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Abstract—Recording raw network traffic for long-term periods  other kinds of network-based communications.
can be extremely beneficial for a multitude of monitoring and ~ When new vulnerabilities and attack signatures for Network
security appll_catlons. However, storing all trafﬂc_of high volume Intrusion Detection Systems (NIDS) are released, longrter
networks is infeasible even for short-term periods due to the . X . .
increased storage requirements. Traditional approaches for da recording of petwork traffic allows to- identify past attacks
reduction like aggregation and sampling either require knowing @nd compromised systems that otherwise would go undetected
the traffic features of interest in advance, or reduce the traffe  Also, it is common practice to test new NIDS signatures using
volume by selecting a representative set of packets uniformly past traffic to eliminate false positives. NIDS and otherspas
over the collecting period. In this work we present RRDtrace, monitoring applications are trained, tuned, and propedy-c
a tgchnlque for storing full-payload packets for_a_rbltrar_y Iong fi db d ded traffic f th twork i hich
periods using fixed-size storage. RRDtrace divides time into 'gure . ased on recorded trainc from the network in whic
intervals and retains a larger number of packets for most they will be deployed. Packet traces are also commonly used
recent intervals. As traffic ages, an aging daemon is responsible for benchmarking network monitoring applications and can b
for dynamically reducing its storage space by keeping smaller replayed in different rates using tools likepr epl ay [1].
representative groups of packets, adapting the sampling rate  nfortunately, recording all traffic in high volume netwerk
accordingly. We evaluate the accuracy of RRDtrace on inferring . . . . .
the flow size distribution, distribution of traffic among applica- is impossible even f‘?f short-term periods, Que to the ,h'gh
tions, and percentage of malicious population. Our results show Storage needs. For instance, a network with 300 Mbit/sec
that RRDtrace can accurately estimate these properties using ¢h  average load requires about 3.2 TB of storage for recording
suitable sampling strategy, some of them for arbitrary long time  one day’s traffic. Thus, the limited storage resources of a
and others only for a recent period. commodity PC allow for storing hours or maybe a few days of
traffic in the best case. However, recording the networHitraf
for long-term periods using a reasonable amount of storage

Live traffic monitoring systems capture and process packetsuld be extremely beneficial for all applications mentidne
in real time. Regardless of the particular use, capturetigiac above.
are usually discarded once processed. Howeeenrdingthe Storing only the first few bytes from each packet, which typ-
raw network traffic to disk for long-term periods can be verically corresponds to protocol headers, can reduce therestu
useful for a multitude of applications, such as troublesingo storage and increase data retention [2]. However, mongori
network problems and measuring traffic trends or observigplications that need to inspect both the headers and the
the historical evolution of the traffic. Moreover, while tiiter-  payload of the packets, a process widely knowdeep packet
net evolves over the years, new applications and more $gcuispection[3], cannot operate with header-only traces. Two
breaches appear. Thus, long-term recording of Intern#fictratraditional approaches for data reduction are aggregatiah
can significantly contribute to better analyze and undedstasampling. Aggregation is effective when the traffic’s featu
the Internet evolution. of interest are known in advance, while sampling techniques

Network traffic recording is also critical for many securityselect a representative group of packets uniformly ovee.tim
purposes. Anomaly detection techniques require a long-tefhe sampling rate is an important parameter for the accuracy
baseline of past traffic to build profiles for normal trafficdanon inferring various network metrics. Higher sampling sate
users. Postmortem forensics analysis is also based on pastilt to better accuracy but require more storage spack, an
traffic to identify malicious activities that happened lrefthe thus retention is reduced when using fixed-size storage. On
time that an attack is detected. For instance, looking backthe other hand, lower sampling rates increase data retentio
time can help us to identify how the attackers compromisduit inevitably reduce the accuracy of many applications.
a system, what they did, and find out which data have beenin this paper we presefRDtrace a technique for storing
exposed to them. Moreover, lawful interception and dataret packets for long-term periods in fixed-size storage, irsbir
tion have been enforced recently by many national reguiatioby the popular RRDtool [4]. We choose to store full-payload
to enrich crime evidence by reconstructing past VoIP calls packet traces, which provide a rich source of information
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suitable for all kinds of analyses, from coarse-grained -meavaluation of RRDtrace using real traffic with monitoringdan
surements of network properties to fine-grained operatikas security applications. Finally, section VI concludes ttaper.
deep packet inspectioRDtracedivides time into intervals
and retains more detail for more recent intervals, i.e calies Il. RELATED WORK
more storage to recent time intervals and less storage & old A first approach to increase retention when storing network
time intervals. Also, older time intervals become longearth traffic is to keep less data per packet. A common choice is to
more recent ones. RRDtrace is based oraging mechanism store only the first few bytes of each packet, which typically
that dynamically reduces the space occupied by the data afaarespond to protocol headers. Solely from protocol head-
time interval as it ages, by keeping only a subset of the gackers, monitoring applications can infer useful informatimd
of that interval using sampling. Thus, as a time intervakgenetwork metrics, while this approach can reduce signiflgant
older, the sampling rate for storing its data decreases. the storage space [2] and thus increase retention. However,
Many sampling techniques have been extensively studigwnitoring applications like accurate traffic classifioati as
for applications like traffic accounting, billing, and mess- well as security applications usually perform deep packet
ments like heavy-hitters identification and flow size estiora  inspection operations, which require both the headers #s we
However, the applicability of sampling techniques in othexs the payload of each packet [3]. For instance, peer-to-
passive monitoring applications like traffic classificatiand peer and multimedia traffic identification [5] and NIDS [6],
intrusion detection has not received the same attentiom. ¢é] employ protocol parsing and advanced pattern matching
study attempts to answer the following questions: operations to identify application-specific strings oraekt
« Which sampling strategies should be used to selectSignatures in the packet payload. Thus, these applications
useful subset of packets when reducing the storage sp&&8not operate with header-only traces. Moreover, even wit
that will allow us to infer as many as possible desirablghis significant reduction in storage requirements, régent
properties from the trace? Which strategies are suitabféme is still limited.
for which properties? Another approach for efficient traffic recording is applied
« How much back in time can we go, i.e., what is thio the Time Machine system [8], where only the first N pytes
lowest sampling rate that still allows us to infer desirabl@f €ach flow are recorded based orper-flow cutoff This
properties from an RRDtrace with acceptable accuracya_ypprpach leverages the heavy tailed dls_trlbL_ltlon of floresiz
. . that is commonly found in Internet traffic, since most of the
To answer these questions, we evaluate the impact of th{?aefﬁc in a high volume network comes from just a few flows
different sampling strategies with decreasing samplirigsra . y
; . . . ; Therefore, most of the flows will not be affected by the cutoff
on inferring desirable network properties using a largedra . . . T
and will be fully recorded, while recording only the begingi

