CSE 215, Foundations of Computer Science Stony Brook University

http://www.cs.stonybrook.edu/~cse215

Set theory

- Abstract set theory is one of the foundations of mathematical thought
 - Most mathematical objects (e.g. numbers) can be defined in terms of sets
- Let S denote a set:
 - a \in S means that a is an element of S
 - Example: $1 \in \{1,2,3\}, 3 \in \{1,2,3\}$
 - a $\not\in$ S means that a is not an element of S
 - Example: $4 \notin \{1,2,3\}$
 - If S is a set and P(x) is a property that elements of S may or may not satisfy: $A = \{x \in S \mid P(x)\}$ is the set of all elements x of S such that P(x)

Subsets: Proof and Disproof

- Def.: $A \subseteq B \Leftrightarrow \forall x$, if $x \in A$ then $x \in B$ (it is a formal universal conditional statement)
- Negation: $A \nsubseteq B \Leftrightarrow \exists x \text{ such that } x \in A \text{ and } x \notin B$
- A is a **proper subset of** B $(A \subseteq B) \Leftrightarrow$
 - $(1) A \subseteq B \quad AND$
 - (2) there is at least one element in B that is not in A
- Examples:

$$\{1\} \subseteq \{1\}$$
 $\{1\} \subseteq \{1, \{1\}\}$
 $\{1\} \subset \{1, 2\}$ $\{1\} \subset \{1, \{1\}\}$

- Element Argument: The Basic Method for Proving That One Set Is a **Subset** of Another
- Let sets X and Y be given. To prove that $X \subseteq Y$,
 - 1. Suppose that x is a particular [but arbitrarily chosen] element of X,
 - 2. show that x is also an element of Y.

• Example of an Element Argument Proof: $A \subseteq B$?

$$A = \{m \in Z \mid m = 6r + 12 \text{ for some } r \in Z\}$$

$$B = \{n \in Z \mid n = 3s \text{ for some } s \in Z\}$$

Suppose x is a particular but arbitrarily chosen element of A.

[We must show that $x \in B$].

By definition of A, there is an integer r such that

$$x = 6r + 12 \Leftrightarrow x = 3(2r + 4)$$

But, s = 2r + 4 is an integer because products and sums of integers are integers.

x=3s. \rightarrow By definition of B, x is an element of B.

 $A \subseteq B$

• Disprove $\mathbf{B} \subseteq \mathbf{A}$: $\mathbf{B} \not\subseteq \mathbf{A}$.

$$A = \{m \in \mathbb{Z} \mid m = 6r + 12 \text{ for some } r \in \mathbb{Z}\}\$$

$$B = \{n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z}\}$$

Disprove = show that the statement $\mathbf{B} \subseteq \mathbf{A}$ is false.

We must find an element of B (x=3s) that is not an element of A (x=6r+12).

Let
$$x = 3 = 3 * 1 \rightarrow 3 \in B$$

 $3 \in A$? We assume by contradiction $\exists r \in \mathbb{Z}$, such that:

$$6r+12=3$$
 (assumption) $\rightarrow 2r + 4 = 1 \rightarrow 2r = -3 \rightarrow r = -3/2$

But r=-3/2 is not an integer($\not\in \mathbb{Z}$). Thus, contradiction $\rightarrow 3\not\in A$.

$$3 \in B \text{ and } 3 \not\in A, \text{ so } \mathbf{B} \not\subseteq \mathbf{A}.$$

Set Equality

• A = B, if, and only if, every element of A is in B and every element of B is in A.

$$A = B \Leftrightarrow A \subseteq B \text{ and } B \subseteq A$$

• Example:

$$A = \{m \in Z \mid m = 2a \text{ for some integer a}\}\$$

$$B = \{n \in Z \mid n = 2b - 2 \text{ for some integer b}\}\$$

• Proof Part 1: $A \subseteq B$

Suppose x is a particular but arbitrarily chosen element of A.

By definition of A, there is an integer a such that x = 2a

Let
$$b = a + 1$$
, $2b - 2 = 2(a + 1) - 2 = 2a + 2 - 2 = 2a = x$

Thus, $x \in B$.

