Syntactic Parsing Introduction

Niranjan Balasubramanian Stony Brook University

Aug 27, 2015

Some slides adapted from these *fantastic* researchers: Ray Mooney, Michael Collins, and Chris Manning.

This class.

- Syntactic Parsing
 - What is it?
 - A simple formalism (PCFG)
 - Issues w/Vanilla PCFG
 - Hints at how these are typically addressed.

Syntactic Parsing – Refresher Quiz

- What is syntactic parsing?
 - Identifying syntactic structure underlying a sentence.
 - Assumes that there is a set of rules that underlie language.
- Why is it useful?
 - Serves as a model that explains the observed language string.
 - Use it to:
 - Predict or complete sentences.
 - Re-organize, simplify sentences.
 - Learn semantic phenomenon identifiable via syntactic patterns.
- What are the big issues in syntactic parsing?
 - Dependence on semantics
 - Lexicalization helps but hurts generalization.
 - Speed. Parsing is a $O(N^3)$ business w/ a constant the size of grammar.

Constituency Parse

Dependency Parse

Constituency vs. Dependency Grammars

- What is the difference?
 - Constituency parse groups words that act as a unit.
 - Constituents are typically "headed" by a particular type of word.
 - E.g., noun phrases are headed by a noun, verb phrases by a verb.
 - Dependency parse directly specifies relations between heads and their dependents.
- A deterministic procedure can transform constituency into dependency.
- Dependency parses are more compact than constituency parses.

- [How does this impact the automatic parsing?]

Why is syntactic parsing hard?

Pre Hy little girl's school Pre Hy little girl's school

Ambiguity:

PP attachment Noun pre-modifiers >> Write down a grammar in a formal language that has sufficient representation power.

Noam Chomsky tried this in his thesis!

Turns out this is not simple.

Ambiguity and coverage make it hard.

Fundamental trade-off:

I) Smaller grammars have limited coverage. No parses for many sentences.

2) Large grammars improve coverage but are ambiguous and yield more parses.

Main Questions in Parsing

- What is the formalism for the grammar?
 - Constituency (Phrase-structure) vs. Dependency Grammar

- How does one get the grammar?
 - We are not writing it down!
 - To address ambiguity, we need probabilities attached to the grammar.

• How does one parse sentences given a grammar?

Parsers done three ways!

Probabilistic Context Free Grammars
 Transition-based Parsing (Next class)

• Graph-based methods (Next week)

What are context-free grammars?

- Grammars are a way to encode rules that can generate strings in a language.
 - Recall formal languages such as regular, context free, context-sensitive etc.
- What grammar generates the following strings?
 - A, AA, AAA, AAA, ...?
 - AB, ABA, ABBA, ...?
 - ABCD, AABBCCDD, ...?
- What kind of language is English?
 - Not regular.
 - Not necessarily context-free.

[Can you come up with sentences that show this?]

Context-Free Grammars -- Formally

- *N* a set of *non-terminal symbols* (or *variables*)
- Σ a set of *terminal symbols* (disjoint from *N*)
- *R* a set of *productions* or *rules* of the form:

 $A \rightarrow \beta$,

where A is a non-terminal and

 β is a string of symbols from $(\Sigma \cup N)^*$

• S, a designated non-terminal called the *start symbol*

Strings that can be generated by applying a sequence of rules from R are said to be in the language of the grammar.

Parsing becomes the task of identifying if a string is generated by the grammar (and recovering the sequence of rules that generated it).

Probabilistic Context Free Grammars are CFGs + Probabilities

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

. . .		1	1.0
Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Parsing using PCFGs

Modeling Assumption: PCFG rules applied recursively derive sentences.

What about ambiguity?

The product of the probabilities of the rules scores each parse.

What independence assumptions justify this factoring?

DERIVATION	RULES USED	PROBABILITY
S	$S \to NP \; VP$	1.0
NP VP	$\mathrm{NP} \to \mathrm{DT} \; \mathrm{N}$	0.3
DT N VP	$DT \rightarrow the$	1.0
the N VP	N ightarrow dog	0.1
the dog VP	$VP \rightarrow VB$	0.4
the dog VB	$VB \rightarrow laughs$	0.5
the dog laughs		

TOTAL PROBABILITY = $1.0 \times 0.3 \times 1.0 \times 0.1 \times 0.4 \times 0.5$

How to parse given a PCFG?

• Exhaustive search of the space of derivations that can produce the input sentence is *infeasible*.

• Why? What is inefficient about this approach?

• So how can we make it better?