of real traffic. Our results indicate that RRDtrace using flow

. . : N f a few large flows | ignificant savings in disk .
sampling can accurately estimate flow size distribution ar&ia ew large flows leads (o significant savings in disk space

R L owever, this technique cannot accurately estimate n&twor
distribution of flows among applications regardless of the .~ " ; ;
. . netrics like total traffic volume and flow sizes. Furthermore
sampling rate. Average flow size and percentage of tra . . .
S ) . . Time Machine stores approximately the same amount of traffic
per application are estimated more accurately in recerg tim

. o - er day, and thus inevitably can store traffic for a few days
intervals. For estimating the percentage of malicious $ho . '
X ) : nly and then will delete the oldest traffic.
and flows, reduction of traffic volume using a per-flow cuto . . o
. : . Another solution that is commonly used to retain informa-
provides the more accurate estimates for recent mterveﬂs

Random packet sampling performs well onlv for few of th on about network usage in high volume networks for long-
P pling p y ?e[rm periods is to maintain higher-level abstractions af th

examined properties. Compared to a constant sampling ra . .
strategy, RRDtrace can store traffic for arbitrary long timréeefwork traffic [9}-{11] or store aggregated data like Net|

. : . records [12]. Storing aggregated data instead of network
periods and offers higher accuracy for more recent traffic. . . ) .
. Lo . i packets can reduce dramatically the required disk spadée wh
In summary, the main contributions of this work are: : . oo )
) other higher-level abstractions can be used with fixed-size
« We propose and implemeRRDtrace a new approach siorage. However, such data formats limit significantlyirthe
to record network traffic for arbitrary long periods usysefulness. They can be adequate only for specific appiieati
ing fixed-size storage space. Our approach is based ipihe features of interest are known a priori. Any packet-
reducing the sampling rate as traffic ages. level information will be lost, so many applications and plee
« We evaluate the impact of different sampling strategigsacket inspection techniques do not work with aggregated
and decreasing sampling rates on monitoring and secufigjffic summaries. On the other hand, full-payload packet
applications that can take advantage of RRDtrace.  traces offer a rich source of information and allow for fine-
The rest of the paper is organized as follows: Section dirained analysis.
summarizes related work. In Section Il we describe the RRDtool [4] employs a Round Robin Database to store
storage allocation algorithm, sampling strategies andgiptes time-series data for very long periods in fixed-size storage
applications of RRDtrace. In Section IV we compare thesing data aggregation. This feature of RRDtool has made it a
retention of RRDtrace with other approaches when deploypdpular choice for storing and visualising time-seriesadikie
to an operational network. Section V presents the expetiahertemperatures, CPU load and network metrics like bandwidth,
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detail but will be representative for the correspondingetim w1 o i

