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by Semantic Attribute Associations
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Abstract—Multivariate datasets with many variables are increasingly common in many application areas. Most methods approach
multivariate data from a singular perspective. Subspace analysis techniques, on the other hand. provide the user a set of subspaces
which can be used to view the data from multiple perspectives. However, many subspace analysis methods produce a huge amount of
subspaces, a number of which are usually redundant. The enormity of the number of subspaces can be overwhelming to analysts,
making it difficult for them to find informative patterns in the data. In this paper, we propose a new paradigm that constructs
semantically consistent subspaces. These subspaces can then be expanded into more general subspaces by ways of conventional
techniques. Our framework uses the labels/meta-data of a dataset to learn the semantic meanings and associations of the attributes.
We employ a neural network to learn a semantic word embedding of the attributes and then divide this attribute space into semantically
consistent subspaces. The user is provided with a visual analytics interface that guides the analysis process. We show via various
examples that these semantic subspaces can help organize the data and guide the user in finding interesting patterns in the dataset.

Index Terms—High-dimensional data, multivariate data, subspace clustering, subspace analysis, cluster analysis.
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1 INTRODUCTION

A CONSEQUENCE of the age of big data is the rapid
increase in complexity of multivariate datasets and the

corresponding need for appropriate data analysis and inter-
pretation tools. An important aspect of understanding mul-
tivariate data is to identify and interpret relevant patterns
– data items that are associated with one another in terms
of some similarity metric. For a multivariate dataset, this
task can be challenging due to the curse of dimensionality.
It refers to the fact that as the dimensionality of a dataset
grows, the volume of the space increases so fast that the
data inside that space become very sparse. As a result, all
points appear to be equally far and dissimilar. This makes it
difficult to locate and identify patterns in these datasets.

To ease this task a plethora of dimension reduction
techniques have been developed. Commonly, these methods
approach the data in their entirety – without subdividing the
space. However, viewing multivariate data from a singular
perspective is often not sufficient since useful information
can be hidden in some subset of the attributes. Assume, for
instance, a dataset on housing which may contain a group of
attributes that pertain to the structure of the house (number
of bedrooms, floors etc); another group of attributes might
relate to the neighborhood of the house (crime, schools, etc),
and so on. Interesting patterns may be embedded in each
of these attribute subsets of the data, yet these patterns
might not be discernible in a subsequent 2D projection with
a standard dimension reduction technique, such as PCA [1],
MDS [2] or t-SNE [3], where all dimensions are maintained.

Subspace analysis is a means to overcome this problem.
A subspace is a subset of the data dimensions into which the
data can be projected. It is the aim of subspace analysis to
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(a) Full space (b) Subspace (c) Extended subspace

Fig. 1: PCA projections of the Image Segmentation dataset
generated from (a) the full 16D dataspace comprised of all
feature dimensions, (b) the 3D Raw Color semantic subspace
and (c) the 5D extended Raw Color semantic subspace. The
points are colored by their image class (legend: top right).

identify the specific subset of dimensions that can capture
a given pattern, and which, when projected into 2D, will
not diffuse the pattern and allow users to view its structures
clearly without occlusion. An example is given in Figure
1 which shows several PCA-projections of the 16-D Image
Segmentation dataset 1. We observe that the clusters arising
from the dataset’s five image classes are fairly intermixed in
the projection generated from the full set of features (a), but
they are well differentiated in the subspace-based projec-
tions (b, c) (for more detail see the supplementary material).
The capability of subspaces to disambiguate projections for
display also applies to datasets without predefined classes.
Our paper mainly addresses this more exploratory scenario.

In general, subspace analysis identifies multiple per-
spectives, one per pattern, from which users can view the
data, and so it can provide a narrative and guidance by
which a complex data space can be effectively explored.
However, subspace analysis is not trivial. A dataset with
d attributes contains O(2d) subspaces. This means that for
large values of d the search space is prohibitively vast,

1. http://archive.ics.uci.edu/ml/datasets/image+segmentation
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Fig. 2: Heatmap of a subset of the 2,011 subspaces created
for the Filipino Family Income and Expenditure dataset
using the SURFING algorithm. The columns represent the
attributes and the rows represent the subspaces. The sub-
spaces are ordered using the Jaccard similarity. Note that in
this figure we have only included the subspaces with three
or more attributes – about 10% of the generated subspaces.

making it impossible to explore the entire search space
exhaustively. While various heuristics as well as interactive
human-in-the-loop systems have been devised to cope with
the exponential search space, the prime problem with sub-
space analysis in general remains the excessive amount of
subspaces produced by the underlying algorithms.

We introduce a new paradigm to generate subspaces,
yielding what we call semantic subspaces. Rather than using
similarity metrics derived from the data values, it uses
similarity metrics derived from the semantics of the data
attributes to form an initial set of subspaces which then
can be further explored via automated subspace expansion
and user-driven cluster analysis. Our method assumes that
each attribute comes with a meaningful label that is part
of a natural language dictionary. It then learns the semantic
distance between attributes from these labels and other meta-
data that are optionally provided.

Attributes with a small semantic distance are consid-
ered to be part of a concept [4], defined as an “abstract
idea or general notion that occurs in the mind, in speech,
or in thought” 2. An example of a concept is the notion
of “house”; it associates with various superordinates, like
“neighborhood” and subordinates, like “bedroom”. This
paradigm, in conjunction with a set of analytical tools we
devised, opens a new workflow along which the massive
set of subspaces can be explored. A user starts from the
detected, and possibly further refined multivariate concepts
and makes discoveries there, then projects these discover-
ies into other concepts, and then gradually expands these
concepts aided by conventional subspace search.

Our paper is organized as follows. Section 2 presents
an illustrative example. Section 3 discusses related work.
Section 4 presents a system overview and theory. Section 5
describes our visual analytics tool. Section 6 narrates two
usage scenarios. Section 7 offers a discussion. Section 8 ends
with conclusions.

2. https://en.wikipedia.org/wiki/Concept

2 ILLUSTRATIVE EXAMPLE OF THE PROBLEM

To gauge the enormity of the problem, Fig. 2 visualizes
a small subset (about 10%) of the subspaces generated by
the SURFING algorithm [5] for the 60-dimensional Filipino
Family Income and Expenditure dataset 3; each row is a
subspace and each small bar denotes an attribute’s subspace
membership. The algorithm generates a total of 2,011 sub-
spaces. We observe that some of the attributes are part of
many more subspaces than others. This can create bias in
the analysis process, as well as redundancy, since some of
the attributes are not featured as often as others.

