
1

Exception Handling
CSE 114: Introduction to Object-Oriented Programming

Paul Fodor

Stony Brook University

http://www.cs.stonybrook.edu/~cse114

http://www.cs.stonybrook.edu/~cse114

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Motivation
 When a program runs into a runtime
error, the program terminates abnormally.

We want to handle the runtime error so
that the program can continue to run or
terminate gracefully.

2

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Why use Exception-Handling?

3

Runtime error: the user enters a when asked for an int
import java.util.Scanner;

public class TestReadNonIntAsInt {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.print("Enter an int: ");

int num = input.nextInt();

System.out.println(num);

}

}

This looks bad to a user (e.g., a doctor, nurse, cashier, financial analyst)

a
Exception in thread "main"
java.util.InputMismatchException
at java.util.Scanner.throwFor(Unknown Source)
at java.util.Scanner.next(Unknown Source)
at java.util.Scanner.nextInt(Unknown Source)
at java.util.Scanner.nextInt(Unknown Source)
at TestReadNonIntAsInt.main(TestReadNonIntAsInt.java:7)

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
4

It does not matter if we try differently:

import java.util.Scanner;

public class TestParseNonIntAsInt {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.print("Enter an int: ");

String s = input.next();

int num = Integer.parseInt(s);

System.out.println(num);

}

}
a
Exception in thread "main" java.lang.NumberFormatException:
For input string: "abc"
at java.lang.NumberFormatException.forInputString(Unknown Source)
at java.lang.Integer.parseInt(Unknown Source)
at java.lang.Integer.parseInt(Unknown Source)
at TestParseNonIntAsInt.main(TestParseNonIntAsInt.java:7)

Why use Exception-Handling?

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
5

Another runtime error: division with 0 (if the user enters 1 and 0)

import java.util.Scanner;

public class Quotient {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

// Prompt the user to enter two integers

System.out.print("Enter two integers: ");

int number1 = input.nextInt();

int number2 = input.nextInt();

System.out.println(number1 + " / " + number2

+ " is " +(number1 / number2));

}

}
Enter two integers: 1 0

Exception in thread "main" java.lang.ArithmeticException: / by zero

at Quotient.main(Quotient.java:10)

Why use Exception-Handling?

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
6

Exception-Handling in the same method:
import java.util.Scanner;

public class QuotientWithException {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

// Prompt the user to enter two integers

System.out.print("Enter two integers: ");

int number1 = input.nextInt();

int number2 = input.nextInt();

try {

System.out.println(number1 + " / " + number2 + " is "

+ (number1 / number2));

}catch (Exception ex) {

System.out.println("Exception: " +

"an integer cannot be divided by zero ");

}

System.out.println("Execution continues ...");

}

}

Exception-Handling

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
7

What if the runtime error occurs in a called method?
import java.util.Scanner;

public class QuotientWithMethod {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

// Prompt the user to enter two integers

System.out.print("Enter two integers: ");

int number1 = input.nextInt();

int number2 = input.nextInt();

try {

int result = quotient(number1, number2);

System.out.println(number1 + " / " + number2 + " is " + result);

}catch (Exception ex) {

System.out.println("Exception: an integer " +

"cannot be divided by zero ");

}

System.out.println("Execution continues ...");

}

public static int quotient(int number1, int number2) throws Exception{

if (number2 == 0)

throw new ArithmeticException("Divisor cannot be zero");

return number1 / number2;

}

}

Exception-Handling

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

It enables a method to throw an exception

to its caller.

Without this capability, a method must handle

the exception itself (and return an incorrect

value) or terminate the program.

Exception handling separates error-handling

code from normal programming tasks, thus

making programs easier to read and to

modify.
8

Exception Advantages

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Example of reading a value
 By handling an exception, your program can continuously read

an input until it is correct:
import java.util.*;

public class InputMismatchExceptionDemo {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

boolean continueInput = true;

do {

try {

System.out.print("Enter an integer: ");

int number = input.nextInt();

// Display the result

System.out.println("The number entered is " + number);

continueInput = false;

} catch (InputMismatchException ex) {

System.out.println("Try again. Incorrect input: " +

"an integer is required.");

input.nextLine(); // discard input

}

} while (continueInput);

}

}
9

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Exception Types

10

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

System Errors

11

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

System errors are thrown by JVM

and represented in the Error class.

