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Abstract—Recording raw network traffic for long-term periods
can be extremely beneficial for a multitude of monitoring and
security applications. However, storing all traffic of high volume
networks is infeasible even for short-term periods due to the
increased storage requirements. Traditional approaches for data
reduction like aggregation and sampling either require knowing
the traffic features of interest in advance, or reduce the traffic
volume by selecting a representative set of packets uniformly
over the collecting period. In this work we present RRDtrace,
a technique for storing full-payload packets for arbitrary long
periods using fixed-size storage. RRDtrace divides time into
intervals and retains a larger number of packets for most
recent intervals. As traffic ages, an aging daemon is responsible
for dynamically reducing its storage space by keeping smaller
representative groups of packets, adapting the sampling rate
accordingly. We evaluate the accuracy of RRDtrace on inferring
the flow size distribution, distribution of traffic among applica-
tions, and percentage of malicious population. Our results show
that RRDtrace can accurately estimate these properties using the
suitable sampling strategy, some of them for arbitrary long time
and others only for a recent period.

I. I NTRODUCTION

Live traffic monitoring systems capture and process packets
in real time. Regardless of the particular use, captured packets
are usually discarded once processed. However,recording the
raw network traffic to disk for long-term periods can be very
useful for a multitude of applications, such as troubleshooting
network problems and measuring traffic trends or observing
the historical evolution of the traffic. Moreover, while theInter-
net evolves over the years, new applications and more security
breaches appear. Thus, long-term recording of Internet traffic
can significantly contribute to better analyze and understand
the Internet evolution.

Network traffic recording is also critical for many security
purposes. Anomaly detection techniques require a long-term
baseline of past traffic to build profiles for normal traffic and
users. Postmortem forensics analysis is also based on past
traffic to identify malicious activities that happened before the
time that an attack is detected. For instance, looking back in
time can help us to identify how the attackers compromised
a system, what they did, and find out which data have been
exposed to them. Moreover, lawful interception and data reten-
tion have been enforced recently by many national regulations
to enrich crime evidence by reconstructing past VoIP calls or

other kinds of network-based communications.
When new vulnerabilities and attack signatures for Network

Intrusion Detection Systems (NIDS) are released, long-term
recording of network traffic allows to identify past attacks
and compromised systems that otherwise would go undetected.
Also, it is common practice to test new NIDS signatures using
past traffic to eliminate false positives. NIDS and other passive
monitoring applications are trained, tuned, and properly con-
figured based on recorded traffic from the network in which
they will be deployed. Packet traces are also commonly used
for benchmarking network monitoring applications and can be
replayed in different rates using tools liketcpreplay [1].

Unfortunately, recording all traffic in high volume networks
is impossible even for short-term periods, due to the high
storage needs. For instance, a network with 300 Mbit/sec
average load requires about 3.2 TB of storage for recording
one day’s traffic. Thus, the limited storage resources of a
commodity PC allow for storing hours or maybe a few days of
traffic in the best case. However, recording the network traffic
for long-term periods using a reasonable amount of storage
would be extremely beneficial for all applications mentioned
above.

Storing only the first few bytes from each packet, which typ-
ically corresponds to protocol headers, can reduce the required
storage and increase data retention [2]. However, monitoring
applications that need to inspect both the headers and the
payload of the packets, a process widely known asdeep packet
inspection[3], cannot operate with header-only traces. Two
traditional approaches for data reduction are aggregationand
sampling. Aggregation is effective when the traffic’s features
of interest are known in advance, while sampling techniques
select a representative group of packets uniformly over time.
The sampling rate is an important parameter for the accuracy
on inferring various network metrics. Higher sampling rates
result to better accuracy but require more storage space, and
thus retention is reduced when using fixed-size storage. On
the other hand, lower sampling rates increase data retention
but inevitably reduce the accuracy of many applications.

In this paper we presentRRDtrace, a technique for storing
packets for long-term periods in fixed-size storage, inspired
by the popular RRDtool [4]. We choose to store full-payload
packet traces, which provide a rich source of information



suitable for all kinds of analyses, from coarse-grained mea-
surements of network properties to fine-grained operationslike
deep packet inspection.RRDtracedivides time into intervals
and retains more detail for more recent intervals, i.e, allocates
more storage to recent time intervals and less storage to older
time intervals. Also, older time intervals become longer than
more recent ones. RRDtrace is based on anaging mechanism
that dynamically reduces the space occupied by the data of a
time interval as it ages, by keeping only a subset of the packets
of that interval using sampling. Thus, as a time interval gets
older, the sampling rate for storing its data decreases.

Many sampling techniques have been extensively studied
for applications like traffic accounting, billing, and measure-
ments like heavy-hitters identification and flow size estimation.
However, the applicability of sampling techniques in other
passive monitoring applications like traffic classification and
intrusion detection has not received the same attention. Our
study attempts to answer the following questions:

• Which sampling strategies should be used to select a
useful subset of packets when reducing the storage space
that will allow us to infer as many as possible desirable
properties from the trace? Which strategies are suitable
for which properties?

• How much back in time can we go, i.e., what is the
lowest sampling rate that still allows us to infer desirable
properties from an RRDtrace with acceptable accuracy?