The problems arise from the fact that even though a
number of the subspaces produced are either very similar or
redundant, it remains difficult to determine the minimal set
of representative subspaces. All this makes it very challeng-
ing for analysts to find interesting patterns in the subspaces.

3 RELATED WORK

Given the ubiquity of multivariate data many papers have
been written on the subject in many scientific disciplines. In
visualization there are essentially four basic paradigms: vi-
sualizing the data as a set or matrix of bivariate scatterplots,
called SPLOM [6], as a linear [1] or non-linear 2D embed-
ding [2] [3], as a set of polylines across parallel axes [7], or as
abstractions derived from the data, such as Scagnostics [8].
Many variants of these basic paradigms have been described
or integrated into more elaborate systems.

Since the projection of multivariate data onto a 2D can-
vas is ill-posed in all but the most trivial cases, each of these
paradigms has strengths and weaknesses. Subspace analysis
addresses a shared weakness, namely the problem arising
from projecting thematically unrelated, yet possibly over-
lapping patterns in the data into a common visualization,
leading to visual interference. Yet, subspace analysis is also
not without challenges, as noted in the introduction.

Subspace analysis is in some respect related to cluster
analysis, but the latter is more concerned with detecting
patterns in the data and less with determining the dimen-
sions that define them. A simple cluster analysis technique
is k-means but it tends to produce spherical clusters which
can break up non-spherical structures in high-D space. More
sophisticated techniques like DBSCAN [9] use density and
connectedness measures that do a better job in these cases,
but these methods often fail when there is noise in the data
which can lead the structure tracking astray. An inherent
problem with these techniques is that the notion of density
is difficult to define numerically as the level of sparseness
grows with increasing dimensionality; relating the density
(and thus sparseness) measures to the dimensionality of
the subspace can mitigate this problem to some extent [10].
Conversely, a human-in-the-loop approach such as Cluster-
Sculptor [11] can help by allowing human analysts to guide
the cluster analysis but it requires a high amount of effort.

More related to subspace analysis are interactive tech-
niques that allow users to identify sets of dimensions they
deem important to emphasize certain aspects of the data.
Some allow users to craft novel dimensions or projections

3. https://www.kaggle.com/grosvenpaul/family-income-and-
expenditure
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that can differentiate data items along user-defined as-
pects [12] [13] [14]. Others combine data and dimension
selection into a single dual-domain interaction, by ways of
interactive data and dimension brushing [15] [16], bicluster-
ing [17], or dimension ordering in a 2D attribute correlation
plot [18]. Our method also allows users to select dimensions
via a plot in which dimensions are represented as nodes,
but we use the semantic associations of the data attributes
for the placement of the nodes as opposed to a statistical
analysis of the data values. This adds a semantic flavor to
the standard brushing and reprojection workflow which is
a novel contribution of our work.

3.1 Subspace Clustering and Visualization

Subspace clustering is the activity of identifying subsets of
dimensions where groups of closely clustered data points
can be found. The most prominent automated subspace
clustering schemes are PROCLUS [19], CLIQUE [20], and
SURFING [5]. PROCLUS performs iterative refinement of
subspaces based on a subset of the points. CLIQUE uses an
apriori method where a grid is used to partition the data
into equal-sized units and only units with a density beyond
a threshold are kept. SURFING appears to be the most
popular algorithm in the visual analytics literature. It uses a
bottom-up strategy for searching subspaces for clusters by
increasing dimensionality. The bottom-up heuristic is based
on the idea that new subspaces should be generated using
subspaces already known to be interesting. The subspaces
are rated according to how interesting a subspace is, and
a quality metric is used to prune the search results and
determine the direction of the heuristic search.

As mentioned, a downside of automatic subspace clus-
tering is that it can generate an abundant amount of sub-
spaces [21], [22], [23]. A large number of these subspaces
are in fact redundant, but only few are highly redundant
and among the others it is difficult to determine which to
keep and which to discard. Visual analytics can empower
humans to make this call, based on preferences and goals.

Tatu et al. [21] allow users to group subspaces identified
by subspace clustering via a customized similarity metric
based on dimension overlap and KNN neighborhoods. They
visualize a subspace by way of a glyph that shows a dimen-
sion bitmap and an MDS projected scatterplot. Interestingly,
their introduction section shows a cartoon of two semantic
subspaces (one on health and one on traveling) of the type
our method exploits and facilitates, but their work does not
focus on or enable this.

The ClustNails system [22] contributes a radial spike
representation where the dimensions of a subspace are
equally spaced in angle and the length of a spike is given
by the dimension’s importance in the subspace; the less
spread out the points are along a dimension, the more
important it is. We also use a spike representation but we
use a PCA-generated biplot [24] which can also visualize the
correlations of the dimensions and the spread of the data.

Other work includes VISA [25] which uses an MDS plot
to visualize the similarity of subspaces; the diameter of each
node depicts the number of objects in the subspace cluster
while the color encodes the dimensionality. The display can
get very cluttered with an increasing number of subspaces

and it also does not show directly which dimensions partic-
ipate in them; they offer a bar plot for this information.

Interesting is also the work by Wang et al. [23] who
show that MDS plots cannot communicate the similarity
of subspaces while an ordered similarity matrix computed
from the data points can. We do not use MDS plots; rather
we use PCA-generated biplots that allow an appreciation of
how the data points relate to the dimensions in a subspace.

Lastly, there are also methods that produce animations or
transitions between subspaces to show their interrelations.
Wang et al. [26] decompose the high dimensional space
into a continuum of generalized 3D spaces. A trackball
interface is used to transition between adjacent subspaces.
Liu et al [27] use animated transitions across subspaces to
facilitate the exploration process. Nam et al. [28] propose a
tourism metaphor to allow users to travel among subspaces
in high dimensional space. Pattern Trails [29] visualizes the
pattern transitions across subspaces arranged in a cube.
Lines are used for linking patterns in adjacent subspaces,
hence introducing pattern transitions.

All of these methods rely solely on numeric data analysis
and are unified by the problem that the large number of pos-
sible subspaces can make it difficult to navigate to subspaces
that offer unique information. We propose an approach that
starts off with a small number of familiar subspaces, i.e.
thematic groupings of dimensions, which enable analysts to
identify interesting and easy-to-grasp relations quickly and
then expand from these. While the dimension clustering is
automated, yet user-modifiable, the clustering of the data
points is mostly manual and predominantly under user
control. As such our method falls into the category of
interactive cluster analysis methods but adds the element
of automated thematic subspace identification.