periods. In this paper we aim to utilize the RRD properties
to store network packets for long-term periods in fixed-size Fig. 1. Storage allocation in RRDtrace for S=2 TB.
storage, using suitable aging mechanisms.
Cooke et al. [13] present a multi-format data storage tech-
nique that works with fixed storage and fixed time. Firstpad variations and adjust accordingly the sampling irstety
packets are stored, and later on they are aggregated aisd trareet sampling volume constraints. Similarly, rate comsé
formed into flows as they age. Flows are finally aggregatex igampling approaches select a specified number of packets
counters. Storage allocation algorithms divide the albigla during a measurement interval. The method proposed by
storage between these different aggregation levels. The mRuffield et al. [24] works under strict resource constrainys
shortcoming of this technique is that fine-grained analyss@mpling into a buffer of fixed size. All these approacheptda
cannot be performed in old data, e.g., find possible undsdecthe sampling rate based on traffic load, while RRDtrace adapt
attacks or identify peer-to-peer and multimedia trafficngsi the sampling rate according to how old the stored trafficnis, i
flow information. Moreover, having different data formateo order to provide better accuracy for the most recent traffic.
time makes the analysis more difficult than having always the Brauckhoff et al. [25] examine the impact of packet sam-
same data format. pling on anomaly detection metrics for the Blaster worm
Instead of storing actual packets, payload attributiom-tecoutbreak. Blaster uses random scanning in TCP port 135, so it
niques [14] store compressed digests of packet payloadgn be detected using flow counters. However, flow counters
Based on an excerpt of a given packet payload, these tegre heavily affected from packet sampling. While packet and
niques indicate the presence of packets that contained thje counters are not affected from sampling, they cannot
exact payload and their source, destination and time of ajgtect Blaster anomalies. The flow entropy metric is shown
pearance on the network. Though, the actual payloads of thebe more robust to packet sampling than flow counters.
stored packets cannot be inferred. Such techniques arel usbfai et al. [26] examine the performance of volume and port
for forensics analysis and some security applicationsingpr scan anomaly detection methods with sampled data using four
and Wetherall [15] present an algorithm for traffic compi@ss different strategies. The results show that all the sargplin
by identifying and eliminating redundancy. Compression cétrategies significantly degrade the performance of theceet
effectively reduce the storage for protocols and appbeeti tion algorithms. Among the four sampling schemes, random
with high redundancy. flow sampling introduces the least amount of distortion. 8ma
Anderson et al. [16] present tools for recording packegampling [27] and sample-and-hold [28] are less resource
at kernel-level to provide bulk capture at high rates. Hyp#atensive than random flow sampling, but perform poorly in
rion [17] employs a write-optimized stream file system fothe context of anomaly detection, since they miss small flows
high speed storage and Bloom filters for indexing stream. dathat are often related to attacks.
Gigascope [18] is a stream database which offers an SQL-like
language for queries on the packet stream, but does not focus
on long-term archival. Our approach, calleRRDtrace is inspired from the prop-
Packet sampling is very common in high-end routers, wheegties found in round robin databases. It aims to store full-
processing and storage resources are limited, for reapatin payload packets for long-term periods in fixed-size storage
gregated sampled traffic statistics like sampled NetFlo9}.[1 RRDtrace divides the time into unequal intervals and retain
Several sampling strategies have been proposed, which a@e packets from recent intervals, while keeping smaller
currently being standardized by the Packet Sampling Wgrkisubsets of packets from older intervals. Older time interaee
Group of IETF [20]. The choice of a suitable strategy depenttenger and utilize less storage. The duration of time irgksrv
on traffic characteristics or on statistics needed to berefe and how the available storage is assigned to them can be
The basic idea of RRDtrace is that it adapts the samplidgfined either by the users, according to the network in which
rate according to the time that traffic was captured. RaRRDtrace will be deployed, or automatically by RRDtrace.
adaptive sampling has been proposed for dealing with traf-A typical example of storage allocation in RRDtrace is
fic load variability. Adaptive NetFlow [19] uses traffic rateshown in Figure 1. We assume that the available storage for
prediction techniques to adjust properly the sampling.rat@RDtrace isS = 2 TB. We select the initial time interval,
Drobisz and Christensen [21] present an adaptive schetoebe one day and we assign the half storage (1 TB) to it.
based on CPU utilization and packet interarrival times. iCh®dhe next time intervat; is twice as large ag with the half
et al. [22] determine the sampling probability adaptivety a storage ofty, i.e., t; is two days long with 500 GB storage.
cording to traffic dynamics to accurate traffic load estioati Thus, in¢; (days 2-3), 1 out of 4 packets that were initially
Hernandez et al. [23] use a predictive approach to antigipatored is selected to remain in the trace. Each subsequaat ti

IIl. OUurR APPROACH RRDtrace



interval is two times larger and has half the storage than gsch as the original flow size distribution. For instances it
preceding one. easy to miss completely the short flows. Flow sampling has

In this storage allocation algorithm different initial #m been proposed as an alternative to overcome the limitations
intervalst, can be defined, occupying the half of the availablef packet sampling. Hohn and Veitch [29] show that flow
storage. All the next intervals are formed basedtgrnand sampling improves the accuracy in flow statistics inference
available storages. In case that the traffic volume ity is When a flow is selected, all the packets that belong to this
less thanS/2, all packets in this interval can be stored. Elsdlow are stored, while from an unselected flow no packets are
packet sampling is imposed from the first time interval. Astored. Flow sampling approaches for forming flow records fo
other option is to let RRDtrace to select the first intergal cus mostly on selecting large flows, which has a larger impact
in a way that all the packets during this interval are stored to billing and accounting applications. So, non-uniformaflo
the corresponding storage (with no sampling). Thignwill sampling techniques, like smart sampling [27] and sample-
be the time interval with traffic volume equal t8/2. This and-hold [28], have been proposed for accurate estimafion o
approach works well when the traffic volume dp intervals heavy hitters. These techniques give higher probabilities
does not vary significantly. large flows to be selected and form flow records.