The Error class describes internal

system errors. Such errors rarely

occur. If one does, there is little

you can do beyond notifying the

user and trying to terminate the

program gracefully.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Exceptions

12

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Exception describes errors

caused by your program and

external circumstances. These

errors can be caught and

handled by your program.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Runtime Exceptions

13

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

RuntimeException is caused by

programming errors, such as bad

casting, accessing an out-of-bounds

array, and numeric errors.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Unchecked Exceptions vs.

Checked Exceptions

14

• RuntimeException, Error and their

subclasses are known as unchecked

exceptions.

• All other exceptions are known as checked

exceptions, meaning that the compiler

forces the programmer to check and deal

with the exceptions.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Unchecked Exceptions

15

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Unchecked

exceptions

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

 In most cases, unchecked exceptions reflect programming

logic errors that are not recoverable.

 For example, a NullPointerException is thrown if you access an

object through a reference variable before an object is assigned to

it; an IndexOutOfBoundsException is thrown if you access an

element in an array outside the bounds of the array.

 These are the logic errors that should be corrected in the

program.

 Unchecked exceptions can occur anywhere in the program.

 To avoid cumbersome overuse of try-catch blocks, Java does not

mandate you to write code to catch unchecked exceptions.

16

Unchecked Exceptions

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Declaring, Throwing, and

Catching Exceptions

17

method1() {

 try {

 invoke method2;

 }

 catch (Exception ex) {

 Process exception;

 }

}

method2() throws Exception {

 if (an error occurs) {

 throw new Exception();

 }

}

catch exception throw exception

declare exception

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Declaring Exceptions
 Every method must state the types of checked

exceptions it might throw - this is known as

declaring exceptions:

public void myMethod() throws IOException

public void myMethod()throws IOException,

OtherException, …

18

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Throwing Exceptions
 When the program detects an error, the program
can create an instance of an appropriate exception
type and throw it - known as throwing an exception:

throw new TheException();

OR

TheException ex = new TheException();

throw ex;

19

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Throwing Exceptions Example
/** Set a new radius */

public void setRadius(double newRadius)

throws IllegalArgumentException {

if (newRadius >= 0)

radius = newRadius;

else

throw new IllegalArgumentException(

"Radius cannot be negative");

}

20

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Catching Exceptions
try {

// Statements that may throw exceptions

...

}catch (ExceptionType1 exVar1) {

handler for exception1;

}catch (ExceptionType2 exVar2) {

handler for exception2;

}

...

}catch (ExceptionTypeN exVarN) {

handler for exceptionN;

}

21

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
22

main method {

 ...

 try {

 ...

 invoke method1;

 statement1;

 }

 catch (Exception1 ex1) {

 Process ex1;

 }

 statement2;

}

method1 {

 ...

 try {

 ...

 invoke method2;

 statement3;

 }

 catch (Exception2 ex2) {

 Process ex2;

 }

 statement4;

}

method2 {

 ...

 try {

 ...

 invoke method3;

 statement5;

 }

 catch (Exception3 ex3) {

 Process ex3;

 }

 statement6;

}

An exception

is thrown in

method3

Call Stack

main method main method

method1

main method

method1

main method

method1

method2 method2

method3

Catching Exceptions

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
23

public class TestCatchingExceptions {
public static void main(String[] args) {

try {
method1();

} catch(Exception e) {
System.out.println("main");

}
System.out.println("main continues");

}
public static void method1() throws Exception {

try {
method2();

}catch(RuntimeException e) {
System.out.println("method1");

}
System.out.println("method1 continues");

}
public static void method2() throws Exception{

try {
method3();

}catch(ArithmeticException e) {
System.out.println("method2");

}
System.out.println("method2 continues");

}
public static void method3() throws Exception{

//throw new ArithmeticException(); // method2 ...
//throw new RuntimeException(); // method1 ...
throw new Exception(); // main ...

}
}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Catch or Declare Checked Exceptions

 Java forces you to deal with checked exceptions:
 If a method declares a checked exception (i.e., an exception other than

Error or RuntimeException), you must invoke it in a try-

catch block or declare to throw the exception in the calling method

 For example, suppose that method p1 invokes method p2 and p2 may

throw a checked exception (e.g., IOException), you have to write the

code: (a) or (b):

24

void p1() {

 try {

 p2();

 }

 catch (IOException ex) {

 ...