The methods discussed thus far have defined a subspace
as a subset of dimensions. There are also methods that
define subspaces as sets of closely associated points. These
techniques typically aim to construct a sparse affinity matrix
from all data points which can then be used within a spectral
clustering framework to break the point set into separate
groups, the subspace clusters. A prominent scheme has
been Sparse Subspace Clustering (SSC) [30] which solves
a convex optimization problem to find, for each data point,
the sparsest combination of other data points to express it.
These relations can then be used to fill the affinity matrix.
Recent efforts that use deep neural networks to first obtain
a latent representation of the high-D data followed by tradi-
tional clustering (such as k-means) have also embraced SSC
and devised Deep Subspace Clustering [31]. The use of deep
neural networks in clustering tasks can be advantageous
when the high-dimensional data reside on the nonlinear
manifold which is often the case in computer vision appli-
cations [32]. Our approach has entirely different goals than
SSC. It considers a subspace as an extensible sparse set of
semantically coherent dimensions into which all data points
can be projected to reveal meaningful information.

3.2 Word Embeddings

We make use of word embeddings [33] to discover the or-
dinates (terms) associated with a concept from the data
attributes and any additional information available on them.
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Fig. 3: An overview of our workflow and system. The blue boxes form the NLP-suite of our tool, the green boxes form the
Semantic Space View comprised of the interactive word embedding visual interface, and the red boxes are the interactive
subspace projection visualizations. Algorithms, data and the human analyst feed or manipulate the individual components.

A word embedding is a representation of words in a high-
dimensional vector space where words that belong to cer-
tain concepts typically locate in a common region. The word
embeddings can be learned by training a neural network
on a large text corpus which can be as general as the full
collection of wikipedia pages or as specific as a collection of
domain-centric documents, or both. The latter can represent
domain-specific terms and in conjunction with the former
their relations to more general words can be uncovered.

The simplest method for learning the context of a word
is to use the word’s raw co-occurrence counts with con-
text items. However, using a raw co-occurrence matrix is
prohibitively expensive in terms of both space and compu-
tational effort [34]. The solution is to use neural networks
to map concepts to continuous space [35], [36]. Neural net-
works have been proven to be much more efficient at learn-
ing language models. A breakthrough in this regard was the
work by Mikolov et al. [33] who proposed skip-gram models
for learning word embeddings and demonstrated that these
models have the capacity to learn linguistic patterns as
linear relationships between vectors [37]. This algorithm
has become widely popular as Word2Vec and we will show
that it can be effectively used in our proposed “semantic”
approach to streamline subspace narration and analysis.

4 SYSTEM OVERVIEW & THEORETICAL ASPECTS

Fig. 3 illustrates a system overview. The blue boxes form
the NLP-suite of our tool, the green boxes are the interactive
word embedding visualizations, and the red boxes are the
interactive brushable subspace visualizations.

The input to our system is a multivariate dataset. Each
attribute in the dataset is assumed to have a textual label
(the Attribute Labels in Fig. 3) and optionally additional
textual meta-data (the Attribute Meta-Text) that describe the
attribute. These meta-data can help to: (1) disambiguate
attributes that have more than one meaning, for example
the word “jaguar” which can be a car or a wild cat, and (2)
assign semantics to attributes that have no lexical meaning
at all, like the name of a gene in a bio-informatics dataset.

Another input is a large and general corpus of text, such
as the set of English Wikipedia pages (the General Text) and

an optional set of documents specific to the data domain
(the Domain Text). Training a word embedding with all of
these textual data embodies what we call the General Word
Embedding (GWE). In our experiments thus far we only used
Word2Vec pre-trained with the English Wikipedia corpus.
Training with a domain-specific corpus is fairly straight-
forward and can give better vector-space representations
when the application domain is highly specialized in its
terminology, such as radiology [38] or patent law [39].

The dimensionality of the GWE is commonly 128 or
more. A standard procedure is to use MDS to produce a 2D
embedding of this space for visualization. To not overwhelm
the user with visualizing the entire English Wikipedia cor-
pus, we introduce an intermediate filtering step that only
allows the attribute labels to pass through to the MDS plot,
while preserving the original relational mapping of these
words. The result of this process is presented to the human
analyst in the Attribute Word Embedding (AWE) Display.

It is often the case that the initially produced AWE does
not constitute a perfect semantic grouping. This can be due
to the aforementioned word ambiguity (aka conflation of
word sense), or perhaps the analyst has a different grouping
in mind. To correct these word placements the user can
freely modify the position of the words by simple mouse
drag interactions in the AWE Display. This is similar to the
interface used in our prior work reported in [40].

The outcome of these interactions is what we call the
Conceptual Attribute Grouping (CAG). Each such group of
words defines a semantic subspace into which the data can
be projected and visualized in a biplot. Users can edit these
visualizations by brushing to define sub-clusters, de-activate
points, and so on. They can then reproject these point sets
into different semantic subspaces to observe their behavior.

Next, users can run SURFING to augment the subspaces
with additional dimensions. This is a purely data-driven
process, but taking into account the semantic subspaces
which the user may also further refine. Augmenting (ex-
panding) a subspace allows the discovery of relationships
that may exist outside a given semantic subspace, broaden-
ing a concept toward its superordinates and acknowledging
the fact that concepts overlap and may impact one another.
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4.1 NLP Aspects

We use the skip-gram model [37] to learn the word em-
bedding, more specifically the gensim implementation 4 of
the skip-gram. We trained our network using the English
Wikipedia corpus as a general text source. None of the
datasets we used in the case studies required specific do-
main text. The context window size was set to 5 and the size
of the word embedding space dimensionality d was kept at
128. We use a minimum word count of 100 – any word with
a frequency of less than 100 is removed from the vocabulary.

To gauge the semantic distance among two attribute la-
bels, say, ”Crop” and “Rice”, we could use the Euclidean or
Cosine distance in the high-dimensional word embedding
space. Typically these terms are contained in the large cor-
pus the model has been trained on. However, as mentioned
in the overview, more accurate distance assessments with
more contextual awareness can be achieved when some
descriptive short meta-text is provided for each attribute that
gives the proper context (words that only infrequently occur
in the training corpus can also benefit from this) [41]. For
example, instead of just using the label “Crop” one might
associate more descriptive meta text with it, like “A culti-
vated plant that is grown as food, especially a grain, fruit, or
vegetable” which can be easily obtained from web sources
or the domain literature. The various key words mentioned
in this short text can help the Word2Vec algorithm in the
correct placement of “Crop” in the overall embedding. This
can be particularly useful to resolve ambiguities or specific
domain meanings. For example, even a word as simple as
“Crop” can have many contexts, such as “Crop of Students”,
“Crop of Products” and the like.