• Proof Part 2: $B \subseteq A$ (proved in similar manner)

Venn Diagrams

 \bullet A \subseteq B

• A ⊈ B

Relations among Sets of Numbers

- **Z**, **Q**, and **R** denote the sets of integers, rational numbers, and real numbers
- $Z \subseteq Q$ because every integer is rational (any integer n can be written in the form n/1)
 - \mathbf{Z} is a proper subset of \mathbf{Q} : there are rationals that are not integers (e.g., 1/2)
- $Q \subseteq R$ because every rational is real
 - **Q** is a proper subset of **R** because there are real numbers that are not rational (e.g., $\sqrt{2}$)

 \mathbf{Z}

Operations on Sets

Let A and B be subsets of a universal set U.

1. The union of A and B: A U B is the set of all elements that are in at least one of A or B:

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$$

2. The intersection of A and B: $A \cap B$ is the set of all elements that are common to both A and B.

$$A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\}$$

3. The difference of B minus A (relative complement of A in B): B-A (or B\A) is the set of all elements that are in B and not A.

$$B - A = \{x \in U \mid x \in B \text{ and } x \notin A\}$$

4. The complement of A: A^c is the set of all elements in U that are not in A.

$$A^{c} = \{x \in U \mid x \notin A\}$$

Operations on Sets

- Example: Let $U = \{a, b, c, d, e, f, g\}$ and let $A = \{a, c, e, g\}$ and $B = \{d, e, f, g\}$.
 - A U B = $\{a, c, d, e, f, g\}$
 - $\bullet A \cap B = \{e, g\}$
 - $\bullet B A = \{d, f\}$
 - $\bullet A^{c} = \{b, d, f\}$

Subsets of real numbers

- Given real numbers a and b with a \leq b:
 - $(a, b) = \{x \in R \mid a \le x \le b\}$
 - $(a, b] = \{x \in R \mid a < x \le b\}$
 - $[a, b) = \{x \in R \mid a \le x < b\}$
 - $\bullet [a, b] = \{x \in R \mid a \le x \le b\}$
- The symbols ∞ and $-\infty$ are used to indicate intervals that are unbounded either on the right or on the left:
 - $\bullet (a, \infty) = \{x \in R \mid a < x\}$
 - $\bullet [a,\infty) = \{x \in R \mid a \le x\}$
 - $\bullet (-\infty, b) = \{x \in R \mid x < b\}$
 - $(-\infty, b] = \{x \in R \mid x \le b\}$

Subsets of real numbers

• Example: Let

$$A = (-1, 0] = \{x \in R \mid -1 < x \le 0\}$$

$$B = [0, 1) = \{x \in R \mid 0 \le x < 1\}$$

A U B =
$$\{x \in R \mid x \in (-1, 0] \text{ or }$$

$$x \in [0, 1)$$

$$= \{x \in R \mid x \in (-1, 1)\} = (-1, 1)$$

$$A \cap B = \{x \in R \mid x \in (-1, 0] \text{ and }$$

$$x \in [0, 1)$$
 = $\{0\}$.

$$B - A = \{x \in R \mid x \in [0, 1) \text{ and } x \notin (-1, 0]\} = (0, 1)$$

$$A^{c} = \{x \in R \mid \text{ it is not the case that } x \in (-1, 0]\}$$
$$= (-\infty, -1] \cup (0, \infty)$$

Set theory

- Unions and Intersections of an Indexed Collection of Sets
 - Given sets $A_0, A_1, A_2,...$ that are subsets of a universal set U and given a nonnegative integer n (set sequence)
 - $\bigcup_{i=0} A_i = \{x \in U \mid x \in A_i \text{ for at least one } i = 0, 1, 2, ..., n\}$
 - $\bigcup_{i=1}^{\infty} A_i = \{x \in U \mid x \in A_i \text{ for at least one nonnegative integer } i \}$
 - $\bigcap_{i=0}^{n} A_i = \{x \in U \mid x \in A_i \text{ for all } i = 0, 1, 2, ..., n\}$
 - $\bigcap_{i=1}^{\infty} A_i = \{x \in U \mid x \in A_i \text{ for all nonnegative integers } i \}$