To answer these questions, we evaluate the impact of three
different sampling strategies with decreasing sampling rates
on inferring desirable network properties using a large trace
of real traffic. Our results indicate that RRDtrace using flow
sampling can accurately estimate flow size distribution and
distribution of flows among applications regardless of the
sampling rate. Average flow size and percentage of traffic
per application are estimated more accurately in recent time
intervals. For estimating the percentage of malicious hosts
and flows, reduction of traffic volume using a per-flow cutoff
provides the more accurate estimates for recent intervals.
Random packet sampling performs well only for few of the
examined properties. Compared to a constant sampling rate
strategy, RRDtrace can store traffic for arbitrary long time
periods and offers higher accuracy for more recent traffic.

In summary, the main contributions of this work are:

• We propose and implementRRDtrace, a new approach
to record network traffic for arbitrary long periods us-
ing fixed-size storage space. Our approach is based on
reducing the sampling rate as traffic ages.

• We evaluate the impact of different sampling strategies
and decreasing sampling rates on monitoring and security
applications that can take advantage of RRDtrace.

The rest of the paper is organized as follows: Section II
summarizes related work. In Section III we describe the
storage allocation algorithm, sampling strategies and possible
applications of RRDtrace. In Section IV we compare the
retention of RRDtrace with other approaches when deployed
to an operational network. Section V presents the experimental

evaluation of RRDtrace using real traffic with monitoring and
security applications. Finally, section VI concludes the paper.

II. RELATED WORK

A first approach to increase retention when storing network
traffic is to keep less data per packet. A common choice is to
store only the first few bytes of each packet, which typically
correspond to protocol headers. Solely from protocol head-
ers, monitoring applications can infer useful informationand
network metrics, while this approach can reduce significantly
the storage space [2] and thus increase retention. However,
monitoring applications like accurate traffic classification, as
well as security applications usually perform deep packet
inspection operations, which require both the headers as well
as the payload of each packet [3]. For instance, peer-to-
peer and multimedia traffic identification [5] and NIDS [6],
[7] employ protocol parsing and advanced pattern matching
operations to identify application-specific strings or attack
signatures in the packet payload. Thus, these applications
cannot operate with header-only traces. Moreover, even with
this significant reduction in storage requirements, retention
time is still limited.

Another approach for efficient traffic recording is applied
in the Time Machine system [8], where only the first N bytes
of each flow are recorded based on aper-flow cutoff. This
approach leverages the heavy tailed distribution of flow sizes
that is commonly found in Internet traffic, since most of the
traffic in a high volume network comes from just a few flows.
Therefore, most of the flows will not be affected by the cutoff
and will be fully recorded, while recording only the beginning
of a few large flows leads to significant savings in disk space.
However, this technique cannot accurately estimate network
metrics like total traffic volume and flow sizes. Furthermore,
Time Machine stores approximately the same amount of traffic
per day, and thus inevitably can store traffic for a few days
only and then will delete the oldest traffic.

Another solution that is commonly used to retain informa-
tion about network usage in high volume networks for long-
term periods is to maintain higher-level abstractions of the
network traffic [9]–[11] or store aggregated data like NetFlow
records [12]. Storing aggregated data instead of network
packets can reduce dramatically the required disk space, while
other higher-level abstractions can be used with fixed-size
storage. However, such data formats limit significantly their
usefulness. They can be adequate only for specific applications
if the features of interest are known a priori. Any packet-
level information will be lost, so many applications and deep
packet inspection techniques do not work with aggregated
traffic summaries. On the other hand, full-payload packet
traces offer a rich source of information and allow for fine-
grained analysis.

RRDtool [4] employs a Round Robin Database to store
time-series data for very long periods in fixed-size storage
using data aggregation. This feature of RRDtool has made it a
popular choice for storing and visualising time-series data like
temperatures, CPU load and network metrics like bandwidth,



delays, packet loss and many other. RRDtool is based on an
aging process using a consolidation function (usually average)
to consolidate multiple primary data points to form a single
consolidated data point. Therefore, older data will have less
detail but will be representative for the corresponding time
periods. In this paper we aim to utilize the RRD properties
to store network packets for long-term periods in fixed-size
storage, using suitable aging mechanisms.

Cooke et al. [13] present a multi-format data storage tech-
nique that works with fixed storage and fixed time. First,
packets are stored, and later on they are aggregated and trans-
formed into flows as they age. Flows are finally aggregated into
counters. Storage allocation algorithms divide the available
storage between these different aggregation levels. The main
shortcoming of this technique is that fine-grained analysis
cannot be performed in old data, e.g., find possible undetected
attacks or identify peer-to-peer and multimedia traffic using
flow information. Moreover, having different data formats over
time makes the analysis more difficult than having always the
same data format.

Instead of storing actual packets, payload attribution tech-
niques [14] store compressed digests of packet payloads.
Based on an excerpt of a given packet payload, these tech-
niques indicate the presence of packets that contained this
exact payload and their source, destination and time of ap-
pearance on the network. Though, the actual payloads of the
stored packets cannot be inferred. Such techniques are useful
for forensics analysis and some security applications. Spring
and Wetherall [15] present an algorithm for traffic compression
by identifying and eliminating redundancy. Compression can
effectively reduce the storage for protocols and applications
with high redundancy.

Anderson et al. [16] present tools for recording packets
at kernel-level to provide bulk capture at high rates. Hype-
rion [17] employs a write-optimized stream file system for
high speed storage and Bloom filters for indexing stream data.
Gigascope [18] is a stream database which offers an SQL-like
language for queries on the packet stream, but does not focus
on long-term archival.