However, meta text cannot be handled with a simple
distance metric such as Euclidean, and the same also applies
to multi-word attributes. There are many different types
of techniques for finding the similarity of two short texts.
Lexical matching methods determine whether the words in
two short texts look alike, for example, edit distance, lexical
overlap or largest common substring. Lexical matching may
work for trivial cases but these methods are not very robust.
We found that that the Short Text Similarity (STS) [42]
and Word Movers Distance (WMD) [43] do a better job
in estimating the distance between two texts. STS works
better for texts that are only a few sentences, while WMD is
used for longer texts. Both methods operate on the high-D
word embeddings learned by the skip-gram neural network.
The estimation yields a scalar (similarity) value which is
then placed into the distance matrix used for the MDS
embedding (see the supplement for more detail).

4.2 Semantic Subspace Generation

To recap our terminology, the input to our system is a
rectangular data matrix where each row is a data item and
each column is a data dimension augmented by an attribute
label. A subspace is a subset of these data dimensions, while
a semantic subspace is a subspace where the attribute labels
are part of a shared concept. Likewise, a cluster is a general
group of data items, while a subspace cluster can be the same
group of data items but projected into a specific subspace.

4. gensim 4.3.0: https://pypi.org/project/gensim/

As explained in the introduction, using only a subset of the
available dimensions in a projection algorithm can expose
patterns that would otherwise not be observable. Finally,
apart from the concept-based grouping of attributes, users
can also extend the native semantic subspaces by additional
attributes to bridge among concepts or expand them.

We note that our semantic approach to subspace analysis
is different from conventional subspace clustering where the
data items are clustered by progressively adding dimen-
sions until certain cluster properties, such as density, are no
longer fulfilled. The semantic subspace clusters we initially
construct do not necessarily contain dense clusters, but they
typically contain structured data patterns since they derive
from a set of thematically-related dimensions that follow
some inherent non-trivial data generation process.

This dramatically reduces the initial number of sub-
spaces and allows users to begin the data exploration from
concepts they are familiar with and then expand out to
examine possible connections and interactions among them.

5 OUR VISUAL ANALYTICS TOOL

The objective of our visual analytics tool is to help the user
partition the multivariate data into subspaces that are se-
mantically consistent and allow the user to identify patterns
inside the data. Our visual analytics tool is embodied by an
interlinked dashboard shown in Fig. 4. It is composed of five
distinct components whose functionality is summarized in
the figure caption. In the following we explain the design
rationale and the function of each of these components.

5.1 Control Panel

The Control Panel (Fig. 4(a)) is used to change the various
settings of the visual analytics tool. In the left-most panel the
user can (1) select the text similarity algorithm used for the
word embedding and (2) turn on/off the biplot axes in the
subspace cluster displayed in the Subspace View (see Fig.
5(c) where the biplot axes are superimposed on the subspace
cluster’s PCA plot as red lines, for more detail see Section
5.4). The window on the bottom gives tool-tip like system
feedback.

The other panels are used to generate and modify sub-
space clusters. The user begins by specifying an initial set of
semantic subspaces using the ’Subspaces’ slider. In Fig. 4(a)
this number is set to 5, prompting the system to cluster the
attribute words into 5 groups. The clustering occurs after
the filtering but before the MDS mapping into the Attribute
Word Embedding (AWE) Display, using the high-D vector
representation of the attribute words. We use spectral clus-
tering since it better preserves high-D structures.

The PCA projections of the associated subspace clusters
are shown in the Subspace Organizer. Selecting one of
these subspaces displays it in the Subspace View and its
associated dimensions are listed in the Attribute List, the
right-most panel. The list can be manually expanded by
clicking the ’+’ button and selecting an attribute from the
Semantic Space View. Likewise, an attribute can be removed
from the list via the (-) button next to the attribute name.

The Attribute List can also be extended automatically by
selecting the ’Extend’ button in the panel labeled ’Subspace’
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Fig. 4: An overview of the system visualizing the Filipino Family Income and Expenditure dataset. The user interface
consists of five coordinated views. (a) Control Panel, used to change the various settings of the visual analytics tool. (b)
Dimensionality View, provides diagnostics about the fidelity of the subspace visualizations. (c) Semantic Space View,
visualizes the semantic space of the data using a scatter plot of attribute labels. (d) Subspace View, shows a user-selected
subspace in more detail. (e) Subspace Organizer, shows an overview of all of the subspaces generated by the algorithm.

which runs the SURFING subspace clustering algorithm.
This is a step-wise process – the attribute with the highest
increase in subspace quality is added first, and so on. The
’Add’ button allows the user to add a subspace followed
by a selection of its attributes as described above. Finally, a
subspace can be removed by clicking the ’Remove’ button
and selecting the target subspace in the Subspace Organizer.

The remaining functions serve the refinement of a sub-
space cluster into sub-clusters via brushing in the Subspace
View. Once a sub-cluster is brushed its points are automati-
cally tagged by a palette-defined color. The user then clicks
the Cluster ’Add’ button which adds a widget to the sub-
space’s sub-cluster list in the middle panel. Users can delete
the sub-cluster by the (-) button or de-emphasize its points
by lowering their opacity via the slider in the same widget.
We found that it can be helpful to continually interact with
this slider to bring different clusters into the foreground.

5.2 Semantic Space View
Upon loading the data, the Semantic Space View (Fig. 4(c))
visualizes the Attribute Word Embedding (AWE) generated
by the system as the initial Conceptual Attribute Grouping
(CAG). Attribute words that are close in this plot tend to
have a small semantic distance and strong similarity, and
so are likely part of a common concept. As discussed in
Section 4, we generate this plot using metric MDS. The MDS
optimization E =

∑N
i<j (Dij − dij)

2 aims to maintain the
distances Dij of word pairs i, j in the high-D word em-
bedding and their respective distances dij in the Semantic
Space View by minimizing the stress E, allowing users to
easily appreciate their neighborhood relations.

