due to the fact that all the existing in-place random-
ization techniques we are aware of only work offline (e.g., ORP randomizes code in-
structions in an executable file). Since swapping out code at runtime is central to our
defense, we needed a way to access different randomized versions of a given range of
program code when a destructive read occurs. Our solution was to create a single ag-
gregate binary with k distinct randomized versions of the .text section. Thus, when
the binary is loaded, multiple different randomized versions of the code for the module
will be brought into memory and their instructions can be swapped into the executing
.text section whenever necessary. This involves storing additional metadata specify-
ing the ranges of swappable code that have been randomized, which is used to determine
whether to swap out memory in response to a given EPT fault (i.e., yes if the fault is
in a range randomized by ORP, no otherwise).6 On a final note, we must ensure that
the extra .text sections maintained by our defense are only accessible to the operat-
ing system, so their contents cannot be disclosed by exploits as part of attacking a user
space process. We achieve this by only mapping one of the k code sections as accessible
to user space when the binary is loaded into memory.

5.2 Handling Relocatable Code

Another technical challenge is dealing with the problem of relocatable binaries. In Win-
dows, for example, binaries are loaded into process memory in such a way that it not
uncommon that hard-coded addresses in the binary must be adjusted before the mod-
ule can execute properly. This absolute addressing (in contrast to Linux-style position-
independent code) assumes a specific load address in process memory called the pre-
ferred offset. If the binary is loaded at an address other than the preferred offset, all
hard-coded addresses in the executable need to be adjusted during the loading process.
Our runtime re-randomization approach may introduce incorrect execution if we simply
swap bytes of a program out for the corresponding bytes from a different randomized
binary whose hard-coded addresses were not correctly adjusted.

5 Our thin hypervisor and kernel module are built upon the code provided by Werner et al. [32]
as part of their work on destructive reads.

6 Failure of our system to swap a given range of code indicates that this range was not random-
ized through ORP, and thus is not vulnerable to inference attacks. Note that destructive read
enforcement still protects these memory areas.

10

Base address

used for all

relocations

Headers

Randomized Code k (in-use)

Randomized Code k-1

Randomized Code k-2

Data

Aggregate Relocation Table

…

…

Fig. 2: Load time adjustments

To address this problem, we coerce
the loader to adjust all the hard-coded ad-
dresses in each of the k code sections
as if they are all being loaded at the
same code section offset within the mod-
ule (e.g., offset 0x1000 is typical in the
PE format). In Windows, for example,
each relocatable binary contains a table
that specifies the hard coded addresses in
the binary that need to be adjusted if it
is not loaded at its preferred offset. As
shown in Figure 2, our approach takes
executable file a and packages it with
k randomized versions of a, so we also
must combine the relocation tables from
each randomized file into one large re-
location table in the aggregate binary. In
this way, we can safely start the mod-
ule off executing from a randomly cho-
sen version, i, of the binary, but when a destructive read is triggered, we then randomly
select one of the other k − 1 variants and swap the bytes that are in the scope of the
destructive read.

6 Evaluation
To test the runtime overhead of our defense, we ran the same selection of SPEC bench-
mark programs that were used to evaluate the performance of destructive read enforce-
ment [32]. Similar to Werner et al. [32], we compiled the CPU SPEC2006 benchmark
programs with the Microsoft Visual Studio 2013 C/C++ compiler using the default com-
piler and linker options listed in the benchmark suite. We used the unoptimized “base”
configuration.

The negligible performance penalty incurred by our solution on top of destructive
read enforcement (shown in Table 1) can be attributed to the fact that for these bench-
marks, all observed EPT faults were directed at data embedded in code sections, rather
than actual code instructions that could be randomized. As such, a hash table lookup
was enough to decide that these ranges could not be swapped, so no further action was
necessary. Of course, as soon as an attacker starts disclosing actual machine instruc-
tions in the code, runtime overhead would likely increase due to the need to repeatedly
unwind the program stacks and copy appropriate ranges of bytes surrounding the EPT
faulting addresses.

