
Adaptive Streaming of 360-Degree Videos with Reinforcement Learning

Sohee Park†, Minh Hoai†, Arani Bha�acharya§, Samir R. Das†
†Stony Brook University, Stony Brook, NY, USA, § IIIT-Delhi, New Delhi, India

{soheekim, minhhoai}@cs.stonybrook.edu, arani@iiitd.ac.in, samir@cs.stonybrook.edu

Abstract

For bandwidth-e�cient streaming of 360-degree videos,
the streaming technique must adapt both to the changing
viewport of the user and variations of the available network
bandwidth. �e state-of-the-art streaming techniques for this
problem a�empt to solve an optimization using simpli�ed
rules that do not adapt very well to the uncertainties related
to the viewport or network. We adopt a 3D-Convolutional
Neural Networks (3DCNN) model to extract spatio-temporal
features of videos and predict the viewport. Given the sequen-
tial decision-making nature of such streaming technique, we
then apply a Reinforcement Learning (RL) based adaptive
streaming approach. We address the challenges of using RL
in this scenario, such as large action space and delayed re-
ward evaluation. Comprehensive evaluations with real net-
work traces show that the proposedmethod outperforms three
tile-based streaming techniques for 360-degree videos. Com-
pared to the tile-based streaming techniques, the average
user-perceived bitrate of the proposed method is 1.3–1.7 times
higher and the average quality of experience of the proposed
method is also 1.6–3.4 times higher. Subjective user studies
further con�rm the superiority of the proposed approach.

1. Introduction
Recently, there has been a signi�cant interest in stream-

ing immersive multimedia content, such as 360-degree
videos, over the Internet. �eir popularity on streaming
platforms like YouTube or Facebook is on the rise. A major
challenge of streaming such videos is the amount of video
data to be downloaded. Due to the panoramic nature of
360-degree videos, video data could be an order of mag-
nitude larger than conventional videos to achieve similar
video bit rates [4]. But the viewer only views a small por-
tion (viewport) of the downloaded 360-degree scene. So,
much of the network bandwidth is used up by content that
is not actually viewed. �is amounts to much poorer�al-
ity of Experience (QoE) relative to conventional videos
when there is a network bandwidth constraint. �is is-
sue is compounded when the available network bandwidth

varies over time in an unpredictable fashion as is common
over the Internet [27].

Adaptive video streaming techniques [32, 40, 19] have
addressed the la�er problem by �rst encoding the video
into multiple chunks of a �xed duration at multiple rates
on the server. �en it delivers the video chunks at a rate
that bestmatches the conditions (for example, player bu�er
level, available bandwidth at that time). �e rates here re-
�ect di�erent compression levels and thus di�erent view-
ing qualities. �ese techniques basically solve an optimiza-
tion problem that a�empts to maximize the overall QoE
(e.g., be�er video quality and less stalls) under the band-
width constraint. Since the decision on the video qual-
ity must be made in advance of the actual download, the
network bandwidth needs to be estimated. A�empting to
download a higher quality than the network can support
may lead to stalls. Such adaptive streaming is now widely
adopted for streaming regular videos over the Internet [32].

Recent work has extended this for 360-degree videos by
combining with viewport prediction [7, 10, 28, 38, 26, 42,
15], where an independent technique predicts the user’s
viewport in advance by observing the viewer behavior
(head tracking) and prior static analysis of the video. �is
prediction is used to download a part of the 360-degree
scene, pu�ing more emphasis on the part the user is likely
to view. �is is achieved by dividing the scene into tiles and
then choosing what tiles to download and in what quality
for each video segment.

Overall, such viewport-adaptive tiled streaming for 360-
degree content must run a complex optimization in real
time in presence of multiple uncertainties. It strives to im-
prove video QoE that depends onmultiple parameters such
as video quality (or encoding bit rate) and stall behavior. It
must make decisions what to download and in what en-
coding quality, under uncertainties such as network band-
width and user viewport. Decisions made at any instant
impact the state of the downloading client and also future
QoE. Choosing what and when to download is a sequen-
tial decision-making process, and it is very much amenable
to Reinforcement Learning (RL) [34]. Exploiting RL for
adaptive streaming of 360-degree videos is the focus of this

work. Ourwork is inspired by recent RL-basedmethods for
conventional video streaming [23, 31] and multi-camera
image acquisition [35].

However, applying RL to 360-degree tiled video stream-
ing is not straightforward. First, the state and action spaces
are large. For example, if we use typical values such as 24
tiles and 6 video encoding quality levels, the search space
becomes (6+1)24, while there are only 6 choices for a reg-
ular video. To address this problem we take the approach
of deciding on and downloading one tile at a time instead
of trying to make a decision for all tiles at once. �is has
the added bene�t of a more frequent sampling of available
network bandwidth, leading to a be�er bandwidth estimate
and shorter adaptation cycle. But there is another chal-
lenge: the reward signal for the RL agent is not available
immediately a�er the agent takes an action. �is is because
the reward is de�ned based on the QoE, which cannot be
evaluated until all the necessary tiles for playing a video
segment have been downloaded.

Our contribution in this work is developing an RL for-
mulation that addresses the above challenges. We learn a
streaming policy that decides sequentially the tile and tile
quality to download and the policy can be trained with
delayed rewards. Our evaluations show that the use of
RL in this fashion provides a much more agile streaming
technique that adapts well to the changing network and
user viewport. �is provides a signi�cant step-up from
the state-of-the-art in 360-degree video streaming litera-
ture [10, 16, 28, 38, 26], where simpli�ed/�xed rules are
used without any learning component. In the work closest
to ours, DRL360 [42], RL is indeed used but this study does
not address the large action space challenge. Instead, it set-
tles for downloading all tiles outside the predicted viewport
in the lowest video quality, while downloading predicted
viewport in just one encoding quality matching the avail-
able network capacity. When the viewport prediction is
inaccurate, this leads to a high quality variance with the
viewport.