Once the Semantic Space View has been generated, a
typical next step is to use the Control Panel to form the

initial set of semantic subspaces which generates the asso-
ciated subspace clusters. The user then has the option to
alter the semantic subspaces to produce an alternative CAG.
The user can (1) adjust the positions of individual attributes
via mouse interactions as described in the overview, or
(2) modify the initial semantic subspaces by utilizing the
corresponding facilities in the Control Panel. All of these
operations occur in the 2D Semantic View and do not affect
the high-D word embedding.

We found that labeling the relatively crowded MDS
scatter plots often results in label overlaps which makes
it difficult to read individual labels. To remove the label
overlap we adapted an algorithm originally designed for
reducing the overlap of nodes in graphs [44]. This algorithm
seeks to remove overlap while preserving as much of the
initial layout as possible. It does so by creating a proximity
graph using the Delaunay triangulation [45] and moving
the points along the edges of the proximity graph by small
amounts. It iteratively continues the process until overlap
has been removed or the maximum number of iterations is
reached. This is an automatic process at the moment; more
control could be afforded by adding a slider by which users
can control the amount of de-cluttering, as described in [46].

5.3 Subspace Organizer
The Subspace Organizer (Fig. 4(e)) organizes and provides
overviews of the generated semantic subspaces. Each sub-
space is visualized using a scatter plot. We use PCA to
reduce the dimensionality of subspaces with dimensionality
> 2 and project the points into the top two PCA vectors.

When the user hovers the mouse over a subspace, the
attributes that make up the subspace are highlighted in the
Semantic Space View. Since the subspaces are semantically
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consistent the user can name the individual subspaces by
typing an appropriate text string into the “Add Name” text
box on top of the panel. This helps in organizing the sub-
spaces and aids recall when the user seeks to examine the
subspace again. When a subspace in the Subspace Organizer
is selected, details related to the view appear in the Subspace
View, the Dimensionality View, and the Control Panel.

5.4 Subspace View
The Subspace View (Fig. 4(d)) presents a detailed view of
a subspace selected in the Subspace Organizer. A brushing
facility allows users to select data points with properties of
interest. These can be saved as user-generated (sub-)clusters
and can be projected into other semantic subspaces. The
Subspace View is the main exploratory view of the interface.

As mentioned, the Control Panel (Fig. 4(a)) has a button
by which users can turn on the projection of the dimension
(attribute) axes to form a biplot [24]. A biplot (see Fig. 5(f) for
an example) is a PCA plot with the attribute axes also pro-
jected into the PCA basis. The magnitude of a given vector
signifies how strongly the associated attribute contributes
to the visualization and the direction of the vector points
toward the direction of the contribution. The biplot vectors
can be useful in explaining trends and attribute preferences
in the data and how the different attributes in the subspace
interact with each other. Non-linear space embeddings such
as MDS or t-SNE cannot support this as they loose the at-
tribute mapping in the process. We note that this is effective
for subspaces with reasonably low dimensionality.

5.5 Dimensionality View
The Dimensionality View (Fig. 4(b)) has two plots: the Scree
Plot (left) and the Intrinsic Dimensionality View (right). Both
refer to the subspace currently displayed in the Subspace
View. The scree plot visualizes the sorted eigenvalues of the
cluster’s PCA analysis. Each eigenvalue is associated with
a certain PCA axis (or principal component). The higher such
a value the more important the principal component is in
explaining some of the cluster’s total variance. Summing the
values from left to right indicates how much of the variance
the summed principal components can explain.

A key feature is the point at which the curve flattens,
called the elbow or knee. It can be used to determine how
many principal components are needed to faithfully rep-
resent the data (see [1], chapter 6), which is a quantity
commonly referred to as the intrinsic dimensionality of the
data. There are various schemes by which the intrinsic
dimensionality as manifested by the elbow can be detected;
we use a variant of the Kneedle algorithm [47]. The intrinsic
dimensionality is important since any principal component
beyond it does not capture much of the cluster’s variance.
The closer it is to the 2nd eigenvalue the more faithful
the cluster’s biplot visualization is since the biplot is a
projection of the cluster into the two axes with the largest
eigenvalues. Any higher-level variance is not visualized and
can lead to projection ambiguities. As such the scree plot is
an important diagnostic tool. Note also that the scree plot
in Fig. 3(b) displays three closely matching curves. They are
due to the three brushed sub-clusters in the Subspace View,
with line and point colors matching.

The Intrinsic Dimensionality View is a bar chart that
visualizes the histogram of the intrinsic dimensionality of
all subspaces, with the currently displayed subspace high-
lighted in red. The graph is updated when the user makes
any changes to the attributes in the subspace. Essentially,
each bar in the Intrinsic Dimensionality View summarizes
a subspace cluster’s scree plot as a single number. It is
thus an important subspace diagnostic because when its
intrinsic dimensionality is high the user needs to be careful
when interpreting the biplot as there can be inaccuracies
(ambiguities) in the projected point locations.

6 USAGE SCENARIOS

This section demonstrates how semantic subspaces can fa-
cilitate the exploration of multivariate data by ways of two
usage scenarios. To identify these scenarios we recruited a
small cohort of mostly graduate students from our univer-
sity. None of these individuals had prior knowledge about
our system, but all were familiar with fundamental concepts
of statistics, such as mean, median, variance, distribution,
cluster, correlation, regression, etc. as well as fundamentals
of visualization, such as bar charts, pie charts, scatterplots,
node-link diagrams, etc. Some were not familiar with prin-
cipal components, intrinsic dimensionality, and biplots. We
explained these concepts to them at the extent needed, refer-
ring to observable artifacts such as knee, height, and trend.
We then tested whether our explanations were understood.

For this study we collected a few datasets beforehand
from which our participants could choose. Here we pre-
ferred datasets that embraced multiple concepts, as opposed
to just a single concept like the properties of a plant, car,
or wine. In our study we did not fully demonstrate the
software with an example as a first step; rather we briefly
explained the various interface elements and functionalities
after the first selected dataset was loaded and then only an-
swered questions. While there were some initial questions,
we did not detect persistent usability problems for any of
these participants. On the contrary, we were able to gather
quite a few interesting discoveries our participants made,
and we distilled these into two usage scenarios (another is
in the supplementary material) with fictitious data analysts,
as presented in the following.

6.1 Use Case: Filipino Family Income and Expenditure

For our first scenario we follow Ken, a data analyst at
the World Bank, who uses the Filipino Family Income and
Expenditure dataset for a report that seeks to study the
various aspects of Filipino life and how these relate to one
another. The dataset’s attributes are family income and ex-
penditure, including, among others, levels of consumption
by item of expenditure, sources of income in cash, and
related information affecting income and expenditure levels
and patterns. There are 60 attributes, but since string-valued
attributes cannot be used in the program, Ken removes these
(44 attributes remain). The dataset also contains some meta-
data containing descriptions of the different attributes to
sharpen their semantic focus (see Table 3 in the supplement).