When at, period passes, agingdaemon is responsible to In our case, we aim to select a representative group of flows
appropriately reduce the storage used in each time intdfgal for applications like traffic classification, building prie,
instance, the number of packets stored during thetlastill and security applications. Thus, we choose a uniform flow
be reduced by 25%, and similarly with the next intervals isampling approach. Random flow sampling with sampling
order to conform with the storage allocation scheme desdribrate s could be used. Similarly, hash-based sampling could
above. The aging daemon reduces the storage capacity in daetperformed, using a hash function over the 5-tuple which
interval by selecting a representative group of packetls thi¢ defines a flow and then seledtsout of the possibleV hash
appropriate sampling rate. The packet selection strategyi values. However, these approaches do not guarantee that the
important parameter for the usefulness of RRDtrace. selected flows will result tok out of N packets selection,

We suggest the use of sampling instead of aggregation ford to the desirable storage reduction, due to the healegitai
two reasons. First, data is retained in the same format,hwhidistribution of flow sizes. Therefore, hash-based and smpl
is very convenient for analysis and processing by existingndom flow sampling, as well as smart and sample-and-hold
applications. Moreover, aggregation requires knowledfie sampling strategies, cannot accurately reduce the storage
the traffic's features of interest in advance, whereas sampl We need to specify a flow sampling scheme that selects
allows the retention of arbitrary detail while at the sanmeti | flows out of the total flows in a time interval, witht

reducing data volumes. packets in total. This flow sampling scheme works as follows:
) . First we classify packets into flows. During the classificati
A. Sampling Strategies we maintain an indexing table with the flows sorted based on

Since RRDtrace may be used by multiple applicationtheir size and a histogram with flow sizes. Then, we randomly
different sampling strategies may be suitable for differeselect one flow at a time, with a size of packets, while
applications. We have implemented three sampling stregegh " z; < & stands. Only flows with size less thdan— > x;
to evaluate their effectiveness using several monitorjoglia  packets that have not been selected so far, are candidates fo
cations. Each sampling strategy defines the way/ihzdckets selection. These flows can be easily found using the indexing
should be selected out of the tofsll packets in a time interval table and the histogram with flow sizes. Assuming that we
(sampling rates = k/N), to respectively reduce the storagehave I’ flows with size less thaik — > z; packets that have
We consider that a sampling rate has a similar effect in gackeot been selected before, a random number fioto F is
and storage reduction. used to select the corresponding flow from the indexing table

1) Packet SamplingThe simplest strategy to selgebut of The selected flows are marked and removed from the indexing
N packets is systematic count-based sampling, i.e., setecttable and flow size histogram. The selection process ends whe
one every N/k packets. However, systematic sampling i flows with Z§=o x; = k have been selected. Finally, the
vulnerable to bias errors due to synchronisation with glicio packets from the selected flows are written to disk, with a
patterns in the traffic and can be predicted. second pass in the trace, in respect to the order that they hav

Random packet sampling avoids the potential problerbgen received.
of systematic sampling. We choose to implement stratified3) Per-Flow Cutoff: Our third strategy for selecting repre-
random sampling. In this technique, thepackets are divided sentative packets is to use a per-flow cutoff, i.e., selechyd
to k equal groups (with size aV/k packets) and one packetthe first C packets of each flow. Time Machine [8] uses a
from each group is randomly selected. In systematic coustatically user configured per-flow cutoff to limit the amoun
based sampling the first packet of each group would be alwayfstraffic that will be stored. On the other hand, RRDtrace
selected. reduces the amount of traffic that will be stored according

2) Flow Sampling: Research works by Hohn andto the time interval that the traffic belongs to, thus diffare
Veitch [29] and Duffield et al. [30] have shown that packetutoffs are applied to different time intervals. As traffiges,
sampling is inaccurate for the inference of flow statistiahe per-flow cutoff will be properly reduced.



We implemented an algorithm that selects a per-flow cutoff ¢+ All packets, full payload

C in a way thatk packets are selected out of the tofsl ~'~ 80 bytes per packet

. R . —-—- 500 packets per—flow cutoff
packets. The algorithm is based on a histogram of aggregated —— RRDtrace with 1 day
statistics. In the first step we classify packets in flows.imgr 3 RRDrace with {53 days
this classification, we also maintain a table which indisdte
number of flows that exceed each flow size. For instance, the
position of the table,t[:], will contain the number of flows
that have at least packets. When thé;, packet of a flow is
classified,t[:] will be incremented by one.

Using this table, we can find the number of packets that P B
correspond to a specific per-flow cutaff from -7 ¢[i]. 0 20 30R 40 50 Gg 70 80 90 100
The selected cutoff’ will be the largest position in the table stention time (days)
that Ziczot[i] < k will be valid. In the second step of the . o -

- - ... Fig. 2. Retention time and storage utilization for RRDtracel ather
algorithm, having the proper cutof’, packets are classified ;5;r0aches with 2 T8 of available storage.
again into flows and each packet is selected only if its pwsiti
in the flow is less thar'. Otherwise, the packet is not stored
in the new file. c) Intrusion detection in past traffic, for training new sign

This per-flow cutoff strategy selectspackets in total from tures to eliminate false positives, for detecting pasicitta
all the flows that appear in a time interval. Thus, it can that were using a recently disclosed vulnerability or for
accurately estimate the number of flows but not their size. estimating the percentage of infected hosts.