Indexed Sets

• Example: for each positive integer i,

$$A_i = \{x \in \mathbb{R} \mid -1/i < x < 1/i\} = (-1/i, 1/i)$$

- $A_1 \cup A_2 \cup A_3 = \{x \in \mathbb{R} \mid x \text{ is in at least one of the intervals} (-1,1), (-1/2, 1/2), (-1/3, 1/3) \} = (-1,1)$
- $A_1 \cap A_2 \cap A_3 = \{x \in \mathbb{R} \mid x \text{ is in all of the intervals } (-1,1), (-1/2,1/2), (-1/3,1/3)\} = (-1/3,1/3)$
- $\bigcup_{i=1}^{\infty} A_i = \{x \in \mathbb{R} \mid x \text{ is in at least one of the intervals } (-1/i, 1/i)$ where i is a positive integer $\} = (-1, 1)$
- $\bigcap_{i=1}^{n} A_i = \{x \in \mathbb{R} \mid x \text{ is in all of the intervals } (-1/i, 1/i), \text{ where i is a positive integer}\} = \{0\}$

The Empty Set Ø ({})

- $\bullet \emptyset = \{\}$ a set that has no elements
- •Examples:
 - $\{1,2\} \cap \{3,4\} = \emptyset$
 - $\{x \in R \mid 3 < x < 2\} = \emptyset$

Partitions of Sets

- A and B are *disjoint* \Leftrightarrow A \cap B = \emptyset
 - the sets A and B have no elements in common
- Sets $A_1, A_2, A_3,...$ are *mutually disjoint* (pairwise disjoint or non-overlapping) \Leftrightarrow no two sets A_i and A_j ($i \neq j$) have any elements in common
 - $\forall i,j = 1,2,3,..., i \neq j \rightarrow A_i \cap A_j = \emptyset$
- A finite or infinite collection of nonempty sets $\{A_1, A_2, A_3, ...\}$ is a *partition* of a set A \Leftrightarrow A

$$1.A = \bigcup_{i=1}^{\infty} A_i$$

 $2. A_1, A_2, A_3, \dots$ are mutually disjoint

Partitions of Sets

- Examples:
 - \bullet A = {1, 2, 3, 4, 5, 6}

$$A_1 = \{1, 2\}$$

$$A_2 = \{3, 4\}$$

$$A_3 = \{5, 6\}$$

- $\{A_1, A_2, A_3\}$ is a partition of A:
 - $A = A_1 \cup A_2 \cup A_3$
 - A_1 , A_2 and A_3 are mutually disjoint:

$$A_1 \cap A_2 = A_1 \cap A_3 = A_2 \cap A_3 = \emptyset$$

• $T_1 = \{n \in \mathbb{Z} \mid n = 3k, \text{ for some integer } k\}$

$$T_2 = \{n \in \mathbb{Z} \mid n = 3k + 1, \text{ for some integer } k\}$$

$$T_3 = \{n \in \mathbb{Z} \mid n = 3k + 2, \text{ for some integer k} \}$$

$$\{T_1,T_2,T_3\}$$
 is a partition of **Z**

Power Set

- Given a set A, the *power set* of A, P(A), is the set of all subsets of A
 - •Examples:

$$P(\{x, y\}) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}$$

 $P(\emptyset) = \{\emptyset\}$
 $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

Cartesian Product

- An **ordered n-tuple** $(x_1, x_2, ..., x_n)$ consists of the elements $x_1, x_2, ..., x_n$ together with the ordering: first x_1 , then x_2 , and so forth up to x_n
- Two ordered n-tuples $(x_1, x_2, ..., x_n)$ and $(y_1, y_2, ..., y_n)$ are *equal*: $(x_1, x_2, ..., x_n) = (y_1, y_2, ..., y_n) \Leftrightarrow x_1 = y_1 \text{ and } x_2 = y_2 \text{ and } ... x_n = y_n$
- The Cartesian product of $A_1, A_2, ..., A_n$:

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n\}$$

• Example: $A = \{1,2\}$, $B = \{3,4\}$ $A \times B = \{(1,3), (1,4), (2,3), (2,4)\}$

Cartesian Product

```
• Example: let A = \{x, y\}, B = \{1, 2, 3\}, \text{ and } C = \{a, b\}
A \times B \times C = \{(u,v,w) \mid u \in A, v \in B, \text{ and } w \in C\}
                                                = \{(x, 1, a), (x, 2, a), (x, 3, a), (y, 1, a), (y, 2, a), \}
                                                       (y, 3, a), (x, 1, b), (x, 2, b), (x, 3, b), (y, 1, b),
                                                      (y, 2, b), (y, 3, b)
(A \times B) \times C = \{(u,v) \mid u \in A \times B \text{ and } v \in C\}
                                                = \{((x, 1), a), ((x, 2), a), ((x, 3), a), ((y, 1), a), 
                                                       ((y, 2), a), ((y, 3), a), ((x, 1), b), ((x, 2), b), ((x, 3), b),
                                                       ((y, 1), b), ((y, 2), b), ((y, 3), b)
```

Supplemental: Algorithm to Check Subset

Input: m, n [positive integers], a,b [one-dimensional arrays]

Algorithm Body:

```
i := 1, answer := A \subseteq B
while (i \le m and answer = "A \subseteq B")
      j := 1, found := "no"
      while (j \le n \text{ and found} = \text{"no"})
               if a[i] = b[j] then found := "yes"
               j := j + 1
      end while
      if found = "no" then answer := "A \nsubseteq B"
      i := i + 1
end while
```

Output: answer [a string]: "A \subseteq B" or "A \nsubseteq B"

Properties of Sets

• Inclusion of Intersection:

$$A \cap B \subseteq A$$
 and $A \cap B \subseteq B$

• Inclusion in Union:

$$A \subseteq A \cup B$$
 and $B \subseteq A \cup B$

• Transitive Property of Subsets:

$$A \subseteq B \text{ and } B \subseteq C \rightarrow A \subseteq C$$

- $x \in A \cup B \Leftrightarrow x \in A \text{ or } x \in B$
- $x \in A \cap B \Leftrightarrow x \in A \text{ and } x \in B$
- $x \in B A \Leftrightarrow x \in B \text{ and } x \notin A$
- $x \in A^c \Leftrightarrow x \notin A$
- $(x, y) \in A \times B \Leftrightarrow x \in A \text{ and } y \in B$

Proof of a Subset Relation

• For all sets A and B, $A \cap B \subseteq A$.

The statement to be proved is universal:

 \forall sets A and B, $A \cap B \subseteq A$

Suppose A and B are any (particular but arbitrarily chosen) sets.

 $A \cap B \subseteq A$, we must show $\forall x, x \in A \cap B \rightarrow x \in A$

Suppose x is any (particular but arbitrarily chosen) element in $A \cap B$.

By definition of $A \cap B$, $x \in A$ and $x \in B$.

Therefore, $\therefore x \in A$

Set Identities

- For all sets A, B, and C:
 - Commutative Laws: AUB = BUA and $A \cap B = B \cap A$
 - Associative Laws: (AUB)UC = AU(BUC) and $(A \cap B) \cap C = A \cap (B \cap C)$
 - Distributive Laws: $AU(B\cap C)=(AUB)\cap (AUC), A\cap (BUC)=(A\cap B)U(A\cap C)$
 - Identity Laws: $A \cup \emptyset = A$ and $A \cap U = A$
 - Complement Laws: $AUA^c = U$ and $A \cap A^c = \emptyset$
 - Double Complement Law: $(A^c)^c = A$
 - Idempotent Laws: AUA = A and $A \cap A = A$
 - Universal Bound Laws: A \cup U = U and A \cap Ø = Ø
 - De Morgan's Laws: $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$
 - Absorption Laws: A \cup (A \cap B) = A and A \cap (A \cup B) = A
 - Complements of U and \emptyset : $U^c = \emptyset$ and $\emptyset^c = U$
 - Set Difference Law: $A B = A \cap B^c$

Proof of a Set Identity

• For all sets A, B, and C, $AU(B\cap C)=(AUB)\cap (AUC)$

Suppose A, B, and C are arbitrarily chosen sets.