Ken uploads both dataset and meta-data into the visual
analytics tool and selects the STS metric to construct the
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Fig. 5: Workflow for the Filipino Family Income and Expenditure dataset. Significant views of the visual analysis tool are
shown as we analyze this aspect of the dataset. See the main text for a narration and the supplement for larger images.

semantic space since the meta-data consist of small de-
scriptions of each attribute. A visualization of the semantic
space is shown in Fig. 4(c). He observes that inside the
semantic space the attributes related to expenditures such as
“Vegetables”, “Housing” etc. form one large cluster. Inside
the cluster he observes that attributes related to expenses
on food related items (“Vegetables”, “Rice”, “Alcohol”) are
on the right and attributes related to expenses on services
(“Housing”, “Transport”, “Medical Care”) are on the left.
Attributes related to ownership such as “Car”, “Computer”
etc. form another cluster. Inside this cluster, he observes sub-
categorizations; note that “Car” and “Motorcar” are sepa-
rated as are kitchen-related electronics (“Stove”, “Washing
Machine”, “Refrigerator”). Other clusters related to income,
family, house etc. are also observed in the semantic space.

However, Ken notices some discrepancies in the con-
struction of the semantic space. For example, “Restaurant” is
closer to “House Rental Value” even though the semantics
are very different. This miscalculation is likely due to the

similarity in meaning of house, restaurant, and hotel that
are used in the description. Similarly “House Age” is closer
to “Head Age” and other age related attributes. Ken uses
the mouse in the Semantic Space View and drags the mis-
aligned attributes into the correct position. Fig. 5(a) shows
the semantic space’s final structure (disregard the coloring).

Looking at the Semantic Space View there appear to
be nine conceptual attribute groupings. Ken runs the auto-
mated clustering algorithm but observes some deficiencies.
For example, “Fish” is in the same cluster as “Housing”
and “Medical Care”. He uses the Attribute Panel to correct
this. The final grouping is shown in Fig. 5(a) encoded in
different colors. Finally, Ken names the different subspaces,
now visualized in the Subspace Organizer (see Fig. 5(b)).
Table 4 in the supplement lists the subspace IDs.

Fig. 5(c) shows the ”Expenses on Food” subspace. The
biplot reveals how the different attributes contribute to the
subspace. Ken finds it interesting that the grain staple at-
tributes “Crop”, “Bread/Cereal” and “Rice” have a different
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direction than the other food-related expenses. He uses the
brush feature to select households with relatively higher
values in these features and creates a new (sub)cluster with
these attributes (colored red, the other points remain blue).

Maintaining this coloring, Ken moves to the ”Expendi-
ture on Services” subspace (Fig. 5(f)) to assess the red (grain
staple) households in terms of their services expenditures.
The opacity of the blue cluster is reduced to prevent oc-
clusion. He observes that this cluster stays closer to the
center, indicating that, in general, these households, while
spending well on grain, do not spend much on services such
as education, housing, transportation, etc. They appear to
lead a simple life.

Next, Ken selects the households that do show higher
expenses on services and tags them yellow (Fig. 5(g)). Thus,
the red cluster represents the households that spend more
on grain staples, while the yellow cluster represents house-
holds that have higher expenses on services. Ken is curious
to see how these populations behave in other aspects.

Ken knows it is a good habit to assess the scree plot (Fig.
5(i)) before engaging into an analysis. He observes a similar
shape for the two clusters, confirming that they have similar
dimensionality. The scree plot can be useful when a cluster
shows very different shape. In that event it may be worth
investigating the reason for the irregular dimensionality of
the cluster (e.g. there might not be enough data points or
too many dimensions). Finally, Ken browses the Subspace
Organizer (Fig. 5(j)) which overviews the colored subspaces.

Looking at the clusters in different subspaces gives Ken
some interesting insights. Fig. 5(k, l, m) shows the Electron-
ics Owned, House, and Family subspaces, respectively. The
Electronics Owned subspace shows that households in the
yellow cluster own more electronics. The House subspace
shows that households in the yellow cluster live in larger
houses. In the Family subspace, however, the households in
the red cluster seem to be evenly distributed, indicating that
they occupy a specific social group of the general Filipino
society. Conversely, the households in the yellow cluster
seem to increase toward the direction of the Head Age
attribute vector, which suggests that older families tend to
accumulate more electronics than younger families (recall
from the Electronics Owned subspace that the yellow cluster
owns more electronics). This confirms Ken’s prior beliefs.

At this stage, Ken has identified two major social groups
and teased out their priorities. The yellow cluster are the
households with more economic resources and a higher
lifestyle. Its separation from the red cluster in many sub-
spaces suggests that in Filipino society Rice, Bread/Cereal
and Crops make up a major portion of the food consump-
tion in the households with fewer economic resources.

The process of repeated brushing, labeling, and reprojec-
tion constructs an implicit concept hierarchy. In the example
above, Ken started out with the general ”All households”
concept and used the ”Expenses on Food” subspace to iden-
tify the ”Basic staple households” concept. Then he further
branched to the ”Services used by basic staple households”
concept. The below interactions can extend this hierarchy.

6.1.1 Broadening a Subspace Beyond its Semantic Theme
Ken now moves on to a deeper analysis. He uses the Extend
Subspace facility to widen a subspace beyond the confines

of a specific context (see Fig. 6). This essentially allows him
to discover relationships external to the theme of the given
semantic subspace. This newly generated semantic subspace
is then automatically added to the Subspace Organizer.

Ken decides to select households with high Expenditure
on Services (Fig. 6(a)) and then uses the Extend Subspace
facility to add an attribute to the subspace that can improve
the quality of the subspace. To find such an attribute the
program uses the SURFING algorithm’s KNN based quality
metric. The Extend Subspace facility automatically adds the
“Electricity” attribute to the subspace, and Ken observes the
emergence of a new cluster on the lower part of the plot
(Fig. 6(b)). This population was previously hidden in the
subspace’s biplot but it is now exposed as a distinct cluster.

There are now two main clusters – households that have
electricity and households that do not (the new cluster on
the bottom). Ken further notices that all households with
electricity also have high expenditure on services, while
households without electricity have very low expenses on
services. To explore this further, Ken tags the electricity-less
households of the new cluster in yellow (Fig. 6(c)).