Packet sampling is very common in high-end routers, where
processing and storage resources are limited, for recording ag-
gregated sampled traffic statistics like sampled NetFlow [19].
Several sampling strategies have been proposed, which are
currently being standardized by the Packet Sampling Working
Group of IETF [20]. The choice of a suitable strategy depends
on traffic characteristics or on statistics needed to be inferred.

The basic idea of RRDtrace is that it adapts the sampling
rate according to the time that traffic was captured. Rate
adaptive sampling has been proposed for dealing with traf-
fic load variability. Adaptive NetFlow [19] uses traffic rate
prediction techniques to adjust properly the sampling rate.
Drobisz and Christensen [21] present an adaptive scheme
based on CPU utilization and packet interarrival times. Choi
et al. [22] determine the sampling probability adaptively ac-
cording to traffic dynamics to accurate traffic load estimation.
Hernandez et al. [23] use a predictive approach to anticipate
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Fig. 1. Storage allocation in RRDtrace for S=2 TB.

load variations and adjust accordingly the sampling interval to
meet sampling volume constraints. Similarly, rate constrained
sampling approaches select a specified number of packets
during a measurement interval. The method proposed by
Duffield et al. [24] works under strict resource constraintsby
sampling into a buffer of fixed size. All these approaches adapt
the sampling rate based on traffic load, while RRDtrace adapts
the sampling rate according to how old the stored traffic is, in
order to provide better accuracy for the most recent traffic.

Brauckhoff et al. [25] examine the impact of packet sam-
pling on anomaly detection metrics for the Blaster worm
outbreak. Blaster uses random scanning in TCP port 135, so it
can be detected using flow counters. However, flow counters
are heavily affected from packet sampling. While packet and
byte counters are not affected from sampling, they cannot
detect Blaster anomalies. The flow entropy metric is shown
to be more robust to packet sampling than flow counters.
Mai et al. [26] examine the performance of volume and port
scan anomaly detection methods with sampled data using four
different strategies. The results show that all the sampling
strategies significantly degrade the performance of the detec-
tion algorithms. Among the four sampling schemes, random
flow sampling introduces the least amount of distortion. Smart
sampling [27] and sample-and-hold [28] are less resource
intensive than random flow sampling, but perform poorly in
the context of anomaly detection, since they miss small flows
that are often related to attacks.

III. O UR APPROACH: RRDtrace

Our approach, calledRRDtrace, is inspired from the prop-
erties found in round robin databases. It aims to store full-
payload packets for long-term periods in fixed-size storage.
RRDtrace divides the time into unequal intervals and retains
more packets from recent intervals, while keeping smaller
subsets of packets from older intervals. Older time intervals are
longer and utilize less storage. The duration of time intervals
and how the available storage is assigned to them can be
defined either by the users, according to the network in which
RRDtrace will be deployed, or automatically by RRDtrace.

A typical example of storage allocation in RRDtrace is
shown in Figure 1. We assume that the available storage for
RRDtrace isS = 2 TB. We select the initial time intervalt0
to be one day and we assign the half storage (1 TB) to it.
The next time intervalt1 is twice as large ast0 with the half
storage oft0, i.e., t1 is two days long with 500 GB storage.
Thus, in t1 (days 2–3), 1 out of 4 packets that were initially
stored is selected to remain in the trace. Each subsequent time



interval is two times larger and has half the storage than its
preceding one.

In this storage allocation algorithm different initial time
intervalst0 can be defined, occupying the half of the available
storage. All the next intervals are formed based ont0 and
available storageS. In case that the traffic volume int0 is
less thanS/2, all packets in this interval can be stored. Else,
packet sampling is imposed from the first time interval. An
other option is to let RRDtrace to select the first intervalt0
in a way that all the packets during this interval are stored in
the corresponding storage (with no sampling). Then,t0 will
be the time interval with traffic volume equal toS/2. This
approach works well when the traffic volume int0 intervals
does not vary significantly.

When at0 period passes, anagingdaemon is responsible to
appropriately reduce the storage used in each time interval. For
instance, the number of packets stored during the lastt0 will
be reduced by 25%, and similarly with the next intervals in
order to conform with the storage allocation scheme described
above. The aging daemon reduces the storage capacity in each
interval by selecting a representative group of packets with the
appropriate sampling rate. The packet selection strategy is an
important parameter for the usefulness of RRDtrace.

We suggest the use of sampling instead of aggregation for
two reasons. First, data is retained in the same format, which
is very convenient for analysis and processing by existing
applications. Moreover, aggregation requires knowledge of
the traffic’s features of interest in advance, whereas sampling
allows the retention of arbitrary detail while at the same time
reducing data volumes.

A. Sampling Strategies

Since RRDtrace may be used by multiple applications,
different sampling strategies may be suitable for different
applications. We have implemented three sampling strategies
to evaluate their effectiveness using several monitoring appli-
cations. Each sampling strategy defines the way thatk packets
should be selected out of the totalN packets in a time interval
(sampling rates = k/N ), to respectively reduce the storage.
We consider that a sampling rate has a similar effect in packets
and storage reduction.

1) Packet Sampling:The simplest strategy to selectk out of
N packets is systematic count-based sampling, i.e., selecting
one everyN/k packets. However, systematic sampling is
vulnerable to bias errors due to synchronisation with periodic
patterns in the traffic and can be predicted.