 $1.AU(B\cap C) \subseteq (AUB)\cap (AUC)$

Show: $\forall x$, if $x \in AU(B \cap C)$ then $x \in (AUB) \cap (AUC)$

Suppose $x \in A \cup (B \cap C)$, arbitrarily chosen. (1)

We must show $x \in (AUB) \cap (AUC)$.

From (1), by definition of union, $x \in A$ or $x \in B \cap C$

Case 1.1: $x \in A$. By definition of union: $x \in A \cup B$ and $x \in A \cup C$

By definition of intersection: $x \in (AUB) \cap (AUC)$. (2)

Case 1.2: $x \in B \cap C$. By definition of intersection: $x \in B$ and $x \in C$

By definition of union: $x \in AUB$ and $x \in AUC$. And (2) again.

2. $(AUB) \cap (AUC) \subseteq AU(B \cap C)$ (proved in similar manner)

Proof of a De Morgan's Law for Sets

• For all sets A and B: $(A \cup B)^c = A^c \cap B^c$

Suppose A and B are arbitrarily chosen sets.

() Suppose $x \in (A \cup B)^c$.

By definition of complement: x ∉ A U B

it is false that (x is in A or x is in B)

By De Morgan's laws of logic: x is **not** in A **and** x is **not** in B.

 $x \notin A \text{ and } x \notin B$

Hence $x \in A^c$ and $x \in B^c$

 $x \in A^c \cap B^c$

(Proved in similar manner.

Intersection and Union with a Subset

- For any sets A and B, if $A \subseteq B$, then $A \cap B = A$ and $A \cup B = B$
- $A \cap B = A \Leftrightarrow (1) A \cap B \subseteq A \text{ and } (2) A \subseteq A \cap B$
- (1) $A \cap B \subseteq A$ is true by the inclusion of intersection property
- (2) Suppose $x \in A$ (arbitrary chosen).

From $A \subseteq B$, then $x \in B$ (by definition of subset relation).

From $x \in A$ and $x \in B$, thus $x \in A \cap B$ (by definition of \cap)

 $A \subseteq A \cap B$

A \cup B = B \Leftrightarrow (3) A \cup B \subseteq B and (4) B \subseteq A \cup B (3) and (4) proved in similar manner to (1) and (2)

The Empty Set

A Set with No Elements Is a Subset of Every Set:

If E is a set with no elements and A is any set, then $E \subseteq A$

Proof (by contradiction): Suppose there exists an empty set E with no elements and a set A such that $E \nsubseteq A$.

By definition of \nsubseteq : there is an element of E (x \in E) that is not an element of A (x \notin A).

Contradiction with E was empty, so $x \notin E$.

Q.E.D.

• Uniqueness of the Empty Set: There is only one set with no elements.

Proof: Suppose E_1 and E_2 are both sets with no elements.

By the above property: $E_1 \subseteq E_2$ and $E_2 \subseteq E_1 \longrightarrow E_1 = E_2$

The Element Method

- To prove that a set $X = \emptyset$, prove that X has no elements by contradiction:
 - suppose X has an element and derive a contradiction.
- Example 1: For any set A, $A \cap \emptyset = \emptyset$.

Proof: Let A be a particular (arbitrarily chosen) set.

 $A \cap \emptyset = \emptyset \Leftrightarrow A \cap \emptyset$ has no elements

Proof by contradiction: suppose there is x such that $x \in A \cap \emptyset$.

By definition of intersection, $x \in A$ and $x \in \emptyset$ Contradiction since \emptyset has no elements

The Element Method

• Example 2: For all sets A, B, and C,

if $A \subseteq B$ and $B \subseteq C^c$, then $A \cap C = \emptyset$.