Its main advantage is that the trace will contain the first

packets from all the flows, so it will be suitable for security IV. RETENTION STUDY

applications, e.g., port scan and intrusion detection,rmit =~ We examine the operation of RRDtrace and compare its

for traffic classification and accounting applications. retention with other approaches by capturing and storirg th
. traffic in the access link of an educational network. The

B. Implementation average traffic load in the network is 178 Mbps with total

RRDtrace is implemented using two separate threads: tiagffic 1.92 TB/day on average. Assuming we have 2 TB
capture and aging daemons. Tbapture daemoruses libp- available storaget, should be set to 12.5 hours in order to
cap [31] to capture packets for thg interval, impose sam- store all packets during this interval in 1 TB. Aftgy, for the
pling, if needed, int, and initially store the packets in anext 25 hours, 25% of these packets will be stored in 500 TB.
memory buffer. When the memory buffer becomes full, the Figure 2 presents the retention and the corresponding stor-
packets are written to disk. Separate files are used for ®achage used per day for full-payload packet recording, headers

The aging daemoris responsible for reducing the storagenly recording (80 bytes per packet), when recording the firs
as traffic ages. After eadh, it reads packets from the files of500 packets per-flow and when using RRDtrace with= 1
each interval, imposes the new sampling rates and writes # andt, = 3 days.
selected packets to the updated files. The two threads do nogince the daily traffic volume in the network is 1.92 TB,
access the disk concurrently to improve disk's performancge can store all the packets with full payload for 25 hours
Thus, the aging daemon runs only when the capture daeniily in the 2 TB storage. When capturing and storing only
writes packets to the memory buffer. 80 bytes per packet, 173.22 GB are required per day, which
C. Applications of RRDtrace results to 11.55 days retention. Applying a per-flow'cuyeff i

, ) a more effective approach, due to the heavy-tailed didtdhu

We focus on using RRDtrace for the following two classeg fio\ sizes. Using a cutoff of 500 packets per flow results to
of possible applications: 107.76 GB/day stored and 18.56 days retention. A cutoff of
1) Study the historical evolution of traffidJsing RRDtrace 100 packets per flow results to 67.86 GB/day and 29.47 days

we aim to infer the distribution of traffic among differentretention.
applications, the distribution of flows sizes, the percgata On the other hand, retention in RRDtrace can be arbitrary
of the malicious population and how all these change ovgfrge. Figure 2 shows the storage allocation in RRDtrace for
the years. the first 100 days using two different valuestgf Forty = 1
2) Security applications: day, 1 TB will be used for the last day’s traffic, 15.6 GB/day
a) Building profiles for normal traffic patterns based ofor 8-15 days ago and 976 MB/day for 32—-63 days ago.
RRDtrace to be used by anomaly detection metrics.  Selecting 976 MB from the total 1.92 TB daily traffic implies
b) Forensics analysis, which often requires the reconstri@05% sampling rate. For one year ago, 15.3 MB/day traffic
tion of past streams for lawful interception or inspectingvill be available. Whert, = 3 days, 333 GB/day will be used
past traffic from suspicious or compromised hosts to idefor the three last days. For 10-20 days ago, 20.83 GB/day will
tify more malicious operations or sensitive data exposdx stored, which implies 1.1% sampling rate. For one year ago
to attackers. 81.4 MB/day traffic will be stored in this case.
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V. EXPERIMENTAL EVALUATION of traffic and flows among the applications that generate them

) using the Appmon tool [5]. Snort NIDS [6] was used to
To experimentally evaluate the usefulness of RRDtrace, Weamine if the percentage of hosts and flows that produce
measure the accuracy of several properties when running P&scurity alerts can be inferred from the sampled traces. The
sive monitoring applications and applying the differennsa 5ccyracy for each property is measured by comparing the valu
pling strategies with decreasing sampling rates in a tradt® Winferred from each sampled trace with the real value from the

real traffic. Our evaluation has three main objectives:tFir%nsammed trace. In the remaining of this section, we ptesen
to compare RRDtrace with uniform and constant samplinge evaluation for each property separately.

when both approaches reduce equally the size of the trace.
Moreover, we aim to study how the three different sampling. Flow Size Distribution