Random packet sampling avoids the potential problems
of systematic sampling. We choose to implement stratified
random sampling. In this technique, theN packets are divided
to k equal groups (with size ofN/k packets) and one packet
from each group is randomly selected. In systematic count-
based sampling the first packet of each group would be always
selected.

2) Flow Sampling: Research works by Hohn and
Veitch [29] and Duffield et al. [30] have shown that packet
sampling is inaccurate for the inference of flow statistics

such as the original flow size distribution. For instance, itis
easy to miss completely the short flows. Flow sampling has
been proposed as an alternative to overcome the limitations
of packet sampling. Hohn and Veitch [29] show that flow
sampling improves the accuracy in flow statistics inference.

When a flow is selected, all the packets that belong to this
flow are stored, while from an unselected flow no packets are
stored. Flow sampling approaches for forming flow records fo-
cus mostly on selecting large flows, which has a larger impact
to billing and accounting applications. So, non-uniform flow
sampling techniques, like smart sampling [27] and sample-
and-hold [28], have been proposed for accurate estimation of
heavy hitters. These techniques give higher probabilitiesin
large flows to be selected and form flow records.

In our case, we aim to select a representative group of flows
for applications like traffic classification, building profiles,
and security applications. Thus, we choose a uniform flow
sampling approach. Random flow sampling with sampling
rate s could be used. Similarly, hash-based sampling could
be performed, using a hash function over the 5-tuple which
defines a flow and then selectsk out of the possibleN hash
values. However, these approaches do not guarantee that the
selected flows will result tok out of N packets selection,
and to the desirable storage reduction, due to the heavy-tailed
distribution of flow sizes. Therefore, hash-based and simple
random flow sampling, as well as smart and sample-and-hold
sampling strategies, cannot accurately reduce the storage.

We need to specify a flow sampling scheme that selects
l flows out of theM total flows in a time interval, withk
packets in total. This flow sampling scheme works as follows:
First we classify packets into flows. During the classification,
we maintain an indexing table with the flows sorted based on
their size and a histogram with flow sizes. Then, we randomly
select one flow at a time, with a size ofxi packets, while∑

xi < k stands. Only flows with size less thank −
∑

xi

packets that have not been selected so far, are candidates for
selection. These flows can be easily found using the indexing
table and the histogram with flow sizes. Assuming that we
haveF flows with size less thank −

∑
xi packets that have

not been selected before, a random number from1 to F is
used to select the corresponding flow from the indexing table.
The selected flows are marked and removed from the indexing
table and flow size histogram. The selection process ends when
l flows with

∑l

i=0
xi = k have been selected. Finally, the

packets from the selected flows are written to disk, with a
second pass in the trace, in respect to the order that they have
been received.

3) Per-Flow Cutoff: Our third strategy for selecting repre-
sentative packets is to use a per-flow cutoff, i.e., select always
the first C packets of each flow. Time Machine [8] uses a
statically user configured per-flow cutoff to limit the amount
of traffic that will be stored. On the other hand, RRDtrace
reduces the amount of traffic that will be stored according
to the time interval that the traffic belongs to, thus different
cutoffs are applied to different time intervals. As traffic ages,
the per-flow cutoff will be properly reduced.



We implemented an algorithm that selects a per-flow cutoff
C in a way thatk packets are selected out of the totalN
packets. The algorithm is based on a histogram of aggregated
statistics. In the first step we classify packets in flows. During
this classification, we also maintain a table which indicates the
number of flows that exceed each flow size. For instance, the
position i of the table,t[i], will contain the number of flows
that have at leasti packets. When theith packet of a flow is
classified,t[i] will be incremented by one.

Using this table, we can find the number of packets that
correspond to a specific per-flow cutoffx from

∑x

i=0
t[i].

The selected cutoffC will be the largest position in the table
that

∑C

i=0
t[i] ≤ k will be valid. In the second step of the

algorithm, having the proper cutoffC, packets are classified
again into flows and each packet is selected only if its position
in the flow is less thanC. Otherwise, the packet is not stored
in the new file.

This per-flow cutoff strategy selectsk packets in total from
all the flows that appear in a time interval. Thus, it can
accurately estimate the number of flows but not their size.
Its main advantage is that the trace will contain the first
packets from all the flows, so it will be suitable for security
applications, e.g., port scan and intrusion detection, butnot
for traffic classification and accounting applications.

B. Implementation

RRDtrace is implemented using two separate threads: the
capture and aging daemons. Thecapture daemonuses libp-
cap [31] to capture packets for thet0 interval, impose sam-
pling, if needed, int0 and initially store the packets in a
memory buffer. When the memory buffer becomes full, the
packets are written to disk. Separate files are used for eacht0.

The aging daemonis responsible for reducing the storage
as traffic ages. After eacht0, it reads packets from the files of
each interval, imposes the new sampling rates and writes the
selected packets to the updated files. The two threads do not
access the disk concurrently to improve disk’s performance.
Thus, the aging daemon runs only when the capture daemon
writes packets to the memory buffer.

C. Applications of RRDtrace

We focus on using RRDtrace for the following two classes
of possible applications:

1) Study the historical evolution of traffic:Using RRDtrace
we aim to infer the distribution of traffic among different
applications, the distribution of flows sizes, the percentage
of the malicious population and how all these change over
the years.

2) Security applications:

a) Building profiles for normal traffic patterns based on
RRDtrace to be used by anomaly detection metrics.

b) Forensics analysis, which often requires the reconstruc-
tion of past streams for lawful interception or inspecting
past traffic from suspicious or compromised hosts to iden-
tify more malicious operations or sensitive data exposed
to attackers.