Overall, we explicitly consider the need for stream-
ing di�erent video tiles with di�erent bitrates and for re-
downloading tiles at a higher encoding quality if the net-
work condition allows. We propose a formulation with
a manageable action space and a short adaptation cycle
that works with delayed reward signals. In a compre-
hensive evaluation with other techniques, we show that
our method quantitatively outperforms the state-of-the-
art methods. We also perform user studies to evaluate
our methods qualitatively and tie quantitative measures to
users’ perception.

2. Adaptive Streaming and Related Work

Adaptive Streaming. For adaptive streaming, a 360-
degree video is divided across both time and space. Across
time, the video is split into multiple chunks of �xed dura-
tion, called segments, similar to conventional video stream-
ing. Across space, each segment is split into multiple tiles.
�is is done a�er a projection from the 3D sphere to a 2D
plane, e.g., equirectangular projection [25, 17]. �us, the
<segment, tile> tuple is the unit of encoding, storage, and
network communication. Each <segment, tile> tuple is
encoded in multiple quality levels (i.e., encoding bitrates)
at the video server.

In general, tiles are smaller than the viewport (the �eld
of view of the user), so multiple tiles are needed to cover
the viewport. �e video content needs to be downloaded
in advance of playback. �us, at the time of download, the
viewport of the segment being downloaded is unknown
andmust be predicted. �e prediction is modeled as a prob-
ability distribution over all possible tiles [10, 26]. Given this
prediction as an input, our task is to select the tiles along
with their bit rates for the next segment to be fetched sub-
ject to the network constraint. �e network capacity here is
the same as available bandwidth. �is can vary over time
and but can bemeasured (sampled) by noting the download
speed. Overestimating the network capacity may lead to
stalls as the segment may not yet to be completely down-
loaded at the time of playback. Underestimating the ca-
pacity, in turn, will have a smooth playback, but at a lower
video quality than possible. Inaccurate viewport prediction
also leads to similar issues—tiles may be missing at play-
back or have poor video quality. Overall, this is fundamen-
tally an optimization problem: maximizing the user’s qual-
ity of experience aggregated over time, subject to network
capacity constraints. �is optimization is to be addressed
using an appropriate adaptive bit rate (ABR) algorithm.

RelatedWork. ML techniques have been used to improve
video streaming but most prior methods are based on su-
pervised or unsupervised learning [40, 33, 6, 38, 15, 26]. In
this work, we propose to use RL instead, which is more ap-
propriate for adaptive stream given the need for optimal
sequential decisions [34]. A number of recent studies use
RL that uses di�erent features and learn the best strategy to
fetch video tiles. Q-based RL to learn the fetching strategy
has been proposed in [9]. However, this works well only if
the network follows a Markovian property. To resolve this,
Pensieve [23] andD-Dash [13] propose using RL to learn an
e�ective streaming strategy. However, these approaches
do not scale well for tile-based 360 video streaming. �e
work closest to our work is DRL360 [42]. However, unlike
our work, DRL360 does not support di�erent bitrates for
predicted viewport tiles. Rest of the tiles are assigned with
the lowest encoding quality level.

Prior Statistical Analysis of Video

Neural Network: Viewport Prediction

3DCNN

3DCNN

Saliency
Map

Motion
Map

Headtracking

Saliency
Map

Saliency
Map

Motion
Map

Motion
Map

Video Player

Tile Size
Database

MPD Handler

Tile Handler

Buffer

RL Agent: Rate Selection

HTTP Request

HTTP Response

NW Throughput / Download Time

Video HTTP Server

Multiple
bitrates

360 °

Projection

360 °
180 °

Encoding
Packaging

Pre-Processing of VideoRate Adaptation for Tiled 360-degree Video

Reward

Figure 1: Overview of our system design. RL Agent runs at the Video Player. It uses the output of Viewport Predictionmodule
and other status (Bu�er, Network) to choose tile rates. �en the player downloads tiles from the Video Server.

Other studies has also used RL to improve perceptual
QoE of video streaming. HotDASH uses RL to improve the
QoE by prefetching temporally high priority segment for
conventional video streaming [31]. Another study called
Qarc uses deep neural networks to improve the perceptual
quality of experience of streaming videos [18]. �ese stud-
ies are orthogonal to our technique, and can be combined
with our technique to further improve the quality of expe-
rience of end users.

Using existing adaptive video streaming ecosystem, one
tile is downloaded at a time for 360-degree tiled video
streaming. However, the existing approaches [42, 28, 26,
10, 14, 37] select the video quality levels of all the tiles of
the same segment all at once, based on bandwidth estima-
tion made at the time of this rate selection. When the tiles
are actually downloaded, this estimation can change yet
the techniques do not allow for any further adaptation.

More recent works [36, 12, 21, 30] uses RL for video
streaming but limited in adaptiveness. For example, [30]
uses RL to direct viewers to points of interest which are
prede�ned by the content producer instead of streaming
based on true user’s viewpoint. [21] also uses RL to select
a rate for a predicted FoV but it groups tiles into a �xed
number of regions (I FoVs) and RL agents select rates for
those groups. Our results already show that ATRIA out-
performs a technique that groups tiles into 4 levels. [12]
has sequential decision making for tiles, similar to ATRIA,
but uses lower performance RL technique [36].