As for memory overhead, our solution involves mapping k extra copies of the
.text section into memory for each protected code module. To help understand the
tradeoff between security assurance and memory overhead, we consider that the prob-
ability of success for a ROP exploit comprised of n gadgets that attempts to randomly
guess which gadgets exist at given locations would be 1/kn. Thus, choosing a k value
even as low as two or three can still provide strong assurance against ROP chains work-
ing as expected by the adversary. It may seem that storing the k additional .text

11

SPEC CPU benchmark Destructive Reads Re-randomization Total

400.perlbench 3.04% 0.1% 3.14%
401.bzip2 1.21% 0.03% 1.24%
403.gcc 19.88% 0.2% 20.08%
429.mcf 4.04% 0.3% 4.34%
445.gobmk 0.99% 0% 0.99%
456.hmmer 1.81% 0% 1.81%
458.sjeng 1.10% 0.09% 1.19%
464.h264ref 7.63% 0% 7.63%
417.omnetpp 2.32% 0.13% 2.45%
473.astar 2.13% 0.8% 2.83%
483.xalancbmk 5.51% 0.25% 5.76%

Average 4.51% 0.17% 4.68%

Table 1: End-to-end runtime overhead.

sections in memory would incur a large memory overhead when considering that the
.text sections of the benchmark programs we tested range from 65KB to 2.4MB. This
is not the case, however, as in-place randomization only alters a small fraction of bytes
in the code section (about 3% on average), and thus only these transformed bytes would
need to be stored in memory to be swapped in as needed.

6.1 Security and Correctness

To show that we can reliably thwart code inference attacks without introducing incor-
rectness into programs, we ran a runtime stress test, forcing all possible randomizable
code ranges to be swapped. This allows us to confirm that we can correctly swap in
and out all parts of the program that are marked as randomizable. Our results confirm
that in all cases swapping these code ranges worked as expected and did not alter the
correctness of the code compared to the original binary. The average time to perform
each swap incurred a low runtime overhead, at only 0.105ms.

Moreover, to demonstrate that our solution thwarts code reloading attacks, we took
the same approach outlined by Snow et al. [27] for generating exploit payloads from
gadgets in commonly reloaded DLLs. We thoroughly inspected one of these DLLs
(vgx.dll) to confirm that the constructed exploit payloads are broken by in-place
randomization of the respective code modules, and consequently that the resulting pay-
loads could not be reliably used in an attack. Indeed, approximately 70% (9,622 out of
13,729) of the gadgets in the module identified by the automated gadget finding tool
ROPEME [1] were swappable. The remaining gadget discrepancy mainly arises from
different parameter settings used by ROPEME and the build-in gadget discovery mod-
ule in ORP (e.g., the number of look-ahead bytes or gadget depth during the gadget
generation process).

With k being a finite number of different program variations, the reader may be
curious as to whether our system would be vulnerable to some type of fingerprinting
attack that seeks to infer the version of code that has been swapped into user-space pro-
cess memory. This would not be feasible, however, for a few reasons. First, since every

12

randomizable gadget in a program is a degree of freedom for in-place randomization,
an attacker would be forced to disclose all randomizable sections in order to uniquely
identify one of the k versions. The footprint of such a brute-force probing attack would
be so substantial that it would be trivially detectable and would constitute on its own a
clear trigger for detection. Note that k can easily be tuned to make such an attack prac-
tically unrealistic. Furthermore, k can be increased to a much higher number than what
is allowable by the available memory on the system. Indeed, rotating k randomized in-
memory instances is only one option. The system could easily generate a higher number
of new randomized instances in the background once the pool of ready-to-use instances
in the kernel module is running low. We leave the implementation of this additional
functionality for future work.

6.2 Function Randomization Variability and Coverage

0.0

0.2

0.4

0.6

0.8

1.0

Number of possible randomized instances

C
um

ul
at

iv
e

fra
ct

io
n

of
 fu

nc
tio

ns

1 10 102 103 104 105 106

Fig. 3: Function randomization variability.

The in-place code randomization
of Pappas et al. [26] uses a com-
bination of four different transfor-
mation techniques of different spa-
tial granularity (instruction, basic
block, and whole function) to gen-
erate alternative representations of a
program’s code. For a given code
disclosure, multiple transformations
may have been applied to the code
area surrounding the address which
caused an EPT fault. We use the
coarsest randomization scope (i.e.,
the function that contains the dis-
closed code bytes) as the unit of
re-randomization because function
scope randomizations tend to offer the highest level of variability for a given range
of code. That said, when we swap the bytes of a given function for a randomized copy,
the contained bytes may have been altered by any combination of the four transforma-
tion techniques, so our solution still fully benefits from all four transformation tactics. It
is crucial to evaluate whether re-randomization at the function level allows for enough
randomization variability to prevent attackers from guessing or inferring the structure of
the code to be swapped in. Specifically, according to the definition by Pappas et al. [26],
we define function randomization variability to be the number of possible randomized
instances that can be generated for a given function.