Retention time (days)
10 20 30 40 50 60 70 80 90 100

S
to

ra
ge

 u
se

d 
pe

r 
da

y 
(G

B
)

1

10

100

1000
All packets, full payload
80 bytes per packet
500 packets per−flow cutoff
RRDtrace with t =1 day                             o
RRDtrace with t =3 days                            o

Fig. 2. Retention time and storage utilization for RRDtrace and other
approaches with 2 TB of available storage.

c) Intrusion detection in past traffic, for training new signa-
tures to eliminate false positives, for detecting past attacks
that were using a recently disclosed vulnerability or for
estimating the percentage of infected hosts.

IV. RETENTION STUDY

We examine the operation of RRDtrace and compare its
retention with other approaches by capturing and storing the
traffic in the access link of an educational network. The
average traffic load in the network is 178 Mbps with total
traffic 1.92 TB/day on average. Assuming we have 2 TB
available storage,t0 should be set to 12.5 hours in order to
store all packets during this interval in 1 TB. Aftert0, for the
next 25 hours, 25% of these packets will be stored in 500 TB.

Figure 2 presents the retention and the corresponding stor-
age used per day for full-payload packet recording, headers-
only recording (80 bytes per packet), when recording the first
500 packets per-flow and when using RRDtrace witht0 = 1
day andt0 = 3 days.

Since the daily traffic volume in the network is 1.92 TB,
we can store all the packets with full payload for 25 hours
only in the 2 TB storage. When capturing and storing only
80 bytes per packet, 173.22 GB are required per day, which
results to 11.55 days retention. Applying a per-flow cutoff is
a more effective approach, due to the heavy-tailed distribution
of flow sizes. Using a cutoff of 500 packets per flow results to
107.76 GB/day stored and 18.56 days retention. A cutoff of
100 packets per flow results to 67.86 GB/day and 29.47 days
retention.

On the other hand, retention in RRDtrace can be arbitrary
large. Figure 2 shows the storage allocation in RRDtrace for
the first 100 days using two different values oft0. For t0 = 1
day, 1 TB will be used for the last day’s traffic, 15.6 GB/day
for 8–15 days ago and 976 MB/day for 32–63 days ago.
Selecting 976 MB from the total 1.92 TB daily traffic implies
0.05% sampling rate. For one year ago, 15.3 MB/day traffic
will be available. Whent0 = 3 days, 333 GB/day will be used
for the three last days. For 10–20 days ago, 20.83 GB/day will
be stored, which implies 1.1% sampling rate. For one year ago,
81.4 MB/day traffic will be stored in this case.



V. EXPERIMENTAL EVALUATION

To experimentally evaluate the usefulness of RRDtrace, we
measure the accuracy of several properties when running pas-
sive monitoring applications and applying the different sam-
pling strategies with decreasing sampling rates in a trace with
real traffic. Our evaluation has three main objectives: First,
to compare RRDtrace with uniform and constant sampling
when both approaches reduce equally the size of the trace.
Moreover, we aim to study how the three different sampling
strategies with reducing sampling rates affect the accuracy on
inferring traffic’s properties from the RRDtrace. Finally,we
examine how the accuracy is reduced across the retention time,
as sampling rates are getting smaller, for different properties
and sampling strategies.

We used a full payload packet trace captured during one
hour at the access link that connects an educational net-
work with thousands of hosts to the Internet. The trace con-
tains 73,162,723 packets, corresponding to 1,728,878 different
flows, totalling about 46 GB in size.

In the first set of experiments, we compare RRDtrace with
the three sampling strategies which use constant sampling rate,
when all the approaches reduce the size of the trace to 10% of
its original size, i.e., toS = 4.6 GB. Thus, we applied to the
original trace packet and flow sampling with 10% sampling
rate and per-flow cutoff of 74 packets per flow, which all
resulted to 10% of the original trace’s size. In RRDtrace, we
used ast0 the most recent1/20 interval of the trace. In this
way, RRDtrace assigned the half of the available storage,S/2,
to this interval, selecting all the packets from it. The nexttwo
more recent1/20 intervals of the trace were assignedS/4
storage, resulting to the selection of 25% of the packets during
these intervals. For the four next intervals, 6.25% sampling
rate was performed, and so forth. We tried all the sampling
strategies with RRDtrace and we present results from the
strategy that was found to perform better with each estimated
property. The produced trace was always close to 4.6 GB.We
report the accuracy of each measured property separately for
each of the1/20 intervals of the trace, to compare the different
approaches with RRDtrace.

For the second set of experiments, we applied packet
sampling, flow sampling and per-flow cutoff to the original
trace using sampling rates from 1 to1/4096, resulting in
multiple sampled traces. For packet and flow sampling, where
packets are selected in a random way, we produced 20 traces
for each case and we present the average values. Thus, for each
sampling rate we created traces with each strategy. Setting
t0 = 1 day, for each past day we plot the value inferred from
the traces with the corresponding sampling rate. For instance,
1/4096 sampling rate corresponds to 64–127 days ago. In
sampling rates below1/256, the respective per-flow cutoff
becomes 1 packet per flow, which means that this strategy
cannot be applied in very low sampling rates.