3. Proposed Approach
We use deep RL to learn a streaming policy that can

adapt to the predicted behavior of a viewer and the dy-
namics of the network conditions. We name the result-
ing streaming policy ATRIA (Adaptive sTreaming using
ReInforcement leArning). Figure 1 illustrates the pipeline
of our proposed system. ATRIA assumes that a video for
streaming has been divided into smaller spatiotemporal
subvolumes (Section 2) and hosted at the video server. �e

core of ATRIA is an arti�cial agent (RL agent in Figure 1)
that determines the downloading order and the download-
ing bitrate for each subvolume. Using viewport prediction,
network conditions and other status, the agent follows se-
quential decision process to maximize the sum of rewards,
where the rewards are de�ned on the quality of viewing
experience. In the following, we describe the main compo-
nents of our RL formulation, including the state represen-
tation, the reward function, and action space.

3.1. State Representation

�e state is designed to represent various characteris-
tics of video segments, network conditions, and expected
viewer’s behavior. �e state st at time t contains:

• [τt−1, τt−2, . . . , τt−n]: downlink throughputs mea-
sured for the previous tile downloads, where n is the
number of past downloads considered.

• [δt−1, δt−2, . . . , δt−n]: download times taken for the
previous n downloads.

• [s1, s2, . . . , sK]: sizes of tiles in K di�erent qualities
(encoding bitrates).

• [p1, p2, . . . , pN]: the probabilities that the tiles will be
viewed, where N is number of tiles.

• [q1, q2, . . . , qN]: qi is the quality level selected for ith
tile of segment being downloaded. qi = 0 if the tile
has not been downloaded yet.

• [b1, b2, . . . , bN]: quality levels of the tiles of the previ-
ously downloaded segment. bi = 0 for tiles that were
not downloaded.

• ct: number of segments remaining at the time of
downloading this segment.

• αt: video player bu�er size in seconds of playback.
i.e. the duration of the video segments that have been
downloaded but waiting in the bu�er to be played.

�ese input features for the state representation are also
depicted in Figure 2.

State

Past throughput

Past download time

Tile Sizes in different
qualities

Video player buffer size

Number of Segments remaining

Past segment qualities

1DCNN

1DCNN

1DCNN

Tj , qj

.

.

.

Agent

Reward ri

+bitrates - rebuffering – smoothness - missed

Current segment tile
probabilities

Immediate Reward

Reward
per

Segment

Current segment tile
qualities

1DCNN

1DCNN

1DCNN

T1 , q1

T1 , q2

TN , qN

.

.

.

.

Figure 2: High-level network architecture of ATRIA.

3.2. Action Space

We consider two action spaces, leading to adaptive
streaming methods: ATRIA and ATRIA-2.
ATRIA: Adaptive tile ordering. �e RL network selects
the tiles to download and their download quality for each
action. Tiles are allowed to be downloadedmore than once,
e.g., �rst with low encoding quality and subsequently with
higher encoding quality when network capacity gets bet-
ter. Some tiles can be skipped (never downloaded). We let
the agent learn what is the best action in each step that
maximizes the accumulated rewards. �e action at at time
t is a pair of positive integers (a1t , a2t). �e �rst quantity a1t
is the ID of the tile that should be downloaded, and a2t is
the chosen encoding quality level for downloading. In this
work, the policy function πθ is a deep neural network with
learnable parameter set θ. �e input to the network is the
state representation vectors as in Section 3.1. �e last layer
of the network is a so�max layer, and the output of the net-
work is a probability vector of size N(K + 1), where N is
the number of tiles and K is the number of video quality
levels. �e tile ID a1t and the download quality a2t are de-
termined together, not sequentially or independently. We
illustrate this in Figure 2.
ATRIA-2: Fixed tile ordering. �is policy is similar to
ATRIA, but downloads the tiles sequentially in a �xed order,
i.e., tiles 1, 2, . . . , N in that order. At each step, the tile to
download is already determined, and the policy only needs
to determine the bitrate quality to download. It is also pos-
sible for the policy to decide not to download a tile. �ere-
fore, at each action at at time t, there areK+1 action space,
whereK is number of di�erent video bitrates o�ered. �is
signi�cantly reduces the action spaces compared to ATRIA
action space. ATRIA-2 also learns a probabilistic policy: at
time t, given the state st, action at is selected with a prob-
ability value given by the function πθ(at|st). In this work,
the policy function πθ is a deep neural network with learn-
able parameter set θ. �e input to the network is the state
representation vectors as in Section 3.1. Figure 2 also il-
lustrates ATRIA-2 except for the last layer of action space.
Table 1 compares the design approaches of ATRIA, ATRIA-

2, and a regular method (selects the qualities for N tiles).

Regular ATRIA ATRIA-2
Space Size (K + 1)N N(K + 1) K + 1

Action (a1t , .., a
N
t) (a1t , a

2
t) at

ait = 0..K a1t = 1..N , a2t = 0..K at = 0..K

Table 1: Summary of ATRIA& ATRIA-2 design approaches.

3.3. Reward Function

�e reward function is de�ned based on the quality of
viewer experience, which is high when the video bitrate
is high, the rebu�ering time is small, and the playback is
smooth (both spatially and temporally).
Viewer Perceived Video Bitrate. We de�ne viewer per-
ceived video bitrate as the sum of qualities of tiles that
overlaps with the viewport, i.e., tiles that the user actu-
ally views. Tiles that are downloaded but not viewed do
not count toward the user perceived video bitrate. We as-
sume all viewed tiles contributes to the quality of experi-
ence equally. Mathematically, for the ith video segment,
the perceived bitrate Bi during playback is given by:

Bi =

N∑
j=1

βijoij , (1)

where βij is the bitrate of tile j of segment i, and oij = 1
if tile j overlaps with the viewport, and 0 otherwise.
Rebu�ering. If the playback bu�er has depleted but the
next video segment has not been downloaded completely,
playback stalls and the viewer experiences rebu�ering.
We measure the rebu�ering duration for each tile j being
downloaded. We de�ne the rebu�ering duration during the
download of a segment as the sum of rebu�ering duration
for each tile for this segment:

Di =

N∑
j=1

dij , (2)

where dij is the rebu�ering duration of downloading tile j
of segment i.
�ality Smoothness Across Segments. Similar to con-
ventional video streaming, quality �uctuation between the
segments also degrades the QoE. We model the quality
smoothness between segments as the di�erence of user
perceived video bitrates of two consecutive segments. Let
Bi represents the user perceived video bitrate of the ith
segment. �e smoothness measure is de�ned as:

Si = |Bi −Bi−1|, for i ≥ 2. (3)

�ality SmoothnessWithin Viewport. Unlike conven-
tional video streaming, user might view the scene with dif-
ferent levels of qualities in tiled 360-degree video stream-
ing. �is is inevitable, unless the system downloads all tiles

in the same quality level. We measure this quality smooth-
ness within a viewport as a variance among the tiles that
overlaps with viewport:

Ui = StdDev {βij |oij = 1} (4)

Penalty for repeating/missing tiles. ATRIA allows a tile
to be re-downloaded with a di�erent encoding quality if
the network condition allows. Rationally, a tile should not
be re-downloaded with a lower quality than what has been
downloaded, so we penalize this undesirable action by giv-
ing an immediate reward of −1.

If the policy does not select tiles that overlap with the
viewport (i.e., missing titles) for segment i, we also assign
a negative reward.

Zi = −
N∑
j=1

oijRij(k) δ(qij = 0), (5)

where Rij(k) is the bitrate of tile j of segment i at quality
level k. qij is the quality level downloaded for the tile j
of segment i; qij is 0 if the title is not downloaded. δ(·) is
the delta function; δ(x) = 1 if x is true and 0 otherwise.
k is set to be the average quality level of the viewed tiles:
k = round((

∑N
j=1 oijqij)/(

∑N
j=1 oij)).

User Perceived �ality of Experience (QoE). Follow-
ing [40, 23] and also [28, 26, 42], the total user perceived
QoE is de�ned as the sum of user perceived bitrates, re-
bu�ering, and smoothness for allM video segments:

QoE =

M∑
i=1

(Bi − µ1Di − µ2Si − µ3Ui). (6)

where the µ1, µ2, and µ3 are constants modeling contribu-
tions of rebu�ering and quality smoothness on the QoE.
Reward. We de�ne the reward ri for a video segment
i based on the perceived QoE for this segment and the
penalty for having repeating or missing tiles.

ri = Bi − µ1Di − µ2Si − µ3Ui + Zi, (7)

�e reward is de�ned for each video segment, collectively
for all tiles a�er they have been downloaded and viewed.
�is reward is not de�ned for an individual download step,
and this corresponds to having delayed rewards.

3.4. Network Architecture and Policy Learning

Network Architecture. Figure 2 shows the high level ar-
chitecture of the actor network. �e critic network has the
same architecture, except for the linear neuron output. All
non-output layers are the same architecture at the actor
and the critic network. We use 1D CNNs to encode the

history of past values, including throughputmeasurements
and download times. We also use 1D CNNs to encode tile
features such as probabilities, �le sizes, and selected qual-
ities. �e �lter size is 4 and number of �lters is 128. For
the number of remaining segments ct and the bu�er size
αt, we use a 128-dim fully connected layer with RELU ac-
tivation. �e outputs of these layers of actor network are
connected to a hidden layer with 128 units, followed by the
so�max layer.
Policy Learning. To learn a streaming policy, we use A3C
[24], a state-of-the-art RL method. A3C is a policy gradient
method [11] that asynchronously trains two agents (both
are neural networks): an actor and a critic. Each agent
has its own copy of the environment. �e actor agent is
the policy function for video streaming: in ATRIA, it takes
the state as input and decides the tile to download and the
download quality (a1t , a

2
t) while in ATRIA-2, it decides the

download quality at. �e critic agent is trained to estimate
the value of the state, called value function. It evaluates
how good the policy is by estimating the expected total re-
ward for a given state s and and the policy πθ . We use the
Temporal Di�erencemethod [11] to train the critic network.

We use TensorFlow [2] and TFLearn [3] to implement
neural network for both training and testing. �e discount
factor γ is set to 0.99. We con�gure the entropy parameter
weight to encourage the agent to explore and to exploit its
knowledge about the state space and environment. Both
ATRIA and ATRIA-2 converges. We observe that ATRIA-2
converges faster.

4. Experiments
We compare our methods quantitatively and quali-

tatively with three state-of-the-art 360-degree tile-based
video streaming algorithms: Mosaic [26], Flare [28], and
DRL360 [42]. �ese methods represent the entire gamut of
relevant approaches for bit rate adaptation for 360-degree
video streaming, and they have been shown to achieve
higher QoE than conventional non-tile video streaming
methods. �e methods are evaluated on testing environ-
ments that emulate real network conditions.

4.1. Experiment settings

Emulated streaming environments. We use ten videos
for training and evaluating various streaming algorithms.
Each video is one-minute long and encoded with six di�er-
ent bit rates: 0.512, 2, 5, 10, 15, and 20 Mbps. Each video is
split temporally in two-second segments. Each video is ac-
companied with head tracking data from 50 viewers [22].
�e head tracking data is used as the ground truth to eval-
uate the viewing experience of a viewer, not as the input
to any streaming algorithm.

For each pair of video and the head tracking data, we

10 5 0 5 10 15 20 25
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F ATRIA-2 | avg 5.13

ATRIA | avg 4.23
DRL360 | avg 2.34
Mosaic | avg 2.48
Flare | avg 1.58

(a) Average QoE (8,1,2).