strategies with reducing sampling rates affect the acgunac oy size distribution is a useful metric for traffic enginee
inferring traffic’s properties from the RRDtrace. Finallye ing, traffic classification, anomaly detection techniquesl a
examine how the accuracy is reduced across the retentien tigp, studying how network traffic changes over the time. We
as sampling rates are getting smaller, for different prid@®r examine the accuracy on inferring the average and mean flow
and sampling strategies. size and the original distribution of flow sizes using sardple
We used a full payload packet trace captured during oR@ces.
hour at the access link that connects an educational netgigure 3 compares the accuracy on the estimation of average
work with thousands of hosts to the Internet. The trace cofjow size using RRDtrace and sampling with constant rate
tains 73,162,723 packets, corresponding to 1,728,878rdiit for the reduction of the trace’s size to 10% of its original
flows, totalling about 46 GB in size. size. RRDtrace used flow sampling, that is the best choice for
In the first set of experiments, we compare RRDtrace withferring flow statistics, with adaptive sampling rate téaie
the three sampling strategies which use constant samlteg rmore packets from the first parts of the trace and result also
when all the approaches reduce the size of the trace to 10%®f.0% of the original trace’s size. Packet and flow sampling
its original size, i.e., t6§ = 4.6 GB. Thus, we applied to the used 10% sampling rate, while 74 packets per-flow resulted
original trace packet and flow sampling with 10% sampling the same reduction in the trace’s size. We plot the acgurac
rate and per-flow cutoff of 74 packets per flow, which albf the average flow size estimation separately from the most
resulted to 10% of the original trace’s size. In RRDtrace, wecent to the oldet /20 time interval of the original trace, by
used asy the most recent /20 interval of the trace. In this comparing with the actual value from the respective interva
way, RRDtrace assigned the half of the available stordg®, in the unsampled trace.
to this interval, selecting all the packets from it. The nexd  During the most recent interval RRDtrace retains all the
more recentl/20 intervals of the trace were assignéd4 packets, thus it is 100% accurate. For the next two intervals
storage, resulting to the selection of 25% of the packet®idur RRDtrace performs 25% flow sampling, so it is more accurate
these intervals. For the four next intervals, 6.25% sargplithan 10% flow sampling. In the next four intervals, RRDtrace
rate was performed, and so forth. We tried all the samplinges 6.25% sampling rate and its accuracy remains close to
strategies with RRDtrace and we present results from the% flow sampling. Overall, compared with constant flow
strategy that was found to perform better with each estithateampling, for the three more recent intervals RRDtrace ieemo
property. The produced trace was always close to 4.6 GB.\Wecurate, for the next four intervals with similar accuracy
report the accuracy of each measured property separatelyifp the older intervals flow sampling outperforms RRDtrace
each of thel /20 intervals of the trace, to compare the differenfrom 5% up to mostly 20%. If we need to further reduce the
approaches with RRDtrace. storage size, e.g., to 1% of the original size using RRDtrace
For the second set of experiments, we applied packeid 1% sampling rate, RRDtrace will be more accurate for a
sampling, flow sampling and per-flow cutoff to the originalonger time period. When RRDtrace is used for live traffic
trace using sampling rates from 1 /4096, resulting in recording, the dynamic storage re-assignment is the only
multiple sampled traces. For packet and flow sampling, whesay to retain data for arbitrary long periods, since sangplin
packets are selected in a random way, we produced 20 traggih constant rate will have limited retention using fixddes
for each case and we present the average values. Thus, for &acrage.
sampling rate we created traces with each strategy. Settingrigure 4 compares the accuracy of the three different sam-
to = 1 day, for each past day we plot the value inferred fromling strategies in RRDtrace for estimating average flowe.siz
the traces with the corresponding sampling rate. For iestanFlow sampling is always more accurate than packet sampling
1/4096 sampling rate corresponds to 64-127 days ago. &md per-flow cutoff, which are not effective strategies foe t
sampling rates belowt /256, the respective per-flow cutoff inference of flow sizes. Using flow sampling, average flow size
becomes 1 packet per flow, which means that this strateigyaccurately estimated for a few days period. For the past tw
cannot be applied in very low sampling rates. days, the estimation is 96.5% accurate with sampling re#. 25
We first evaluate the accuracy on estimating flow statistid@RDtrace slightly overestimates the average flow size, due t
like the original flow size distribution and average flow sizemore possibilities for the selection of very large flows. Bei?
Then, we examine the accuracy on inferring the distributiatays ago, the estimation is 94.7% accurate. RRDtrace tends t
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Fig. 3. Accuracy of average flow size estimatiorFig. 4. Average flow size estimation using RRDFig. 5. Flow size distribution for 8-15 days ago,
using RRDtrace and a constant 10% sampling rateace with different sampling strategies. with an1/64 sampling rate and 5 packets per-flow
for equal reduction in trace size. cutoff.

underestimate the average flow size for lower sampling ratdsem. We aim to infer the percentage of traffic and flows
Due to the heavy tailed distribution of flow sizes, there i#hat each application contributes to the total traffic and/dlo
a higher possibility for small flows to be randomly selecteoh the network. For these measurements we ran Appmon
in low sampling rates than large flows. Moreover, very largeith our sampled traces. Appmon classifies flows and traffic
flows cannot be selected in low sampling rates due to theo applications using both port-based classification éeep
storage size limitation. Up to one month ago, average flguacket inspection to identify peer-to-peer and multimepa
size is estimated with 83.7% accuracy. plications that use dynamically allocated port numbersgia
On the other hand, flow size distribution can be accuratebyn application specific signatures. For instance, Web draffi
estimated using flow sampling with low sampling rates. Figs all the packets from/to port 80, except from peer-to-peer
ure 5 shows the cumulative distribution of flow sizes fopackets masqueraded as Web packets. A flow is classified as
packet and flow sampling with /64 sampling rate and for BitTorrent flow when a packet of the flow, usually the first,
5 packets per-flow cutoff. Packet sampling is not accurategntains a BitTorrent protocol-specific string. Specificahe
since many small flows are completely lost. Per-flow cutoffeer Wire Protocol in BitTorrent establishes a handshaikeyus
strategy can estimate correctly the size of flows up to Vgell known keywords in the first packets. BitTorrent traffe i
packets in this case, according to the cutoff limit. The restl the packets that belong to a flow classified as BitTorrent.
of the flows are considered with 5 packets size and there\Wiée present the results for the two most popular applications
no clue for their actual size. Flow sampling is accurate evdound in the trace, Web and BitTorrent.