We first evaluate the accuracy on estimating flow statistics,
like the original flow size distribution and average flow size.
Then, we examine the accuracy on inferring the distribution

of traffic and flows among the applications that generate them,
using the Appmon tool [5]. Snort NIDS [6] was used to
examine if the percentage of hosts and flows that produce
security alerts can be inferred from the sampled traces. The
accuracy for each property is measured by comparing the value
inferred from each sampled trace with the real value from the
unsampled trace. In the remaining of this section, we present
the evaluation for each property separately.

A. Flow Size Distribution

Flow size distribution is a useful metric for traffic engineer-
ing, traffic classification, anomaly detection techniques and
for studying how network traffic changes over the time. We
examine the accuracy on inferring the average and mean flow
size and the original distribution of flow sizes using sampled
traces.

Figure 3 compares the accuracy on the estimation of average
flow size using RRDtrace and sampling with constant rate
for the reduction of the trace’s size to 10% of its original
size. RRDtrace used flow sampling, that is the best choice for
inferring flow statistics, with adaptive sampling rate to retain
more packets from the first parts of the trace and result also
to 10% of the original trace’s size. Packet and flow sampling
used 10% sampling rate, while 74 packets per-flow resulted
to the same reduction in the trace’s size. We plot the accuracy
of the average flow size estimation separately from the most
recent to the older1/20 time interval of the original trace, by
comparing with the actual value from the respective interval
in the unsampled trace.

During the most recent interval RRDtrace retains all the
packets, thus it is 100% accurate. For the next two intervals
RRDtrace performs 25% flow sampling, so it is more accurate
than 10% flow sampling. In the next four intervals, RRDtrace
uses 6.25% sampling rate and its accuracy remains close to
10% flow sampling. Overall, compared with constant flow
sampling, for the three more recent intervals RRDtrace is more
accurate, for the next four intervals with similar accuracyand
in the older intervals flow sampling outperforms RRDtrace
from 5% up to mostly 20%. If we need to further reduce the
storage size, e.g., to 1% of the original size using RRDtrace
and 1% sampling rate, RRDtrace will be more accurate for a
longer time period. When RRDtrace is used for live traffic
recording, the dynamic storage re-assignment is the only
way to retain data for arbitrary long periods, since sampling
with constant rate will have limited retention using fixed-size
storage.

Figure 4 compares the accuracy of the three different sam-
pling strategies in RRDtrace for estimating average flow size.
Flow sampling is always more accurate than packet sampling
and per-flow cutoff, which are not effective strategies for the
inference of flow sizes. Using flow sampling, average flow size
is accurately estimated for a few days period. For the past two
days, the estimation is 96.5% accurate with sampling rate 25%.
RRDtrace slightly overestimates the average flow size, due to
more possibilities for the selection of very large flows. For4–7
days ago, the estimation is 94.7% accurate. RRDtrace tends to



Time interval
0 2 4 6 8 10 12 14 16 18

A
cc

ur
ac

y 
(%

)

0

20

40

60

80

100

10% packet sampling
10% flow sampling
74 packets per−flow cutoff
RRDtrace flow sampling

Fig. 3. Accuracy of average flow size estimation
using RRDtrace and a constant 10% sampling rate
for equal reduction in trace size.
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Fig. 4. Average flow size estimation using RRD-
trace with different sampling strategies.
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Fig. 5. Flow size distribution for 8–15 days ago,
with an1/64 sampling rate and 5 packets per-flow
cutoff.

underestimate the average flow size for lower sampling rates.
Due to the heavy tailed distribution of flow sizes, there is
a higher possibility for small flows to be randomly selected
in low sampling rates than large flows. Moreover, very large
flows cannot be selected in low sampling rates due to the
storage size limitation. Up to one month ago, average flow
size is estimated with 83.7% accuracy.

On the other hand, flow size distribution can be accurately
estimated using flow sampling with low sampling rates. Fig-
ure 5 shows the cumulative distribution of flow sizes for
packet and flow sampling with1/64 sampling rate and for
5 packets per-flow cutoff. Packet sampling is not accurate,
since many small flows are completely lost. Per-flow cutoff
strategy can estimate correctly the size of flows up to 5
packets in this case, according to the cutoff limit. The rest
of the flows are considered with 5 packets size and there is
no clue for their actual size. Flow sampling is accurate even
with 1/4096 sampling rate. Thus, in flow size distribution
property the accuracy does not depend on the sampling rate
for flow sampling. Flow sampling and per-flow cutoff estimate
correctly the mean flow size, that is 2 packets per flow, while
packet sampling incorrectly estimate it as one packet per flow.

While per-flow cutoff cannot accurately estimate the flow
sizes, it accurately estimates the actual number of flows, since
it retains at least one packet from each flow. Our flow sampling
strategy can provide a less accurate estimation of the actual
number of flows. If we had chosen to select exactlys × M
flows from an interval withM total flows for a sampling rate
s, we could infer the actual number of flows by multiplying
with s the flows found in the sampled trace. Since this strategy
does not always reduce the storage bys, we chose to select the
number of flows with the desirable reduction in storage. Even
so, we observe that for high sampling rates the chosen flow
sampling strategy selects abouts×M flows, so it can infer the
actual number of flows. For low rates, it tends to select more
than s × M flows and thus overestimates the actual number
of flows up to two times in1/4096 sampling rate.