Proof: Suppose A, B, and C are any sets such that

 $A \subseteq B$ and $B \subseteq C^c$

Suppose there is an element $x \in A \cap C$.

By definition of intersection, $x \in A$ and $x \in C$.

From $x \in A$ and $A \subseteq B$, by definition of subset, $x \in B$.

From $x \in B$ and $B \subseteq C^c$, by definition of subset, $x \in C^c$.

By definition of complement $x \notin C$ (contradiction with $x \in C$).

Disproofs

- Disproving an alleged set property amounts to finding a counterexample for which the property is false.
- Example: Disprove that for all sets A,B, and C,

The property is false ⇔ there are sets A, B, and C for which the equality does not hold

Counterexample 1: $A = \{1,2,4,5\}, B = \{2,3,5,6\}, C = \{4,5,6,7\}$

$$(A-B)U(B-C)=\{1,4\}U\{2,3\}=\{1,2,3,4\} \neq \{1,2\}=A-C$$

Counterexample 2: $A = \emptyset$, $B = \{1\}$, $C = \emptyset$

3

8

Cardinality of a set

- The cardinality of a set A: N(A) or |A| is a measure of the "number of elements of the set"
- Example: $|\{2, 4, 6\}| = 3$
- For any sets A and B,

$$|A \cup B| + |A \cap B| = |A| + |B|$$

• If A and B are disjoint sets, then

$$|A \cup B| = |A| + |B|$$

The Size of the Power Set

• For all int. $n \ge 0$, X has n elements $\rightarrow P(X)$ has 2^n elements.

Proof (by mathematical induction): Q(n): Any set with n elements has 2ⁿ subsets.

Q(0): Any set with 0 elements has 2^0 subsets:

The power set of the empty set \emptyset is the set $P(\emptyset) = \{\emptyset\}$.

 $P(\emptyset)$ has $1=2^0$ element: the empty set \emptyset .

For all integers $k \ge 0$, if Q(k) is true then Q(k+1) is also true.

Q(k): Any set with k elements has 2^k subsets.

We show Q(k+1): Any set with k+1 elements has 2^{k+1} subsets.

Let X be a set with k+1 elements and $z \in X$ (since X has at least one element).

 $X-\{z\}$ has k elements, so $P(X-\{z\})$ has 2^k elements.

Any subset A of $X - \{z\}$ is a subset of X: $A \in P(X)$.

Any subset A of $X - \{z\}$, can also be matched with $\{z\}: A \cup \{z\} \in P(X)$

All subsets A and AU $\{z\}$ are all the subsets of X \rightarrow P(X) has $2*2^k=2^{k+1}$ elements

Algebraic Proofs of Set Identities

- Algebraic Proofs = Use of laws to prove new identities
 - 1. Commutative Laws: AUB = BUA and $A \cap B = B \cap A$
 - 2. Associative Laws: (AUB)UC=AU(BUC) and $(A\cap B)\cap C=A\cap (B\cap C)$
 - 3. Distributive Laws: $AU(B\cap C)=(AUB)\cap (AUC)$ and $A\cap (BUC)=(A\cap B)U(A\cap C)$
 - 4. Identity Laws: $A \cup \emptyset = A$ and $A \cap U = A$
 - 5. Complement Laws: $AUA^c = U$ and $A \cap A^c = \emptyset$
 - 6. Double Complement Law: $(A^c)^c = A$
 - 7. Idempotent Laws: AUA = A and $A \cap A = A$
 - 8. Universal Bound Laws: A \cup U = U and A \cap Ø = Ø
 - 9. De Morgan's Laws: $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$
 - 10. Absorption Laws: A U (A \cap B) = A and A \cap (A U B) = A
 - 11. Complements of U and \emptyset : $U^c = \emptyset$ and $\emptyset^c = U$
 - 35

Algebraic Proofs of Set Identities

• Example: for all sets A,B,and C,(AUB)-C=(A-C)U(B-C). Algebraic proof:

(A U B)
$$-$$
 C = (A U B) \cap C^c by the set difference law = C^c \cap (A U B) by the commutative law for \cap = (C^c \cap A) U (C^c \cap B) by the distributive law = (A \cap C^c) U (B \cap C^c) by the commutative law for \cap = (A \cap C) U (B \cap C) by the set difference law.