10 5 0 5 10 15 20 25
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F ATRIA-2 | avg 5.71

ATRIA | avg 4.58
DRL360 | avg 2.52
Mosaic | avg 2.58
Flare | avg 1.68

(b) Average QoE (4,1,2).

10 5 0 5 10 15 20 25
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F ATRIA-2 | avg 9.35

ATRIA | avg 8.00
DRL360 | avg 4.94
Mosaic | avg 3.23
Flare | avg 2.33

(c) Average QoE (1,1,1).

0 5000 10000 15000 20000 25000 30000
User Perceived Video Bitrates (Kbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F ATRIA-2 | avg 9178.0

ATRIA | avg 9415.0
DRL360 | avg 7147.6
Mosaic | avg 6098.8
Flare | avg 5487.1

(d) User perceived bitrates.

0 20 40 60 80 100
Rebuffering Ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

ATRIA-2 | avg 2.43
ATRIA | avg 2.95
DRL360 | avg 3.68
Mosaic | avg 1.29
Flare | avg 1.34

(e) Rebu�ering.

0 5000 10000 15000 20000 25000
Smoothness Variance in Video Bitrates (Kbps)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F ATRIA-2 | avg 2145.0
ATRIA | avg 2830.6
DRL360 | avg 2434.8
Mosaic | avg 2279.4
Flare | avg 2728.1

(f) Smoothness across segments.

0 1000 2000 3000 4000 5000
Smoothness Variance in Video Bitrates (Kbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

ATRIA-2 | avg 758.7
ATRIA | avg 941.1
DRL360 | avg 889.9
Mosaic | avg 569.0
Flare | avg 482.5

(g) Smoothness within viewport.

0 1 2 3 4 5 6
User Perceived Quality Levels

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

ATRIA-2 | avg 4.08
ATRIA | avg 3.81
DRL360 | avg 2.75
Mosaic | avg 2.80
Flare | avg 3.02

(h) User perceived quality levels.

Figure 3: Comparison of ATRIA and ATRIA-2 with other baseline techniques using CDFs of various metrics: (a)-(c) average
QoE (µ1, µ2, µ3), (d) user perceived bitrate, (e) rebu�ering ratio, (f) temporal smoothness, (g) viewport smoothness, (h) user
perceived video quality levels. A point (x, y) on a performance curve means that the metric has a value ≤ x for a fraction
y of the times.

can emulate di�erent streaming conditions and calculate
the quality of experience. �e emulated environments are
based on about 300 real network traces of public datasets:
broadband dataset [1] and a mobile dataset [29]. We lin-
early increase the bandwidth to re�ect prevalent Internet
connection speed [5]. We use a large corpus of real net-
work traces for training and a di�erent set of network
traces for testing. In all experiments reported in this pa-
per, the training and testing network environments are
separate. �is amount to 135,000 video steaming sessions
(equivalent to 2,250 hrs, 3 months).

Viewport Prediction. Predicting where a viewer will at-
tend to is an active area of research, e.g., [26, 41, 39]. In this
work, we use the viewport prediction network developed
by [26]. �is is a 3DCNN network that uses the I3D net-
work for human action recognition [8]. �e inputs to the
network are: a saliency map, a motion map and the user’s
head tracking history dataset [10]. �e outputs are the
probabilities for the tiles to be viewed by the user. �e pre-
diction accuracy is 91–92% for the prediction lead time of
one second, and 88% for the lead time of two seconds [26].

�e overhead for running the viewport prediction net-
work and the RL policy are less than 0.6ms and 0.1ms re-
spectively. �e overhead for encoding video tiles is pro-
portional to the number of tiles, and we use the 4×6 tiling
as in previous work [14, 26, 28]. Because the viewport pre-
diction network and the RL policy are trained o�-line, the
overhead of the inference on the client is small, and the
proposed solution is feasible to run even on a smartphone.

4.2. Quantitative Comparison Results

We randomly split the ten videos into two disjoint train-
ing and testing subsets, each with �ve videos. Additionally,
the network traces used for emulating the network condi-
tions for training data are not used for testing.

�ality of Experience. In computer networking and
multimedia community, it is challenging to quantify the
quality of experience. �ere is no rigorous formulation to
compute a numerical score for the experience of an user
based on measurable values such as perceived bitrates and
rebu�ering time. Following [40, 23], we experiment with
multiple values of the QoE parameters µ1, µ2, and µ3 de-
�ned in Eq. (6). Speci�cally, the ranges of these parameters
are set to 1–8, 1–4, and 1–4 respectively. �e reward func-
tion is de�ned accordingly, based on the QoE parameters.

Figure 3a, 3b, and 3c plot the QoE distributions of dif-
ferent streaming methods for three di�erent QoE parame-
ter se�ings. As can be seen, both ATRIA and ATRIA-2 have
signi�cantly higher QoE than other methods for all param-
eter se�ings in consideration. In terms of average QoE, our
methods are 1.6 to 3.4 times be�er than Mosaic, DRL360,
and Flare. We perform experiments with di�erent QoE pa-
rameter se�ings and observe similar results, but the plots
cannot be shown here due to the space limit.

Individual QoE Metrics. We also analyze the perfor-
mance of individual QoE metrics of di�erence techniques.
Figure 3d shows the average bitrate perceived by viewers
for di�erent algorithms, where a higher bitrate is more de-
sirable. On average, the bitrate of ATRIA (and similarly for
ATRIA-2) is 1.3, 1.5, and 1.7 times higher than the bitrates
of DRL360, Mosaic, and Flare respectively.