Moving this newly gained labeling to the Electronics
Owned subspace (Fig. 6(d)) Ken observes that households
with high expenses on services own more electronics; their
points are well spread along all positive Electronics axes in
the biplot. Ken expected this since all of these households
consume electricity, albeit the Basic staple households (blue)
less so than the General households (red). However, Ken
finds it interesting to see that also at least some of those
households without electricity (the yellow points) own cell
phones even though they own no other electronics; their
points are mainly spread along the positive Cellphone axis.
This is a rewarding take-away for Ken – it appears that cell
phones represent a ubiquitous commodity, and not a luxury.
Cell phones are a must-have device to survive!

6.1.2 Constructing Novel Subspaces
Ken is particularly interested in studying the contrasts that
exist among households with different age groups. As this
is not one of the initial semantic subspaces the program
has identified, Ken adds and configures a new subspace in
the Semantic Space View. Fig. 7(a) shows the new subspace
Ken has defined, spanned by the age attributes “Members <
5”, “Members 5-17”, and “Head Age” (shown in the lower
right in Fig. 5(a)). Ken selects two clusters, one contains
households with children below 5 (yellow) and the other
contains households with children 5-17 (red). He finds that
most of the subspaces show the same distribution for both
clusters. Fig. 7(b) shows the House subspace as an example.
The Electronics Owned subspace, however, shows a bias in
the distribution of the households (Fig. 7(c)). Households
with older children seem to own more electronics items –
their red points spread further along the positive biplot axes.

The Expenditure on Services subspace (not shown) also
shows some bias. However, according to its scree plot this
subspace has an intrinsic dimensionality of 6, possibly in-
troducing projection ambiguities into the biplot. A remedy
is to create a lower-dimensional subspace from it to reduce
these potential ambiguities. To achieve this, Ken makes use
of the vectors displayed in the biplot (compare Fig. 6(a)) and
iteratively selects only those attributes in the Attribute Panel
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(a) Expenses on Services subspace (b) Extend with Electricity attribute (c) Yellow-tag isolated new cluster (d) The Electronics Owned subspace

Fig. 6: Broadening a subspace beyond its semantic theme using conventional subspace clustering (SURFING). The figures
show the results of user interactions that lead to new insights on the Filipino society. (a) The Expenses on Services subspace;
high expenses are colored in red. (b) The Extend Subspace facility has added the Electricity attribute. (c) We observe an
isolated new cluster and tag its points in yellow. (d) The tagged data are projected into the Electronics Owned subspace.

(a) Household Age subspace (HS) (b) Proj. HS into House subspace (c) Proj. HS into Electron. Owned (d) Proj. HS into Expenses Services

Fig. 7: Constructing novel subspaces. This scenario compares Filipino households with members of different age groups.
(a) The subspace created from the three household age attributes. (b) The Household Age subspace is projected into the
House subspace. (c) The Household Age subspace is projected into the Electronics Owned subspace. (d) The Household
Age subspace is projected into the Expenses on Services subspace.

Subspace Name Attributes
Age built, renovated
Value price, grade, condition
Facilities school, hospital, police, transportation
Room bathroom, bedroom, basement, attic
Entertainment landmark, restaurant, park

TABLE 1: The attributes comprising each of the five seman-
tic subspaces we identified for the King County Dataset.

that contribute to the separation of the two clusters. These
are the two sets of vectors that are most orthogonal to one
another in Fig. 6(a): “Medical Care” and ”Special Occasions”
on one end, and “Education”, “Housing”, and “Transporta-
tion” on the other. The resulting subspace is shown in (Fig.
7(d)). Ken quickly realizes that households with children
under 5 spend more on medical care and special occasions.
whereas households with children between 5 and 17 spend
more on education, transportation, and housing. These are
valuable insights for Ken’s report which will likely be read
by marketers, policymakers, city planners, and others.

6.2 Use Case: King County

Here we follow Zoe, a data analyst at a mortgage company.
Zoe is tasked to study the housing situation in King County.
She has a dataset5 on the available housing with attributes
related to these houses (another usage scenario is given in

5. https://www.kaggle.com/harlfoxem/housesalesprediction

the supplement). The dataset has 16 attributes. 6 There is
no meta-data for this dataset and our tool estimates the
semantic distance using only the label text of the attributes.
A closer examination of the Semantic Space View in Figure
8 confirms that the word embedding procedure was able to
estimate the meanings of the attributes quite accurately.

Zoe uses our tool’s clustering facility to divide the
attributes into five semantic groups based on their word
embedding and labels them manually (see Table 1). Figure
9a shows a biplot of the Value subspace. Zoe observes
a strong correlation between house “Price” and “Grade”,
while house “Condition” is independent of the two. Next,
Zoe colors the points according to the “Grade” attribute.

Figure 9b shows the Entertainment subspace. Zoe notices
that the clusters are evenly spread, suggesting that house
grade is independent of a house’s proximity to sources of
entertainment, such as parks, restaurants, and landmarks.
The Rooms subspace (Figure 9c) is more interesting in this
regard. Zoe observes that the clusters are significantly more
separated, which indicates that the number of rooms in a
house has a fairly strong effect on the house’s grade. This is
an important finding for mortgage predictions. We note that
these are just a few of many findings Zoe is able to make.

6. The attributes of the King County dataset are: price, bedrooms,
bathrooms, condition, grade, attic, basement, built, renovated, trans-
portation, landmark, restaurant, hospital, police, parks, school.
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Fig. 8: Our visual analytics tool using the King County Dataset. The tool generated five semantic subspaces. The Subspace
Organizer on the lower right shows PCA projections of these, with the corresponding labels printed in the top green box.

(a) Project data into Value subspace (b) Proj. in Entertainment subspace (c) Project data into Rooms subspace

Fig. 9: Projections into three of the five semantic subspaces we identified for the King County dataset (see Table 1). In all of
the scatterplots the points are colored by the ”Grade” attribute.

7 DISCUSSION

We use this section to offer some thoughts on the design
choices we made, further experiments we conducted, and
the current limitations of our tool and studies, as we see
them. We begin by providing a few more general notes and
then delve into specific aspects of our tool.