 }

}

(a)

(b)

void p1() throws IOException {

 p2();

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
25

public class CircleWithException {

private double radius;

private static int numberOfObjects = 0; // The number of the objects created

public CircleWithException() {

this(1.0);

}

public CircleWithException(double newRadius) throws IllegalArgumentException{

setRadius(newRadius);

numberOfObjects++;

}

public void setRadius(double newRadius) throws IllegalArgumentException {

if (newRadius >= 0)

radius = newRadius;

else

throw new IllegalArgumentException("Radius cannot be negative");

}

public static int getNumberOfObjects() { /** Return numberOfObjects */

return numberOfObjects;

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
26

public static void main(String[] args) {

try {

CircleWithException c1 = new CircleWithException(5);

CircleWithException c2 = new CircleWithException(-5);

CircleWithException c3 = new CircleWithException(10);

} catch (IllegalArgumentException ex) {

System.out.println(ex);

}

System.out.println("Number of objects created: " +

CircleWithException.getNumberOfObjects());

}

}

Output:

Radius cannot be negative

Number of objects created: 1

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

The finally Clause
try {

statements;

} catch(TheException ex) {

handling ex;

} finally {

finalStatements;

}

27

The finally block always executes when the try block exits

Useful for cleanup code:
}finally {

if (out != null) {

System.out.println("Closing PrintWriter");

out.close();

}

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Rethrowing Exceptions
try {

statements;

} catch(TheException ex) {

…

throw ex;

}

28

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

When To Use Exceptions
Exception handling usually requires more time

and resources because it requires instantiating a

new exception object, rolling back the call stack,

and propagating the errors to the calling methods.
If an exception occurs in a method:
 If you can handle the exception in the method where it

occurs, there is no need to throw it.

 If you want the exception to be processed by its caller,

you should create an exception object and throw it.

29

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

We only use exceptions to deal with

unexpected error conditions.
Do not use it to deal with simple, expected situations:

30

try {

System.out.println(refVar.toString());

} catch (NullPointerException ex) {

System.out.println("refVar is null");

}

is better to be replaced by

if (refVar != null)

System.out.println(refVar.toString());

else

System.out.println("refVar is null");

When To Use Exceptions

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Defining Custom Exception Classes

Use the exception classes in the API

whenever possible.

Define custom exception classes if the

predefined classes are not sufficient.

Define custom exception classes by

extending Exception or a subclass of

Exception

31

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Custom Exception Class Example

32

public class InvalidRadiusException extends Exception {

private double radius;

/** Construct an exception */

public InvalidRadiusException(double radius) {

super("Invalid radius " + radius);

this.radius = radius;

}

/** Return the radius */

public double getRadius() {

return radius;

}

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
33

public class CircleWithInvalidRadiusException {

private double radius;

public CircleWithInvalidRadiusException(double newRadius)

throws InvalidRadiusException {

setRadius(newRadius);

numberOfObjects++;

}

public void setRadius(double newRadius) throws InvalidRadiusException {

if (newRadius >= 0)

radius = newRadius;

else

throw new InvalidRadiusException(newRadius);

}

public static void main(String[] args){

try{

CircleWithRadius c1 = new CircleWithRadius(-5);

} catch(InvalidRadiusException e) {

System.out.println(e.getRadius() + " is negative. No circle was created");

}

}

}

Custom Exception Class Example

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Text I/O: The File Class
 The File class is intended to provide an

abstraction that deals with most of the

machine-dependent complexities of files and

path names in a machine-independent fashion.

 The filename is a string

 The File class is a wrapper class for the file

name and its directory path

34

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
35

java.io.File

+File(pathname: String)

+File(parent: String, child: String)

+File(parent: File, child: String)

+exists(): boolean

+canRead(): boolean

+canWrite(): boolean

+isDirectory(): boolean

+isFile(): boolean

+isAbsolute(): boolean

+isHidden(): boolean

+getAbsolutePath(): String

+getCanonicalPath(): String

+getName(): String

+getPath(): String

+getParent(): String

+lastModified(): long

+delete(): boolean

+renameTo(dest: File): boolean

Creates a File object for the specified pathname. The pathname may be a

directory or a file.