2.5 3.0 3.5 4.0 4.5 5.0
Video Quality Levels

3.5

4.0

4.5

5.0

5.5

6.0

Qo
E

ATRIA-2
No current rate
No buffer size
No Throughput Info
No Delays
No Filesize
No remain
No Prob
No Past rate

Figure 4: Ablation study for the importance of individual
feature types. �e QoE and video quality values decrease
if any input feature is not used.

Figure 3e shows the ratio of rebu�ering for di�erent
streaming techniques, where a lower ratio indicates a bet-
ter QoE. All streaming methods have a similar bu�ering
duration, which is about 1–4% of the video duration or 0.6–
2.4 seconds of 60-second video. �e quality variance is an-
other important indicator for the QoE, which measures the
smoothness of the video quality over time (lower is bet-
ter). Figure 3f shows the standard deviation across seg-
ments of a video. We note that ATRIA-2 and DRL360 have
similar quality variance values. Figure 3g plots the quality
variation within the viewport. While ATRIA and ATRIA-2
are not the best in terms of smoothness metric, they have
higher bitrates and overall QoE values. ATRIA-2 has higher
QoE than ATRIA because ATRIA allows re-downloading of
tiles to maximize the reward (i.e., previously downloaded
tile is not used). �e addition of a simple rule (the order of
tile to download) helps the agent learn faster while ensur-
ing that agent explores di�erent actions and exploits what
it has learned.

4.3. Ablation Studies

As described in Section 3.1, the state representation of
our RL streaming algorithms incorporates eight types of
features. We evaluate the impact of each feature type by
excluding it from the state representation. Figure 4 plots
the resulting video quality and QoE values for ATRIA-2.
Removing any feature type would reduce both video qual-
ity and the overall QoE. �e most important feature is the
viewport prediction probabilities.

4.4. Generalization Ability

In all experiments described above, we have evaluated
the performance of all methods on the test videos that are
di�erent from the videos used for training. But for many
situations, videos at a streaming server will be watched by
multiple viewers, and it not unpractical to use those videos
to train a customized streaming algorithm. �us one might
wonder if there is any performance gap for streaming a

0 5 10 15 20 25
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
ul

at
iv

e
pr

ob
ab

ilit
y

ATRIA (Train Video) | avg 4.00
ATRIA (Test Video) | avg 4.46
ATRIA-2 (Train Video) | avg 5.06
ATRIA-2 (Test Video) | avg 5.19

Figure 5: Comparing the average QoE values for streaming
videos used and not used in the training of the RL policies
for adaptive streaming.

Figure 6: QoE values for streaming di�erent videos. In this
experiment, only Video0 is used for training the adaptive
streaming algorithms ATRIA and ATRIA-2.

video that is among the training set and a video that is out-
side the training set.

Figure 5 compares the average QoE for streaming videos
used in training and the average QoE for streaming videos
not used in training. Interestingly, the two performance
curves are similar, suggesting that it is unnecessary to train
ATRIA on any speci�c video and that ATRIA can gener-
alize well on unseen videos. �is is understandable be-
cause ATRIA makes the streaming decision based on the
predicted user behavior, the network conditions, and the
state of the bu�er, not the content of the video. Notably, in
all experiments, the training and testing environments are
independent, emulated based on disjoint sets of real net-
work traces.

Given the good generalization ability of ATRIA, we ex-
periment with an extreme situationwhereATRIA is trained
with a single video, Video0. We compute the QoE for
streaming Video0 and other videos, and the results are
shown in Figure 6. ATRIA obtains higher QoEs on Video4
and Video8 than on the training video Video0. �is further
con�rms the good generalization ability of ATRIA. Figure 6
also compares the performance of ATRIA with other state-
of-the-art streaming algorithms. As can be seen, ATRIA
outperforms these algorithms, even when it is trained with
a single video.

(a) Coaster using ATRIA-2 (b) Coaster using DRL360 (c) Game using ATRIA-2 (d) Game using DRL360

Figure 7: Frame captures of video session for two videos each with ATRIA-2 and DRL360. Video frames at (b) and (d) show
that parts of the viewport have poor image quality (yellow rectangular areas) for DRL360.

Figure 8: Average user ratings for seven quality categories.
4.5. Subjective Evaluation: User Study

We also compare the actual quality of experience with
an user study. We follow the recommendations for sub-
jective video quality assessment methods for multimedia ap-
plications in [20]. We use a recommended method, called
Absolute Category Rating (ACR) to evaluate di�erent al-
gorithms and to rank the video system performance and
quality levels [20]. Each user participant is presented with
test sequences, one at a time with �ve di�erent methods
in randomized order. �e participant is asked to evaluate
the overall quality of each video, in a �ve-level scale: 5-
Excellent, 4-Good, 3-Fair, 2-Poor, 1-Bad. �e participant
is also asked to evaluate the quality of: image color, com-
pression quality, borders, image continuity, and movement
continuity. Unless all tiles are downloaded in a same com-
pression quality level, the user could view a scene with dif-
ferent quality levels. �e participant is asked if they notice
any discontinuity within a viewport and asked to rate in a
�ve-level scale: 5-Imperceptible, 4-Perceptible but not an-
noying, 3-Slightly annoying, 2-Annoying, and 1-Very An-
noying. �e higher the rating is, the be�er image continu-
ity within the viewport is observed.

We recruit fourteen participants (11male, 4 female, from
10–50 year old) for our user study. Each participant views
ten videos with �ve di�erent methods (ATRIA, ATRIA-2,
Flare, Mosaic, DRL360) for a total of 50 videos.

Figure 7 shows some frames presented to the partici-
pants in the user study. As can be seen, the frames from the
DRL360 (Figure 7b and 7d) have much lower quality than
the frames from ATRIA-2 (Figure 7a and 7c), especially in-
side the yellow rectangular regions.