To gain a better understanding of the resulting randomization variability, we per-
formed an empirical evaluation based on more than 1.5 million functions from 2,566
PE files from both Windows 7 and Windows 8.1. Figure 3 shows the number of pos-
sible randomized instances of a function (including its original form), as a cumulative
fraction of all 1.5M functions contained in the analyzed PE files. Notice that 10% of the
functions have a variability value of one (i.e., just their original instance), meaning that
in-place randomization cannot generate any variants for them. The next 4% have only
two possible instances, and then the variability for the rest of the functions increases

13

exponentially. For ease of exposition, we cap the calculation of all possible variants to
100,000. As explained in §6, note that just two versions of a function could be enough to
foil an attacker, since randomly choosing which version of the code to swap at runtime
means that the success rate for the attacker diminishes rapidly.

In general, these 10% of functions cannot be randomized due to their tiny size, often
a consequence of compiler intricacies such as basic block sharing, wrapper functions,
and other performance optimizations. In fact, our data on Windows binaries shows that
about 15% of functions are at most 10 bytes in size, whereas only half of them are larger
than 50 bytes. Moreover, 40% of functions consist of a single basic block, while 62%
have five or fewer basic blocks. Our findings confirm the observations of Pappas et al.
[26] in that the 10% of non-randomizable functions consists mostly of such tiny func-
tions. Overall, we found that roughly 80% of gadgets can be probabilistically broken.
Although the possibility remains that a functional payload might still be constructed
based solely on non-randomizable gadgets, Pappas et al. [26] showed that this was not
possible using state-of-the-art ROP compilers—even without considering recent work
by Koo et al.[23] that increases gadget randomization coverage even further. Moreover,
additional improvements to in-place randomization techniques could be easily adopted
by our system, as this is an orthogonal research topic.

7 Limitations
One limitation of our approach is that it leaves open the possibility of code bytes being
disclosed from functions currently on the call stack without those disclosed bytes being
re-randomized immediately. In this restricted scenario, the JIT-ROP strategy of follow-
ing code pointers to disclose code pages en masse (with hopes of leaking enough data
to be able to compile a ROP payload on demand) can no longer be followed. Indeed, a
completely different approach must be taken, involving somehow knowing which func-
tions have been called but not yet returned at the time the exploit is underway—and then
only disclosing code in those functions. While such an attack may be conceivable in
theory, our expectation is that non-trivial enhancements to the principal of just-in-time
code reuse would need to be made before such an attack vector would be feasible. Even
if such attacks were possible, the fact that destructive reads targeted at randomizable
ranges in a process are rare in normal programs7 means it would be highly suspicious
if one of these reads were to a function that has an activation record on the stack. Since
an attacker would need to leverage this rare event many times during said hypotheti-
cal attack (i.e., to be able to disclose the requisite amount of code in order to build a
ROP payload), the repeated observance of this phenomena could signal that an attack is
underway and the offending process would simply be terminated.

Finally, among the attacks against destructive code reads presented by Snow et al.
[27], we currently do not deal with code cloning via JIT code generation, as this would
require substantial changes into the JIT engine of each protected application. We do not
consider this as a significant issue since modern browsers have already adopted constant
blinding techniques [3, 25] to prevent the generation of malicious code or ROP gadgets,
and thus thwart this type of attack.

7 In our evaluation with the benchmark programs there was not a single instance were there was
an EPT fault in a range of code that was marked by ORP as randomizable code.

14

8 Conclusion
Over the past year, defenses that leverage the concept of destructive reads (e.g., [30, 32])
have been shown to offer a readily deployable mitigation against the threat of just-
in-time code reuse attacks. The initial attraction of the promise of destructive reads
as a defensive measure stems from the fact that it offers a solution that is compati-
ble with closed-source applications, has low overhead, and has well-defined security
properties—three factors that Szekeres et al. [29] argue promote wide-spread adoption
of security technologies. Unfortunately, very recent attacks by Snow et al. [27] shed
light on inherent weaknesses in adversarial assumptions that did not account for the
possibility of code re-loading and code inference techniques, which can be used to un-
dermine the security guarantees provided by destructive reads.