B. Per-Application Traffic Classification

The next property we examine is the classification of
network traffic and flows to the applications that generate

them. We aim to infer the percentage of traffic and flows
that each application contributes to the total traffic and flows
in the network. For these measurements we ran Appmon
with our sampled traces. Appmon classifies flows and traffic
into applications using both port-based classification anddeep
packet inspection to identify peer-to-peer and multimediaap-
plications that use dynamically allocated port numbers, based
on application specific signatures. For instance, Web traffic
is all the packets from/to port 80, except from peer-to-peer
packets masqueraded as Web packets. A flow is classified as
BitTorrent flow when a packet of the flow, usually the first,
contains a BitTorrent protocol-specific string. Specifically, the
Peer Wire Protocol in BitTorrent establishes a handshake using
well known keywords in the first packets. BitTorrent traffic is
all the packets that belong to a flow classified as BitTorrent.
We present the results for the two most popular applications
found in the trace, Web and BitTorrent.

In Figures 6 and 9 we compare the accuracy of RRDtrace
with the accuracy of 10% packet and flow sampling and
74 packets per-flow cutoff on estimating the percentages
of Web and BitTorrent traffic respectively. In case of Web
traffic percentage, packet sampling is clearly the most accurate
strategy, due to the simple port-based classification. However,
packet sampling significantly affects the detection of BitTor-
rent traffic, so flow sampling is the most accurate approach
in this case. Comparing RRDtrace with constant 10% flow
sampling in Figure 9, we observe the effect of sampling rate
adaptation in RRDtrace algorithm. For the three most recent
intervals RRDtrace is clearly more accurate, for the next four
intervals almost equal and for the rest of the trace provides
less but close accuracy compared with constant flow sampling.

Figures 7 and 10 compare the different sampling strate-
gies across the retention time for Web and BitTorrent traffic
percentage estimation respectively. We observe that packet
sampling provides very accurate estimates of the Web traffic
percentage regardless of how old the data are, i.e., how low
the sampling rate is. Thus, packet sampling fits well with the
simple port-based traffic classification. However, packet sam-
pling cannot estimate accurately the percentage of BitTorrent
traffic even for recent traffic with higher sampling rates. This
is because packet sampling affects significantly the detection
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Fig. 6. Accuracy of Web traffic percentage estima-
tion using RRDtrace and a constant 10% sampling
rate for equal reduction in trace size.
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Fig. 7. Percentage of Web traffic using RRDtrace
with different sampling strategies.
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Fig. 8. Percentage of Web flows out of the
classified flows.
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Fig. 9. Accuracy of BitTorrent traffic percentage
estimation using RRDtrace and a constant 10%
sampling rate for equal reduction in trace size.
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Fig. 10. Percentage of BitTorrent traffic using
RRDtrace with different sampling strategies.
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Fig. 11. Percentage of BitTorrent flows out of the
classified flows.

of a BitTorrent flow. Since packets are randomly selected, the
packet which contains the BitTorrent keyword may be missed.
As a consequence, all the selected packets from this flow will
not be classified as BitTorrent packets, leading to significant
error in the estimation’s accuracy.

On the other hand, flow sampling is the most accurate
approach for estimating the percentage of BitTorrent traffic.
In flow sampling, all packets from a selected flow are present,
so the flow-based classification process is not affected. Thus,
it can estimate the percentage of BitTorrent traffic till 30 days
ago with more than 87% accuracy. For the same period, it can
estimate the Web traffic percentage with accuracy 98.75%. The
decreasing sampling rates affect the accuracy of flow sampling.
While it has good accuracy up to 30 days ago, for older time
periods it tends to overestimate Web traffic and underestimate
the BitTorrent traffic percentage.

The third packet selection strategy, based on a per-flow
cutoff, cannot account correctly the percentage of traffic for
each application. While most of the traffic can be successfully
classified by the first packets of the flow, the cutoff affects non-
uniformly the traffic volume stored from each application. For
instance, BitTorrent has usually large flows which are highly
affected from the cutoff, resulting to an underestimation of the
BitTorrent traffic percentage, as we observe in Figure 10. On
the other hand, Web flows are typically smaller and thus less
affected, leading to an overestimation of Web traffic.

However, per-flow cutoff can accurately estimate the num-

ber of Web and BitTorrent flows, even if it cannot infer
the correct percentages over the total traffic. Even with one
packet per flow, BitTorrent flows can be usually detected.
Figure 8 shows the percentage of Web flows and Figure 11
the percentage of BitTorrent flows out of the flows that were
successfully classified. We observe that both flow sampling
and per-flow cutoff can accurately estimate the percentage of
flows for each application for arbitrary low sampling rates,
with flow sampling be slightly more accurate. While packet
sampling can estimate successfully the Web traffic percentage,
it cannot estimate correctly the number of Web flows.

C. Estimation of Malicious Population

Network traffic stored in sampled traces can provide some
information about past networking attacks, suspicious activi-
ties and malicious hosts. Instead of trying to infer the actual
attacks that happened in the past, we focus on estimating the
percentage of hosts and flows that generates security alerts
and how this percentage changes over the time. We ran Snort
NIDS in the unsampled and sampled traces with each sampling
strategy and sampling rate, aiming to measure the accuracy
on estimating these percentages. We consider the source IP
addresses of packets that produce Snort alerts as malicious
hosts. The percentage of malicious hosts is estimated by
dividing the number of unique malicious hosts with the total
number of hosts that are present in each sampled trace. We
also ran Snort with the reduced trace in 10% of its original size
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Fig. 12. Accuracy of malicious hosts estimation
using RRDtrace and a constant 10% sampling rate
for equal reduction in trace size.
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Fig. 13. Percentage of hosts that trigger security
alerts.
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Fig. 14. Percentage of flows that trigger security
alerts.

with RRDtrace and constant sampling techniques and compare
their accuracy on the estimated percentage of malicious hosts.