Figure 8 shows the average user ratings for several qual-
ity categories for �ve streaming methods. In terms of
Overall �ality, both ATRIA-2 and ATRIA exhibit supe-
rior performance compared with other methods. ATRIA-
2 is consistently rated highest in all evaluation categories.
ATRIA has higher Overall �ality, Image Color, and Im-
age �ality than Flare, Mosaic, and DRL360. Recall from
Figure 3d,ATRIA has the highest average user perceived bi-
trate. However, the smoothness variance across segments
and within the viewport is higher than that of Flare (Fig-
ure 3f and 3g). �is explains why ATRIA has lower ratings
than Flare in terms of Image Continuity, Movement Conti-
nuity, and Viewport Continuity.

5. Conclusions

We have presented two methods for adaptive stream-
ing of 360-degree videos. Unlike prior works that use
pre-determined rules for rate adaptation, our methods are
based on deep reinforcement learning, and they can dy-
namically determine which tiles to download at what qual-
ities and when, depending on the network conditions. We
have evaluated our methods in realistic se�ings that em-
ulate the real network conditions. We have compared
our methods against state-of-the-art 360-degree tiled video
streaming techniques, and showed that our methods out-
perform the othermethods by a factor of 1.6–3.4 in terms of
average QoE and a factor of 1.3–1.7 in terms of perceived
bitrates. We have also performed a subjective user study
and found that our methods have the highest overall rat-
ings among all methods. Further improvement can be ob-
tained by increasing the smoothness within the viewport,
and it will be a good direction for future work.

Acknowledgments

�is research was partially supported by Intelibs, Inc.
Minh Hoai was supported by NSF Award IIS-1763981. �e
authors acknowledge the time and e�ort of the volunteer
user study participants.

References
[1] Federal communications commission. 2016. raw data - mea-

suring broadband america. (2016). Technical report.
[2] TensorFlow. https://www.tensorflow.org,

2018.
[3] FFmpeg. https://ffmpeg.org/, 2019.
[4] Shahryar Afzal, Jiasi Chen, and KK Ramakrishnan. Char-

acterization of 360-degree videos. In Workshop on VR/AR
Network. ACM, 2017.

[5] Akamai. Akamai’s: 2018 State of the Internet / Connectivity
Report . 2018.

[6] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay
Rao, Jessica Chen, Ethan Katz-Basse�, Bruno Ribeiro, Jibin
Zhan, and Hui Zhang. Oboe: auto-tuning video ABR al-
gorithms to network conditions. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Com-
munication. ACM, 2018.

[7] Yanan Bao, Huasen Wu, Tianxiao Zhang, Albara Ah Ramli,
and Xin Liu. Shooting a moving target: Motion-prediction-
based transmission for 360-degree videos. In Big Data (Big
Data), IEEE International Conference on. IEEE, 2016.

[8] Joao Carreira and Andrew Zisserman. �o vadis, action
recognition? a new model and the kinetics dataset. In
IEEE Conference on Computer Vision and Pa�ern Recognition
(CVPR). IEEE, 2017.

[9] Federico Chiario�i, Stefano D’Aronco, Laura Toni, and Pas-
cal Frossard. Online learning adaptation strategy for DASH
clients. In International Conference on Multimedia Systems,
2016.

[10] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang,
Kuan-Ta Chen, and Cheng-Hsin Hsu. Fixation prediction
for 360 video streaming in head-mounted virtual reality. In
Proceedings of the 27th Workshop on Network and Operating
Systems Support for Digital Audio and Video. ACM, 2017.

[11] Vincent Franccois-Lavet, Peter Henderson, Riashat Islam,
Marc G Bellemare, Joelle Pineau, et al. An introduction to
deep reinforcement learning. Foundations and Trends® in
Machine Learning, 11(3-4), 2018.

[12] Jun Fu, Xiaoming Chen, Zhizheng Zhang, Shilin Wu, and
Zhibo Chen. 360SRL: A sequential reinforcement learning
approach for ABR tile-based 360 video streaming. In IEEE
International Conference on Multimedia and Expo (ICME).
IEEE, 2019.

[13] M. Gadaleta, F. Chiario�i, M. Rossi, and A. Zanella. D-
DASH: A deep q-learning framework for DASH video
streaming. IEEE Transactions on Cognitive Communications
and Networking, 3(4), Dec 2017.

[14] Mario Graf, Christian Timmerer, and Christopher Mueller.
Towards bandwidth e�cient adaptive streaming of omnidi-
rectional video over h�p: Design, implementation, and eval-
uation. In Proceedings of the 8th ACM onMultimedia Systems
Conference. ACM, 2017.

[15] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming
Guo, and Junchen Jiang. Pano: Optimizing 360 video
streaming with a be�er understanding of quality percep-
tion. In Proceedings of the ACM Special Interest Group on
Data Communication. 2019.

[16] Jian He, Mubashir Adnan �reshi, Lili Qiu, Jin Li, Feng Li,
and Lei Han. Rubiks: Practical 360-degree streaming for
smartphones. In Proceedings of the 16th Annual Interna-
tional Conference on Mobile Systems, Applications, and Ser-
vices. ACM, 2018.

[17] Mohammad Hosseini and Viswanathan Swaminathan.
Adaptive 360 VR video streaming: Divide and conquer. In
Multimedia (ISM), IEEE International Symposium on. IEEE,
2016.

[18] Tianchi Huang, Rui-Xiao Zhang, Chao Zhou, and Lifeng
Sun. Qarc: Video quality aware rate control for real-
time video streaming based on deep reinforcement learning.
arXiv:1805.02482, 2018.