with 1/4096 sampling rate. Thus, in flow size distribution In Figures 6 and 9 we compare the accuracy of RRDtrace
property the accuracy does not depend on the sampling r@iéh the accuracy of 10% packet and flow sampling and
for flow sampling. Flow sampling and per-flow cutoff estimatg4 packets per-flow cutoff on estimating the percentages
correctly the mean flow size, that is 2 packets per flow, whilgf web and BitTorrent traffic respectively. In case of Web
packet sampling incorrectly estimate it as one packet pex flaraffic percentage, packet sampling is clearly the mostrateu
While per-flow cutoff cannot accurately estimate the flowtrategy, due to the simple port-based classification. Kewe
sizes, it accurately estimates the actual number of flowsgesi packet sampling significantly affects the detection of BitT
it retains at least one packet from each flow. Our flow samplingnt traffic, so flow sampling is the most accurate approach
strategy can provide a less accurate estimation of the lactiiathis case. Comparing RRDtrace with constant 10% flow
number of flows. If we had chosen to select exactly M  sampling in Figure 9, we observe the effect of sampling rate
flows from an interval withM/ total flows for a sampling rate adaptation in RRDtrace algorithm. For the three most recent
s, we could infer the actual number of flows by multiplyingntervals RRDtrace is clearly more accurate, for the nemt fo
with s the flows found in the sampled trace. Since this strategitervals almost equal and for the rest of the trace provides
does not always reduce the storagesbwe chose to select the less but close accuracy compared with constant flow sampling
number of flows with the desirable reduction in storage. Even Figures 7 and 10 compare the different sampling strate-

so, we observe that for high sampling rates the chosen flgys ‘across the retention time for Web and BitTorrent traffic
sampling strategy selects abaut M flows, so it can infer the porcentage estimation respectively. We observe that packe
actual number of flows. For low rat_es, it tends to select MO8 mpling provides very accurate estimates of the Web traffic
thans x M flows and thus overestimates the actual nUMbEE centage regardiess of how old the data are, i.e., how low
of flows up to two times inl /4096 sampling rate. the sampling rate is. Thus, packet sampling fits well with the
simple port-based traffic classification. However, packeh-s
pling cannot estimate accurately the percentage of Bi€hdrr
The next property we examine is the classification dfaffic even for recent traffic with higher sampling ratesisTh
network traffic and flows to the applications that generate because packet sampling affects significantly the detect

B. Per-Application Traffic Classification
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Fig. 6. Accuracy of Web traffic percentage estim&ig. 7. Percentage of Web traffic using RRDtrad¢ég. 8. Percentage of Web flows out of the
tion using RRDtrace and a constant 10% samplingth different sampling strategies. classified flows.
rate for equal reduction in trace size.
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Fig. 9. Accuracy of BitTorrent traffic percentage~ig. 10.  Percentage of BitTorrent traffic usindrig. 11. Percentage of BitTorrent flows out of the
estimation using RRDtrace and a constant 10®RRDtrace with different sampling strategies. classified flows.
sampling rate for equal reduction in trace size.

of a BitTorrent flow. Since packets are randomly selecteel, tber of Web and BitTorrent flows, even if it cannot infer
packet which contains the BitTorrent keyword may be missetthe correct percentages over the total traffic. Even with one
As a consequence, all the selected packets from this flow wkhcket per flow, BitTorrent flows can be usually detected.
not be classified as BitTorrent packets, leading to sigmificaFigure 8 shows the percentage of Web flows and Figure 11
error in the estimation’s accuracy. the percentage of BitTorrent flows out of the flows that were
On the other hand, flow sampling is the most accuragelccessfully classified. We observe that both flow sampling
approach for estimating the percentage of BitTorrent traffiand per-flow cutoff can accurately estimate the percentége o
In flow sampling, all packets from a selected flow are preseffigws for each application for arbitrary low sampling rates,
so the flow-based classification process is not affecteds,Thwith flow sampling be slightly more accurate. While packet
it can estimate the percentage of BitTorrent traffic till 2ysl  sampling can estimate successfully the Web traffic pergenta
ago with more than 87% accuracy. For the same period, it céigannot estimate correctly the number of Web flows.
estimate the Web traffic percentage with accuracy 98.75%. Th
decreasing sampling rates affect the accuracy of flow sagpli C- Estimation of Malicious Population
While it has good accuracy up to 30 days ago, for older time Network traffic stored in sampled traces can provide some
periods it tends to overestimate Web traffic and underesimgformation about past networking attacks, suspiciousviact
the BitTorrent traffic percentage. ties and malicious hosts. Instead of trying to infer the alctu
The third packet selection strategy, based on a per-flawtacks that happened in the past, we focus on estimating the
cutoff, cannot account correctly the percentage of traffic fpercentage of hosts and flows that generates security alerts
each application. While most of the traffic can be successfulind how this percentage changes over the time. We ran Snort
classified by the first packets of the flow, the cutoff affedan NIDS in the unsampled and sampled traces with each sampling
uniformly the traffic volume stored from each applicatioor F strategy and sampling rate, aiming to measure the accuracy
instance, BitTorrent has usually large flows which are highbn estimating these percentages. We consider the source IP
affected from the cutoff, resulting to an underestimatibthe addresses of packets that produce Snort alerts as malicious
BitTorrent traffic percentage, as we observe in Figure 10. ®@sts. The percentage of malicious hosts is estimated by
the other hand, Web flows are typically smaller and thus legiiding the number of unique malicious hosts with the total
affected, leading to an overestimation of Web traffic. number of hosts that are present in each sampled trace. We
However, per-flow cutoff can accurately estimate the nunaiso ran Snort with the reduced trace in 10% of its origireg si
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Fig. 12. Accuracy of malicious hosts estimatiofrig. 13. Percentage of hosts that trigger securiBig. 14. Percentage of flows that trigger security
using RRDtrace and a constant 10% sampling reaeerts. alerts.
for equal reduction in trace size.

