
Transition-based Dependency Parsing

Niranjan Balasubramanian

September 01, 2015
Slides Adapted from Nivre and Manning.

Dependency Parsing

•  Dependency tree -- A dependency tree is a tree structure composed of the
input words and meets a few constraints:
–  Single-head �
–  Connected
–  Acyclic

Projective Parse:

 Arcs don’t cross each other.
 Mostly true for English.
 More from our awesome volunteers!

Transition-based Parsing
Arc-Eager [Nivre 2003]

Rules of the game!
-- Keep move items from buffer to stack.
-- If the top item on stack is a dependent of the top buffer item
 output dependency relation and drop the item from stack.
-- If the top buffer item is a dependent of any item in stack, move
 buffer item to stack, but keep the head in stack.

Example Transition Sequence

Assume we have some black-box that takes two words and magically gives you the
dependency relation between them if one exists.

Example Transition Sequence

Example Transition Sequence

Shift:
Move Economic to stack.

Example Transition Sequence

Left Arc:

Add left-arc amod(news, Economic) to A.
Remove Economic from stack since it now has head in A.
NOTE: Left-arc was possible only as Economic did not previously have a head in A.

Example Transition Sequence

Shift

Move news to stack.

Example Transition Sequence

Left Arc:

Add left-arc nsubj(had, news) to A.
Remove news from stack since it now has head in A.

Example Transition Sequence

Shift

Move had to stack.

Example Transition Sequence

Right Arc:

Add right-arc root(ROOT, had) to A.
Keep had in stack.
NOTE: We are keeping had because it can have other dependents on the left.

Example Transition Sequence

Shift:

Black-box did not find any dependence relation for had and little.

Example Transition Sequence

Left-arc:

Add amod(effect, little) to A.
Remove little from stack.

And on it goes until …

As a supervised classification task.

•  Given the current state (i.e., stack, buffer and A) predict the next action.

•  Can be viewed as a supervised learning problem.
–  Four way classification (if un-typed dependencies)
–  m-way classification, where m = 2 x number of types + 2

•  Features
–  Compute features of the current configuration of the stack, buffer and A.
–  Word in stack, POS of word, Word in buffer and POS of Word in buffer.
–  Other features: Length of dependency arc

•  Greedy classifier (no search involved)
–  At each stage ask the classifier to predict the next transition.
–  Select the best legal transition and apply it.
–  Works quite well, close to PCFG.

•  Quite fast!
–  O(N) in length of sentence.