Algebraic Proofs of Set Identities

• Example: for all sets A and B, $A - (A \cap B) = A - B$.

 $A - (A \cap B) = A \cap (A \cap B)^{c}$ by the set difference law

= A \cap (A^c U B^c) by De Morgan's laws

= $(A \cap A^c) \cup (A \cap B^c)$ by the distributive law

 $= \emptyset \cup (A \cap B^c)$ by the complement law

= (A \cap B^c) \cup \emptyset by the commutative law for \cup

 $= A \cap B^{c}$ by the identity law for U

= A - B by the set difference law.

Correspondence between logical equivalences and set identities

Logical Equivalences	Set Properties
For all statement variables p, q , and r :	For all sets A , B , and C :
a. $p \lor q \equiv q \lor p$	$a. A \cup B = B \cup A$
b. $p \wedge q \equiv q \wedge p$	b. $A \cap B = B \cap A$
a. $p \wedge (q \wedge r) \equiv p \wedge (q \wedge r)$	$a. A \cup (B \cup C) = A \cup (B \cup C)$
b. $p \lor (q \lor r) \equiv p \lor (q \lor r)$	b. $A \cap (B \cap C) = A \cap (B \cap C)$
a. $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	a. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
b. $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	b. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
a. $p \lor c \equiv p$	a. $A \cup \emptyset = A$
b. $p \wedge \mathbf{t} \equiv p$	b. $A \cap U = A$
a. $p \lor \sim p \equiv \mathbf{t}$	a. $A \cup A^c = U$
b. $p \wedge \sim p \equiv c$	b. $A \cap A^c = \emptyset$
$\sim (\sim p) \equiv p$	$(A^c)^c = A$
a. $p \lor p \equiv p$	$a. A \cup A = A$
b. $p \wedge p \equiv p$	b. $A \cap A = A$
a. $p \lor \mathbf{t} \equiv \mathbf{t}$	a. $A \cup U = U$
b. $p \wedge c \equiv c$	b. $A \cap \emptyset = \emptyset$
a. $\sim (p \vee q) \equiv \sim p \wedge \sim q$	$a. (A \cup B)^c = A^c \cap B^c$
b. $\sim (p \land q) \equiv \sim p \lor \sim q$	$b. (A \cap B)^c = A^c \cup B^c$
a. $p \lor (p \land q) \equiv p$	$a. A \cup (A \cap B) = A$
b. $p \land (p \lor q) \equiv p$	$b. A \cap (A \cup B) = A$
$a. \sim t \equiv c$	a. $U^c = \emptyset$
b. \sim c \equiv t	b. $\emptyset^c = U$

Boolean Algebra

- V (or) corresponds to U (union)
- Λ (and) corresponds to Ω (intersection)
- ~ (negation) corresponds to ^c (complementation)
- t (a tautology) corresponds to U (a universal set)
- ullet c (a contradiction) corresponds to $oldsymbol{\emptyset}$ (the empty set)
- Logic and sets are special cases of the same general structure Boolean algebra.

Boolean Algebra

- A Boolean algebra is a set B together with two operations + and ·, such that for all a and b in B both a + b and a ·b are in B and the following properties hold:
- 1. Commutative Laws: For all a and b in B, a+b=b+a and $a \cdot b=b \cdot a$
- 2. Associative Laws: For all a,b, and c in B, (a+b)+c=a+(b+c) and $(a\cdot b)\cdot c=a\cdot (b\cdot c)$
- 3. Distributive Laws: For all a, b, and c in B, $a+(b\cdot c)=(a+b)\cdot(a+c)$ and $a\cdot(b+c)=(a\cdot b)+(a\cdot c)$
- 4. Identity Laws: There exist distinct elements 0 and 1 in B such that for all a in B, a+0=a and $a\cdot 1=a$
- 5. Complement Laws: For each a in B, there exists an element in B, \overline{a} , complement or negation of a, such that $a+\overline{a}=1$ and $a\cdot\overline{a}=0$