A Note on Cluster Analysis: Gauging the effectiveness
of the many available clustering algorithms and methods
remains difficult since there is no concrete definition of what
a cluster actually is. In his position paper, Estivill-Castro
writes that ”clustering is in the eye of the beholder” [48].
One might agree that a cluster represents a group of data
items that are in some sense similar, but the notion of simi-
larity itself can vary widely and can be difficult to capture by
a formal metric, such as density, distance from a centroid, or
connectivity. All of these work well in some cases, but fail in
others. Hence, involving the human ”eye” into the process
via visual interaction, assisted by machine learning can be a
good compromise and this has been demonstrated in the
many visual analytics papers written on the subject (see
Section 3). The methodology we propose complements these
visual techniques by adding, for the first time, the element
of semantic meaning of the data, as derived via NLP from
the data attributes and optionally provided meta text.

A Note on Subspace Cluster Analysis: Similar to gen-

eral cluster analysis. the construction of a meaningful and
manageable set of semantic subspaces is also subject to an
analyst’s goals, preferences, and domain knowledge. It can-
not be automated. The tool we devised can aid analysts in
the construction of a set of initial familiar subspaces which
can provide insights on their own and then serve as launch
pads for a deeper expanded subspace exploration, aided by
general subspace clustering techniques. We also encourage
the reader to review the Image dataset case study in the
supplemental material where we show that clustering in
coherent subspaces, such as those generated by our method,
can bring a much better differentiation of related data items
than when clustering is performed in the entire dataspace.

Generating Subspaces: The NLP-constructed Semantic
Space View our tool provides allows the user to recognize
groupings of semantic themes. There might, however, be
settings where our model is unable to find good semantic
groupings or only partial groupings. The latter could be a
hint that the respective concept spaces are not adequately
captured. The user then has the fallback resource to either
manually construct semantic subspaces or use the Extend
Subspace facility to explore automatically generated sub-
spaces that go beyond the confines of semantic themes. In
fact, we found that a workflow that begins with known se-
mantic subspaces and then extends them with conventional
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subspace clustering methods gains the best of both worlds.
It effectively allows users to opportunistically generate sub-
spaces that extend a semantic theme by variables that have
high potential for adding new variations in the projections
which could be semantically interesting.

Augmenting Semantics with Data Metrics: To see
whether conventional subspace algorithms could be en-
hanced by semantic analysis and so produce fewer subspace
clusters, we experimented with merging the semantic space
decomposition with a decomposition based on data-centric
metrics, call it the data space. The data space defines how the
different attributes are related to each other in a numerical
sense, and the distances of pairs of points are calculated
using distance metrics such as cosine or correlation. Akin
to the semantic space the data space is represented using
a distance matrix M , which has n x n dimensions where
n is the number of variables in the dataset. A cell in the
matrix ci,j represents the distance between variable i and
j. Similar to our previous work reported in [40] the data
space and the semantic space can be merged by taking a
weighted average of the two spaces. The sum of weighted
distances for each pair of points is computed and from it a
fused distance matrix is constructed. However, after testing
this approach we did not observe that the added layer of
complexity helped much.

Limitations: An inherent limitation of our method is that
the attribute labels, and any meta-text, must describe the
attribute in a meaningful way. The supplemental material
gives an example where we added meta-text to ”explain”
domain-specific attribute labels with natural language text.
While this worked quite well, more studies are needed to
fully explore this mechanism. For example, for an image
dataset, each dimension is a pixel location which does not
provide enough information about the attribute, unless it
is part of a labeled region or the image has a descriptive
caption possibly coupled with automated object recognition.

Another limitation is that word embeddings constructed
with Word2Vec suffer from the problem of conflation of
word sense, where word sense is a meaning of the word.
In the embedding each word is represented using only
one vector. If a word has many meanings then the vector
representation of the word will be the union over the dif-
ferent meanings of the word. We saw an example of this
in the Semantic Space of Figure 8 where the ‘condition’
attribute was halfway between the Room and the Value
concept. More advanced NLP methods such as BERT [49]
overcome this problem. They operate on a wider, sentence-
level context and can so produce multiple mappings for a
given word based on its semantics.

Further, it is also possible that there are not enough sam-
ples of the word in the text corpus to learn the embedding of
the word properly. Likewise, there can be scenarios where
one or more of the attribute labels are not represented in
the corpus at all. Consequently, the semantic space will be
inaccurate. As a remedy, we provide an interactive visual
analytics interface that allows users to manually alter the
position of the attribute words to mitigate this problem.

Also, while biplots are intuitive to visualize the data
in the context of the attributes of the subspace – biplots
are widely used in the statistics community – they are
nevertheless linear projections and as such can present am-

biguities when the number of major principal components
of a subspace is significantly greater than two. Therefore,
we advise the user to be cautious when interpreting biplots
and point to the Intrinsic Dimensionality Plot as a visual
aid to assess the validity and trustworthiness of a given
biplot. Fortunately, a well defined subspace tends to have
an intrinsic dimensionality far less than that of a full data
space, often no more than 3-4 dimensions [50], and therefore
a subspace biplot is a fairly reliable visual evaluation tool.

Finally, our case studies have used datasets with a fairly
modest number of dimensions (less than 100). While these
types of datasets are fairly common in real life applications,
datasets with substantially higher dimensionality are also
frequently encountered. Common remedies here are dimen-
sion reduction and level of detail management. The former
could use correlation analysis and synonym detection to
cull redundant dimensions from the data. The latter could
take advantage of taxonomies defined on the domain. A
taxonomy is a hierarchy of hypernyms, such as veal - meat.
Word embeddings are a popular method for discovering the
hierarchical structure of concepts but they are not perfect.
Our prior work on Taxonomizer [40] demonstrates a system
that inserts the user into the loop to aid in the construction of
fully labeled hierarchies from data with many dimensions.

8 CONCLUSIONS

We presented a new paradigm for subspace cluster analysis,
addressing the need for better tools to deal with the massive
number of possible informative subspaces that can be found
in multivariate datasets. A subspace decomposition of a
data space is attractive since these subspaces are usually
of much lower intrinsic dimensionality and therefore easier
to understand, explore, and visualize. Our novel approach
is rooted in the idea of using 2D embeddings of the data
attributes constructed from text related to the attributes to
create a set of semantic subspaces which have a higher
likelihood to bear useful information for analysts.

We believe that our method offers a different way of
looking at subspaces, one that can reveal insights into the
data that might be more difficult to obtain using views
derived from numerical properties of the data only. In
comparison to conventional data-driven subspace analysis
methods, our technique leverages the user’s understanding
of the semantics to organize the data in a more meaningful
and domain-oriented way, and then use it as a starting point
for a more conventional exploratory analysis aided by the
various facilities we provide. Future work will apply our
tool in active applications and refine its functionalities.
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