To address these weaknesses, we provide a solution that strengthens the applica-
bility of destructive reads by eliminating the threats posed by code reloading and code
inference attacks. Our defense includes two orthogonal components: one for mitigating
code reloading and the other for preventing code inference. In particular, we demon-
strate a novel solution for loading randomized copies of an executable any time the im-
age is loaded, thereby preventing an entire class of code reloading attacks. In addition,
we take advantage of the localized approach for code diversification used for in-place
randomization [19, 26, 31] to enable efficient and robust runtime re-randomization of
code that has been disclosed implicitly through code inference. Our solution is practi-
cal, and offers the first protection (we are aware of) against the ingenious use of zombie
gadgets as disclosed by Snow et al. [27].

9 Acknowledgments
We are grateful to the anonymous reviewers and our shepherd, Stefan Brunthaler, for
their insightful comments. This work was supported in part by the Office of Naval Re-
search (ONR) under award no. N00014-15-1-2378, and the National Science Founda-
tion (NSF) awards no. 1421703 and 1617902. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the authors and do not neces-
sarily reflect the view of the US government, ONR or NSF.

References
1. ROPEME - ROP exploit made easy, 2016. URL https://github.com/packz/ropeme.
2. Control-flow enforcement technology preview, 2016. URL https:

//software.intel.com/sites/default/files/managed/4d/2a/

control-flow-enforcement-technology-preview.pdf.
3. M. Athanasakis, E. Athanasopoulos, M. Polychronakis, G. Portokalidis, and S. Ioannidis.

The devil is in the constants: Bypassing defenses in browser JIT engines. In Symposium on
Network and Distributed System Security, 2015.

4. M. Backes and S. Nürnberger. Oxymoron: Making fine-grained memory randomization prac-
tical by allowing code sharing. In USENIX Security Symposium, pages 433–447, 2014.

5. M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny. You can run but
you can’t read: Preventing disclosure exploits in executable code. In ACM Conference on
Computer and Communications Security, pages 1342–1353, 2014.

6. D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi. Timely rerandomization
for mitigating memory disclosures. In ACM Conference on Computer and Communications
Security, pages 268–279. ACM, 2015.

15

https://github.com/packz/ropeme
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

7. K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, and A.-R. Sadeghi. Leakage-
resilient layout randomization for mobile devices. In Symposium on Network and Distributed
System Security, 2016.

8. S. Brookes, R. Denz, M. Osterloh, and S. Taylor. Exoshim: Preventing memory disclosure
using execute-only kernel code. In International Conference on Cyber Warfare and Security,
page To appear, 2016.

9. P. Chen, J. Xu, J. Wang, and P. Liu. Instantly obsoleting the address-code associations: A
new principle for defending advanced code reuse attack. arXiv preprint arXiv:1507.02786,
2015.

10. Y. Chen, Z. Wang, D. Whalley, and L. Lu. Remix: On-demand live randomization. In
Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy,
pages 50–61. ACM, 2016.

11. S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz. Thwarting cache side-channel
attacks through dynamic software diversity. In Symposium on Network and Distributed Sys-
tem Security, 2015.

12. S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brunthaler, and
M. Franz. Readactor: Practical code randomization resilient to memory disclosure. In IEEE
Symposium on Security and Privacy, pages 763 – 780, 2015.

13. S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi, A.-R. Sadeghi, T. Holz,
B. De Sutter, and M. Franz. It’s a trap: Table randomization and protection against function-
reuse attacks. In ACM Conference on Computer and Communications Security, pages 243–
255, 2015.

14. T. H. Dang, P. Maniatis, and D. Wagner. The performance cost of shadow stacks and stack
canaries. In ACM Asia Conference on Computer and Communications Security, pages 555–
566, 2015.

15. L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose. Isomeron: Code random-
ization resilient to (just-in-time) return-oriented programming. In Symposium on Network
and Distributed System Security, 2015.

16. D. Evans, A. Nguyen-Tuong, and J. Knight. Moving Target Defense: Creating Asymmetric
Uncertainty for Cyber Threats. Springer, 2011.

17. Y. Fu, J. Rhee, Z. Lin, Z. Li, H. Zhang, and G. Jiang. Detecting stack layout corruptions with
robust stack unwinding. In Symposium on Recent Advances in Intrusion Detection. 2016.