Idea: Do not explore paths that cannot lead to the sentence.

book that flight

 $PP \rightarrow Prep NP$

Det \rightarrow the | a | that | this Noun \rightarrow book | flight | meal Verb \rightarrow book | prefer Pronoun \rightarrow I | he | she | me Aux \rightarrow does

book that flight

Det \rightarrow the | a | that | this Noun \rightarrow book | flight | meal Verb \rightarrow book | prefer Pronoun \rightarrow I | he | she | me Aux \rightarrow does

book that flight

 $NP \rightarrow Det Nominal$

Nominal \rightarrow Noun Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP

 $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

Det \rightarrow the | a | that | this Noun \rightarrow book | flight | meal Verb \rightarrow book | prefer Pronoun \rightarrow I | he | she | me Aux \rightarrow does

book that flight

 $NP \rightarrow Proper-Noun$ $NP \rightarrow Det Nominal$

Nominal \rightarrow Noun Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP

 $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

Det \rightarrow the | a | that | this Noun \rightarrow book | flight | meal Verb \rightarrow book | prefer Pronoun \rightarrow I | he | she | me Aux \rightarrow does

book that flight

 $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow Det Nominal$

Nominal \rightarrow Noun Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP

 $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

Det \rightarrow the | a | that | this Noun \rightarrow book | flight | meal Verb \rightarrow book | prefer Pronoun \rightarrow I | he | she | me Aux \rightarrow does

book that flight

 $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow Det Nominal$

Nominal \rightarrow Noun Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP

 $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

Det \rightarrow the | a | that | this Noun \rightarrow book | flight | meal Verb \rightarrow book | prefer Pronoun \rightarrow I | he | she | me Aux \rightarrow does

book that flight

 $S \rightarrow NP VP$ $S \rightarrow Aux NP VP$ $S \rightarrow VP$

 $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow Det Nominal$

Nominal \rightarrow Noun Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP

 $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

Det \rightarrow the | a | that | this Noun \rightarrow book | flight | meal Verb \rightarrow book | prefer Pronoun \rightarrow I | he | she | me Aux \rightarrow does

book that flight

 $\begin{array}{l} S \rightarrow NP \ VP \\ S \rightarrow Aux \ NP \ VP \\ S \rightarrow VP \end{array}$

 $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow Det Nominal$

Nominal \rightarrow Noun Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP

 $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

Det \rightarrow the | a | that | this Noun \rightarrow book | flight | meal Verb \rightarrow book | prefer Pronoun \rightarrow I | he | she | me Aux \rightarrow does

book that flight

 $S \rightarrow NP VP$ $S \rightarrow Aux NP VP$ $S \rightarrow VP$

 $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow Det Nominal$

Nominal \rightarrow Noun Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP

 $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

| VP

S

Det \rightarrow the | a | that | this Noun \rightarrow book | flight | meal Verb \rightarrow book | prefer Pronoun \rightarrow I | he | she | me Aux \rightarrow does

book that flight

 $S \rightarrow NP VP$ $S \rightarrow Aux NP VP$ $S \rightarrow VP$

 $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow Det Nominal$

Nominal \rightarrow Noun Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP

 $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

Det \rightarrow the | a | that | this Noun \rightarrow book | flight | meal Verb \rightarrow book | prefer Pronoun \rightarrow I | he | she | me Aux \rightarrow does

book that flight

S $S \rightarrow NP VP$ $S \rightarrow Aux NP VP$ $S \rightarrow VP$ VP $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ Verb NP $NP \rightarrow Det Nominal$ Nominal \rightarrow Noun Nominal \rightarrow Nominal Noun book Nominal \rightarrow Nominal PP $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow VP PP$ $PP \rightarrow Prep NP$

Det \rightarrow the | a | that | this Noun \rightarrow book | flight | meal Verb \rightarrow book | prefer Pronoun \rightarrow I | he | she | me Aux \rightarrow does

Efficiency of Parsing

- Top down (and bottom up) are quite bad.
 - Asymptotic complexity is exponential in the length of the sentence (N).
- Dynamic programming approaches bring the complexity down to $O(N^3)$
 - E.g. Cocke-Young-Kasami algorithm
- Remember grammar size also affects runtime by a constant factor.

[Learn CYK algorithm and understand the impact of grammar size]

How to learn a PCFG?

- Assume you are given example sentences and their parses (generated by humans).
- You can get the rules by inspecting the parses.
- Obtain probabilities by simple maximum Likelihood estimates:

$$P_{ML}(\alpha \to \beta \mid \alpha) = \frac{\operatorname{Count}(\alpha \to \beta)}{\operatorname{Count}(\alpha)}$$

- What could be potential pitfalls with this estimation approach?
 - Unseen words.
 - Unseen constructions.
 - Infrequent combinations.