We observe that with a per-flow cutoff of 74 packets, 84%
of the alerts that were triggered in the original trace are also
detected. For security applications, per-flow cutoff is a good
choice for data reduction since a large class of attacks is
detected in the beginning of the flows. For instance, network
service probes, brute force login attempts and code-injection
attacks usually appear in the first few hundred packets of a
network flow. Moreover, due to the heavy tailed distribution
of flow sizes, the 74-packet per-flow cutoff affects only 1.6%
of the flows that contribute most of the traffic, resulting to a
reduction rate of 90%.

Figure 12 presents the results for the reduced trace. Per-
flow cutoff strategy has the best accuracy in estimation of
the malicious host percentage. Packet sampling has better
accuracy than flow sampling on the malicious host estimation.
Using the trace sampled with 10% packet sampling, Snort
finds significantly more attacks than with the trace produced
with 10% flow sampling, 18% and 3% of the actual alerts
respectively. Per-flow cutoff strategy retains all the hosts that
were present in the original trace, while packet sampling only
a subset of them (27.5%). Thus, the accuracy of the malicious
hosts percentage in case of packet sampling is close to the
accuracy when using the per-flow cutoff.

Flow sampling is not a good choice for this property. There-
fore, for estimating the malicious hosts percentage we use the
per-flow cutoff strategy with RRDtrace, which dynamically
adapts the cutoff to store more packets per flow for the recent
time intervals. In the three more recent intervals RRDtracehas
100% accuracy, since the cutoff of 2754 packets per flow that
is applied in second and third intervals does not affect the ma-
licious hosts detection. After the seventh interval, the accuracy
of RRDtrace with per-flow cutoff degrades significantly, since
the 5 packets per flow cutoff results to less malicious hosts be
detected.

Figure 13 shows the effect of sampling rates on each
strategy when estimating the percentage of malicious hosts.
Per-flow cutoff is very accurate for 7 days ago and has
reasonable accuracy till 15 days in the past. For older traffic,
the lower sampling rates affect significantly its accuracy,

leading to underestimation of malicious hosts percentage.This
happens because this strategy retains all the hosts in the
trace but less packets from each one, so less attacks and
malicious hosts will be detected at lower sampling rates,
resulting to a reduced percentage. On the other hand, packet
sampling overestimates the percentage of malicious hosts and
its accuracy is not affected by decreasing sampling rates. With
the reduction of sampling rate, both the number of detected
malicious hosts and the number of total hosts in the sampled
trace are reduced. Therefore, while per-flow cutoff is more
accurate at high sampling rates, at lower sampling rates packet
sampling provides best accuracy and should be preferred.

Figure 14 presents the percentage of flows that trigger alerts
in Snort out of the total flows found in the sampled traces.
As we expected, per-flow cutoff provides the most accurate
estimations for the last 15 days, but for older time periods it
degrades significantly. All the sampling strategies are highly
affected by the reducing sampling rates in this case. With
packet sampling Snort finds a reasonable number of alerts
and malicious flows, but the total number of flows found
in the sampled trace is not proportional with the sampling
rate. While flow sampling selects the proper amount of flows,
less alerts are found in the produced traces compared with
packet sampling and the percentage of malicious flows is
underestimated.

VI. CONCLUSION

Recording raw network traffic for long-term periods is
extremely useful for a multitude of monitoring and security
applications. The high volumes of network traffic highlight
the need for data reduction and optimized traffic storage
systems. In this paper we present RRDtrace, a technique
that enables storing raw network packets in fixed-size disk
space for arbitrary long periods, while retaining more detailed
information for most recent traffic. RRDtrace dynamically
reduces storage space as traffic ages using three alternative
sampling strategies: packet sampling, flow sampling, and per-
flow cutoff.

We experimentally evaluated RRDtrace by measuring the
accuracy of flow size distribution estimation, traffic classifica-
tion, and malicious hosts detection across the retention period
using real traffic. Our main findings are the following:



1) When RRDtrace is used offline to reduce the size of a
trace, it provides higher accuracy for the most recent part and
close accuracy for the rest, compared to constant sampling
with the same effect in trace size. When RRDtrace is used
for live recording, it can store packets for arbitrary long
periods based on the dynamic storage reduction, while constant
sampling has limited retention.

2) Some properties can be accurately inferred regardless
of how old the traffic is, i.e., using arbitrary low sampling
rates. Such properties include flow size distribution usingflow
sampling, the percentage of Web and BitTorrent flows using
flow sampling or a per-flow cutoff, and the percentage of Web
traffic using packet sampling.

3) In contrast, other properties are highly affected by
sampling rate and can be accurately inferred only in recent
periods. Such properties include average flow size, percentage
of BitTorrent traffic, and percentage of hosts and flows that
trigger security alerts.

4) Flow sampling is overall the most robust technique
for flow statistics and traffic classification inference, butit
performs poorly in estimation of malicious population. Per-
flow cutoff strategy can estimate the actual number of flows
and detect more attacks. However, it is not able to infer flow
size and cannot be used with low sampling rates. Packet
sampling can estimate very accurately the percentage of Web
traffic but not BitTorrent traffic, since it highly affects the
corresponding detection algorithm.
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