18. R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and T. Holz. Enabling client-side crash-
resistance to overcome diversification and information hiding. In Symposium on Network
and Distributed System Security, 2016.

19. J. Gionta, W. Enck, and P. Ning. Hidem: Protecting the contents of userspace memory in the
face of disclosure vulnerabilities. In ACM Conference on Data and Application Security and
Privacy, pages 325–336, 2015.

20. C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced operating system security
through efficient and fine-grained address space randomization. In USENIX Security
Symposium, pages 475–490, 2012. URL https://www.usenix.org/conference/

usenixsecurity12/technical-sessions/presentation/giuffrida.
21. C. L. Goues, A. Nguyen-Tuong, H. Chen, J. W. Davidson, S. Forrest, J. D. Hiser, J. C.

Knight, and M. Van Gundy. Moving Target Defenses in the Helix Self-Regenerative Archi-
tecture, pages 117–149. Springer New York, New York, NY, 2013. ISBN 978-1-4614-
5416-8. doi: 10.1007/978-1-4614-5416-8 7. URL http://dx.doi.org/10.1007/

978-1-4614-5416-8_7.
22. D. Hansen. [rfc] x86: Memory protection keys, 2015. URL https://lwn.net/

Articles/643617/.

16

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/giuffrida
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/giuffrida
http://dx.doi.org/10.1007/978-1-4614-5416-8_7
http://dx.doi.org/10.1007/978-1-4614-5416-8_7
https://lwn.net/Articles/643617/
https://lwn.net/Articles/643617/

23. H. Koo and M. Polychronakis. Juggling the gadgets: Binary-level code randomization us-
ing instruction displacement. In ACM Asia Conference on Computer and Communications
Security, May 2016.

24. K. Lu, S. Nürnberger, M. Backes, and W. Lee. How to make aslr win the clone wars: Runtime
re-randomization. In Symposium on Network and Distributed System Security, 2016.

25. G. Maisuradze, M. Backes, and C. Rossow. What cannot be read, cannot be leveraged?
revisiting assumptions of JIT-ROP defenses. In USENIX Security Symposium, 2016.

26. V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hindering return-
oriented programming using in-place code randomization. In IEEE Symposium on Security
and Privacy, pages 601–615, 2012.

27. K. Snow, R. Rogowski, J. Werner, H. Koo, F. Monrose, and M. Polychronakis. Return to the
zombie gadgets: Undermining destructive code reads via code inference attacks. In IEEE
Symposium on Security and Privacy, 2016.

28. K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi. Just-in-
time code reuse: On the effectiveness of fine-grained address space layout randomization. In
IEEE Symposium on Security and Privacy, pages 574–588, 2013.

29. L. Szekeres, M. Payer, T. Wei, and D. Song. SOK: Eternal War in Memory. In IEEE
Symposium on Security and Privacy, pages 48–62, 2013.

30. A. Tang, S. Sethumadhavan, and S. Stolfo. Heisenbyte: Thwarting memory disclosure at-
tacks using destructive code reads. In ACM Conference on Computer and Communications
Security, pages 256–267, 2015.

31. R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: Self-randomizing instruc-
tion addresses of legacy x86 binary code. In ACM Conference on Computer and Communi-
cations Security, pages 157–168, 2012.

32. J. Werner, G. Baltas, R. Dallara, N. Otterness, K. Z. Snow, F. Monrose, and M. Polychron-
akis. No-execute-after-read: Preventing code disclosure in commodity software. In ACM
Asia Conference on Computer and Communications Security, 2016.

33. D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan, P. Colp, M. Zheng,
V. P. Kemerlis, J. Yang, and W. Aiello. Shuffler: Fast and deployable continuous code re-
randomization. In USENIX Symposium on Operating Systems Design and Implementation,
pages 367–382, 2016.

17

	Defeating Zombie Gadgets by Re-randomizing Code Upon Disclosure
	Introduction
	Goals and Adversarial Model
	Background & Related Work
	Approach
	Defeating Code Reloading
	Defeating Code Inference
	Scope of In-Place Randomization

	Implementation
	Adapting Offline Randomization Techniques for Online Defense
	Handling Relocatable Code

	Evaluation
	Security and Correctness
	Function Randomization Variability and Coverage

	Limitations
	Conclusion
	Acknowledgments