[19] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Ma�hew
Trunnell, and Mark Watson. A bu�er-based approach to
rate adaptation: Evidence from a large video streaming ser-
vice. ACM SIGCOMM Computer Communication Review,
44(4), 2015.

[20] P ITU-T RECOMMENDATION. Subjective video quality
assessment methods for multimedia applications. Interna-
tional telecommunication union, 1999.

[21] Nuowen Kan, Junni Zou, Kexin Tang, Chenglin Li, Ning Liu,
and Hongkai Xiong. Deep reinforcement learning-based
rate adaptation for adaptive 360-degree video streaming. In
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2019.

[22] Wen-Chih Lo, Ching-Ling Fan, Jean Lee, Chun-Ying Huang,
Kuan-Ta Chen, and Cheng-Hsin Hsu. 360 video viewing
dataset in head-mounted virtual reality. In Proceedings of
the 8th ACM on Multimedia Systems Conference. ACM, 2017.

[23] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with pensieve. In Proceed-
ings of the Conference of the ACM Special Interest Group on
Data Communication. ACM, 2017.

[24] VolodymyrMnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International conference on ma-
chine learning, 2016.

[25] Omar A Niamut, Emmanuel �omas, Lucia D’Acunto, Cyril
Concolato, Franck Denoual, and Seong Yong Lim. MPEG
DASH SRD: spatial relationship description. In Proceedings
of the 7th International Conference on Multimedia Systems.
ACM, 2016.

[26] Sohee Park, Arani Bha�acharya, Zhibo Yang, Mallesham
Dasari, Samir R Das, and Dimitris Samaras. Advancing user
quality of experience in 360-degree video streaming. In IFIP
Networking Conference (IFIP Networking). IEEE, 2019.

[27] Sohee Kim Park, Arani Bha�acharya, Mallesham Dasari,
and Samir R Das. Understanding user perceived video qual-
ity using multipath TCP over wireless network. In IEEE 39th
Sarno� Symposium. IEEE, 2018.

[28] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakr-
ishnan. Flare: Practical viewport-adaptive 360-degree video
streaming for mobile devices. In Proceedings of MobiCom.
ACM, 2018.

https://www.tensorflow.org
https://ffmpeg.org/

[29] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pral
Halvorsen. Commute path bandwidth traces from 3G net-
works: analysis and applications. In Proceedings of the 4th
ACM Multimedia Systems Conference. ACM, 2013.

[30] Lucile Sassatelli, Marco Winckler, �omas Fisichella, and
Ramon Aparicio. User-adaptive editing for 360 degree video
streaming with deep reinforcement learning. In Proceed-
ings of the 27th ACM International Conference onMultimedia,
2019.

[31] S. Sengupta, N. Ganguly, S. Chakraborty, and P. De. Hot-
DASH: Hotspot aware adaptive video streaming using deep
reinforcement learning. In ICNP, 2018.

[32] Iraj Sodagar. �e MPEG-DASH standard for multimedia
streaming over the internet. IEEE multimedia, 18(4), 2011.

[33] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin,
Nanshu Wang, Tao Liu, and Bruno Sinopoli. Cs2p: Improv-
ing video bitrate selection and adaptation with data-driven
throughput prediction. In Proceedings of the ACM SIGCOMM
Conference, 2016.

[34] Richard S. Su�on and Andrew G. Barto. Reinforcement
Learning: An Introduction. MIT Press, Cambridge, MA, USA,
2nd edition, 2018.

[35] Boyu Wang, Lihan Huang, and Minh Hoai. Active vision
for early recognition of human actions. In Proceedings of the
IEEE Conference on Computer Vision and Pa�ern Recognition,
2020.

[36] Gongwei Xiao, Xu Chen, Muhong Wu, and Zhi Zhou. Deep
reinforcement learning-driven intelligent panoramic video
bitrate adaptation. In Proceedings of the ACM Turing Cele-
bration Conference-China, 2019.

[37] Lan Xie, Zhimin Xu, Yixuan Ban, Xinggong Zhang, and
Zongming Guo. 360ProbDASH: Improving QoE of 360 video
streaming using tile-based HTTP adaptive streaming. In
Proceedings of the ACM on Multimedia Conference. ACM,
2017.

[38] Lan Xie, Xinggong Zhang, and Zongming Guo. CLS: A
cross-user learning based system for improving QoE in 360-
degree video adaptive streaming. In 2018 ACM Multimedia
Conference on Multimedia Conference. ACM, 2018.

[39] Zhibo Yang, LihanHuang, Yupei Chen, ZijunWei, Seoyoung
Ahn, Gregory Zelinsky, Dimitris Samaras, and Minh Hoai.
Predicting goal-directed human a�ention using inverse re-
inforcement learning. In Proceedings of the IEEE Conference
on Computer Vision and Pa�ern Recognition, 2020.

[40] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinop-
oli. A control-theoretic approach for dynamic adaptive
video streaming over h�p. ACM SIGCOMM Computer Com-
munication Review, 45(4), 2015.

[41] Gregory Zelinsky, Zhibo Yang, Lihan Huang, Yupei Chen,
Seoyoung Ahn, ZijunWei, Hossein Adeli, Dimitris Samaras,
and Minh Hoai. Benchmarking gaze prediction for categor-
ical visual search. In CVPR Workshop - Mutual Bene�ts of
Cognitive and Computer Vision, 2019.

[42] Yuanxing Zhang, Pengyu Zhao, Kaigui Bian, Yunxin Liu,
Lingyang Song, andXiaoMing Li. DRL360: 360-degree video
streaming with deep reinforcement learning. In Proceedings
of IEEE Infocom. IEEE, 2019.