Creates a File object for the child under the directory parent. child may be a
filename or a subdirectory.

Creates a File object for the child under the directory parent. parent is a File

object. In the preceding constructor, the parent is a string.

Returns true if the file or the directory represented by the File object exists.

Returns true if the file represented by the File object exists and can be read.

Returns true if the file represented by the File object exists and can be written.

Returns true if the File object represents a directory.

Returns true if the File object represents a file.

Returns true if the File object is created using an absolute path name.

Returns true if the file represented in the File object is hidden. The exact

definition of hidden is system-dependent. On Windows, you can mark a file

hidden in the File Properties dialog box. On Unix systems, a file is hidden if
its name begins with a period character '.'.

Returns the complete absolute file or directory name represented by the File

object.

Returns the same as getAbsolutePath() except that it removes redundant

names, such as "." and "..", from the pathname, resolves symbolic links (on

Unix platforms), and converts drive letters to standard uppercase (on Win32
platforms).

Returns the last name of the complete directory and file name represented by

the File object. For example, new File("c:\\book\\test.dat").getName() returns
test.dat.

Returns the complete directory and file name represented by the File object.
For example, new File("c:\\book\\test.dat").getPath() returns c:\book\test.dat.

Returns the complete parent directory of the current directory or the file

represented by the File object. For example, new
File("c:\\book\\test.dat").getParent() returns c:\book.

Returns the time that the file was last modified.

Deletes this file. The method returns true if the deletion succeeds.

Renames this file. The method returns true if the operation succeeds.

Obtaining file

properties

and

manipulating

files

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

Text I/O
 A File object encapsulates the properties
of a file or a path, but does not contain the
methods for reading/writing data from/to
a file.
 In order to perform I/O, you need to
create objects using appropriate Java I/O
classes: Scanner and PrintWriter

36

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
37

Reading Data Using Scanner

java.util.Scanner

+Scanner(source: File)

+Scanner(source: String)

+close()

+hasNext(): boolean

+next(): String

+nextByte(): byte

+nextShort(): short

+nextInt(): int

+nextLong(): long

+nextFloat(): float

+nextDouble(): double

+useDelimiter(pattern: String):

Scanner

Creates a Scanner that produces values scanned from the specified file.

Creates a Scanner that produces values scanned from the specified string.

Closes this scanner.

Returns true if this scanner has another token in its input.

Returns next token as a string.

Returns next token as a byte.

Returns next token as a short.

Returns next token as an int.

Returns next token as a long.

Returns next token as a float.

Returns next token as a double.

Sets this scanner’s delimiting pattern.

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
38

import java.util.Scanner;

public class ReadData {

public static void main(String[] args)throws Exception{

// Create a File instance

java.io.File file = new java.io.File("scores.txt");

// Create a Scanner for the file

Scanner input = new Scanner(file);

// Read data from a file

while (input.hasNext()) {

String firstName = input.next();

int score = input.nextInt();

System.out.println(Name + " " + score);

}

// Close the file

input.close();

}

}

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)
39

Writing Data Using PrintWriter

java.io.PrintWriter

+PrintWriter(file: File)

+print(s: String): void

+print(c: char): void

+print(cArray: char[]): void

+print(i: int): void

+print(l: long): void

+print(f: float): void

+print(d: double): void

+print(b: boolean): void

Also contains the overloaded

println methods.

Also contains the overloaded

printf methods.

.

Creates a PrintWriter for the specified file.

Writes a string.

Writes a character.

Writes an array of character.

Writes an int value.

Writes a long value.

Writes a float value.

Writes a double value.

Writes a boolean value.

A println method acts like a print method; additionally it

prints a line separator. The line separator string is defined

by the system. It is \r\n on Windows and \n on Unix.

The printf method was introduced in §3.6, “Formatting

Console Output and Strings.”

(c) Pearson Education, Inc. & Paul Fodor (CS Stony Brook)

public class WriteData {

public static void main(String[] args)

throws Exception {

java.io.File file = new java.io.File("scores.txt");

if (file.exists()) {

System.out.println("File already exists");

System.exit(0);

}

// Create the file

java.io.PrintWriter output = new

java.io.PrintWriter(file);

// Write output to the file

output.print("Mary 100");

// Close the file

output.close();

}

}40