Issues with PCFGs

- Makes strong independence assumptions about language
 - Lexical independence
 - Structural independence

Prob(Tree I, Sentence) = x Prob(VP -> VP PP | VP) x ...

Prob(Tree 2, Sentence) = x Prob(NP -> NP PP | NP) x ...

Rules	Rules
$S \rightarrow NP VP$	$S \rightarrow NP VP$
$NP \rightarrow NNS$	$\text{NP} \rightarrow \text{NNS}$
$VP \rightarrow VP PP$	$NP \rightarrow NP PP$
$VP \rightarrow VBD NP$	$VP \rightarrow VBD NP$
$NP \rightarrow NNS$	$\text{NP} \rightarrow \text{NNS}$
$PP \rightarrow IN NP$	$\rm PP \rightarrow \rm IN \ \rm NP$
$NP \rightarrow DT NN$	$\text{NP} \rightarrow \text{DT} \text{ NN}$
$NNS \rightarrow workers$	$NNS \rightarrow workers$
$VBD \rightarrow dumped$	$VBD \rightarrow dumped$
NNS \rightarrow sacks	$NNS \rightarrow sacks$
$IN \rightarrow into$	$IN \rightarrow into$
$DT \rightarrow a$	$\text{DT} \rightarrow \text{a}$
$NN \rightarrow bin$	$NN \rightarrow bin$

Prob(Tree 1, Sentence) > Prob(Tree 2, Sentence)

If Prob(VP -> VP PP | VP) > Prob(NP -> NP PP | NP)

Rules
$NP \rightarrow NP \ CC \ NP$
$\mathrm{NP} \to \mathrm{NP} \ \mathrm{PP}$
$\text{NP} \rightarrow \text{NNS}$
$\mathrm{PP} \to \mathrm{IN} \ \mathrm{NP}$
$\text{NP} \rightarrow \text{NNS}$
$\text{NP} \rightarrow \text{NNS}$
$NNS \rightarrow dogs$
$\text{IN} \rightarrow \text{in}$
$NNS \rightarrow houses$
$CC \rightarrow and$
$NNS \rightarrow cats$

Rules
$NP \rightarrow NP \ CC \ NP$
$\mathrm{NP} \to \mathrm{NP} \ \mathrm{PP}$
$\text{NP} \rightarrow \text{NNS}$
$PP \rightarrow IN NP$
$\text{NP} \rightarrow \text{NNS}$
$\text{NP} \rightarrow \text{NNS}$
$NNS \rightarrow dogs$
$IN \rightarrow in$
$NNS \rightarrow houses$
$CC \rightarrow and$
$NNS \rightarrow cats$

Structural Preferences

president of [company in Africa]

[president of company] in Africa

- Same rules applied in both cases. Tree probability is the same
- Left structure is twice as likely in Wall Street Journal.
- There are similar issues when PPs can attach to multiple verbs.

Structural Dependence

Structural Dependence: Sub-categorization

- Specific verbs take some types of arguments but not others.
 - Intransitive, transitive, and di-transitive
 - Finite vs. Non-finite verbs.
- A generic VP label hides the different argument preferences of the various subcategories.

How to address these issues?

- Lexical dependence
 - Introduce lexical items into the tree.
 - Use headwords as part of the node-label. [Charniak 1997]
- Structural Dependence
 - Add more information to non-terminal categories [state splitting]
 - Include information about parents.
 [Johnson 1998]
 - Include fine-grained information (mark possessives for example)
- Sub-categorization
 - Add information to the non-terminal categories (state splitting)
 - E.g., S -> NP_firstpersonsingular VP_firstpersonsingular

Trade-off: Adding lexical information and fine-grained categories:

a) Increases sparsity -- Need appropriate smoothing.b) Adds more rules - Can affect parsing speed.

A Summary of the Issues

So what are all these issues essentially pointing out?

- Syntactic categories have different attachment preferences depending on their context.
 - Lexical or otherwise.
- Adding this context results in estimation issues due to sparsity.

This is a central challenge in NLP. Many phenomena have this characteristic.

Typical remedial actions include:

I) Using lexicalization but with generalization or dimensionality reduction.

2) Using carefully constructed features that leverages "expert intuitions" thereby avoiding sparsity issues.

Lets stop here ...

- Next class.
 - Research summary and presentation templates.
 - An un-lexicalized parser.
 - Switch a bit for transition based parsing.
 - Annotate some sentences in class.
- Starting next week
 - Student presentations
 - Research reports due before class on Thursday.
- Will add "additional readings".