with RRDtrace and constant sampling techniques and complrading to underestimation of malicious hosts percentales.
their accuracy on the estimated percentage of malicioushosiappens because this strategy retains all the hosts in the
We observe that with a per-flow cutoff of 74 packets, 84%ace but less packets from each one, so less attacks and
of the alerts that were triggered in the original trace ase almalicious hosts will be detected at lower sampling rates,
detected. For security applications, per-flow cutoff is adyo resulting to a reduced percentage. On the other hand, packet
choice for data reduction since a large class of attacks S@mpling overestimates the percentage of malicious hosts a
detected in the beginning of the flows. For instance, netwoil accuracy is not affected by decreasing sampling ratés. W
service probes, brute force login attempts and code-ioject the reduction of sampling rate, both the number of detected
attacks usually appear in the first few hundred packets ofmaglicious hosts and the number of total hosts in the sampled
network flow. Moreover, due to the heavy tailed distributiotface are reduced. Therefore, while per-flow cutoff is more
of flow sizes, the 74-packet per-flow cutoff affects only 1.6%8ccurate at high sampling rates, at lower sampling ratelespac
of the flows that contribute most of the traffic, resulting to &ampling provides best accuracy and should be preferred.
reduction rate of 90%. Figure 14 presents the percentage of flows that triggersalert
Figure 12 presents the results for the reduced trace. P&-Snort out of the total flows found in the sampled traces.
flow cutoff strategy has the best accuracy in estimation 6f We expected, per-flow cutoff provides the most accurate
the malicious host percentage. Packet sampling has befgfimations for the last 15 days, but for older time peridds i
accuracy than flow sampling on the malicious host estimatidifgrades significantly. All the sampling strategies arenlig
Using the trace sampled with 10% packet sampling, snéiifected by the reducmg_ sampling rates in this case. With
finds significantly more attacks than with the trace producd@cket sampling Snort finds a reasonable number of alerts
with 10% flow sampling, 18% and 3% of the actual aler@”d malicious flows, t_)ut the total r_lumber. of flows fou_nd
respectively. Per-flow cutoff strategy retains all the hast N the sampled trace is not proportional with the sampling
were present in the original trace, while packet samplinky oryate. While flow sampll.ng selects the proper amount of flow§,
a subset of them (27.5%). Thus, the accuracy of the malicid§SS @lerts are found in the produced traces compared with
hosts percentage in case of packet sampling is close to Bf¢ket sampling and the percentage of malicious flows is
accuracy when using the per-flow cutoff. underestimated.
Flow sampling is not a good choice for this property. There- VI. CONCLUSION
fore, for estimating the malicious hosts percentage we hese t Recording raw network traffic for long-term periods is
per-flow cutoff strategy with RRDtrace, which dynamicallyextremely useful for a multitude of monitoring and security
adapts the cutoff to store more packets per flow for the recegplications. The high volumes of network traffic highlight
time intervals. In the three more recent intervals RRDtiizee the need for data reduction and Optimized traffic storage
100% accuracy, since the cutoff of 2754 packets per flow th@fstems. In this paper we present RRDtrace, a technique
is applied in second and third intervals does not affect the mhat enables storing raw network packets in fixed-size disk
licious hosts detection. After the seventh interval, theuagcy space for arbitrary long periods, while retaining more ifletia
of RRDtrace with per-flow cutoff degrades significantly,cen information for most recent traffic. RRDtrace dynamically
the 5 packets per flow cutoff results to less malicious hosts keduces storage space as traffic ages using three alternativ
detected. sampling strategies: packet sampling, flow sampling, amd pe
Figure 13 shows the effect of sampling rates on eadlow cutoff.
strategy when estimating the percentage of malicious hostsWe experimentally evaluated RRDtrace by measuring the
Per-flow cutoff is very accurate for 7 days ago and hascuracy of flow size distribution estimation, traffic ciéisa-
reasonable accuracy till 15 days in the past. For older ¢rafftion, and malicious hosts detection across the retentioioghe
the lower sampling rates affect significantly its accuracysing real traffic. Our main findings are the following:



1) When RRDtrace is used offline to reduce the size of[#0]
trace, it provides higher accuracy for the most recent pait a
close accuracy for the rest, compared to constant sampling
with the same effect in trace size. When RRDtrace is used
for live recording, it can store packets for arbitrary londtl
periods based on the dynamic storage reduction, while aonst
sampling has limited retention.

2) Some properties can be accurately inferred regardlés3d
of how old the traffic is, i.e., using arbitrary low samplinq13]
rates. Such properties include flow size distribution ugiogy
sampling, the percentage of Web and BitTorrent flows using
flow sampling or a per-flow cutoff, and the percentage of qu4]
traffic using packet sampling.

3) In contrast, other properties are highly affected by
sampling rate and can be accurately inferred only in recens)
periods. Such properties include average flow size, peagent
of BitTorrent traffic, and percentage of hosts and flows that
trigger security alerts. 16

4) Flow sampling is overall the most robust techniqug7
for flow statistics and traffic classification inference, bt
performs poorly in estimation of malicious population. Per
flow cutoff strategy can estimate the actual number of flovwss]
and detect more attacks. However, it is not able to infer flow
size and cannot be used with low sampling rates. Pac
sampling can estimate very accurately the percentage of Web
traffic but not BitTorrent traffic, since it highly affects eh

corresponding detection algorithm. 20]
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