Properties of a Boolean Algebra

- Uniqueness of the Complement Law: For all a and x in B, if a+x=1 and $a\cdot x=0$ then $x=\overline{a}$
- Uniqueness of 0 and 1: If there exists x in B such that a+x=a for all a in B, then x=0, and if there exists y in B such that $a\cdot y=a$ for all a in B, then y=1.
- Double Complement Law: For all $a \in B$, $(\overline{a}) = a$
- Idempotent Law: For all $a \in B$, a+a=a and $a \cdot a=a$.
- Universal Bound Law: For all $a \in B$, a+1=1 and $a \cdot 0 = 0$.
- De Morgan's Laws: For all a and $b \in B$, $\overline{a+b} = \overline{a} \cdot \overline{b}$ and $\overline{a \cdot b} = \overline{a} + \overline{b}$
- Absorption Laws: For all a and $b \in B$, $(a+b) \cdot a=a$ and $(a \cdot b)+a=a$
- Complements of 0 and 1: 0 = 1 and 1 = 0.

Properties of a Boolean Algebra

• Uniqueness of the Complement Law: For all a and x in B, if a+x=1 and $a\cdot x=0$ then $x=\overline{a}$

Proof: Suppose a and x are particular (arbitrarily chosen) in B that satisfy the hypothesis: a+x=1 and $a\cdot x=0$.

$x = x \cdot 1$	because 1 is an identity for ·
$= \mathbf{x} \cdot (\mathbf{a} + \overline{\mathbf{a}})$	by the complement law for +
$= \mathbf{x} \cdot \mathbf{a} + \mathbf{x} \cdot \overline{\mathbf{a}}$	by the distributive law for \cdot over $+$
$= a \cdot x + x \cdot \overline{a}$	by the commutative law for \cdot
$=0+x\cdot\overline{a}$	by hypothesis
$= a \cdot \overline{a} + x \cdot \overline{a}$	by the complement law for \cdot
$= (\overline{a} \cdot a) + (\overline{a} \cdot x)$	by the commutative law for \cdot
$=\overline{a}\cdot(a+x)$	by the distributive law for \cdot over $+$
$=\overline{a}\cdot 1$	by hypothesis
$=\overline{a}$	because 1 is an identity for ·

(c) Paul Fodor (CS Stony Brook)

Russell's Paradox

- Most sets are not elements of themselves.
- Imagine a set A being an element of itself A∈A.
- Let S be the set of all sets that are not elements of themselves:

$$S = \{A \mid A \text{ is a set and } A \notin A\}$$

- Is S an element of itself? Yes&No contradiction.
 - If $S \in S$, then S does not satisfy the defining property for S: $S \notin S$.
 - If S∉S, then satisfies the defining property for S, which implies that: S∈S.

The Barber Puzzle

- In a town there is a male barber who shaves all those men, and only those men, who do not shave themselves.
- Question: Does the barber shave himself?
 - If the barber shaves himself, he is a member of the class of men who shave themselves. The barber does not shave himself because he doesn't shave men who shave themselves.
 - If the barber does not shave himself, he is a member of the class of men who do not shave themselves. The barber shaves every man in this class, so the barber must shave himself.

 Both Yes&No derive contradiction!

Russell's Paradox

- One possible solution: except powersets, whenever a set is defined using a predicate as a defining property, the set is a subset of a *known* set.
 - Then S (form Russell's Paradox) is not a set in the universe of sets.

The Halting Problem

• There is no computer algorithm that will accept any algorithm X and data set D as input and then will output "halts" or "loops forever" to indicate whether or not X terminates in a finite number of steps when X is run with data set D.

Proof sketch (by contradiction): Suppose there is an algorithm CheckHalt such that for any input algorithm X and a data set D, it prints "halts" or "loops forever".

A new algorithm Test(X)

loops forever if CheckHalt(X, X) prints "halts" or stops if CheckHalt(X, X) prints "loops forever".

Test(Test) = ?

- If Test(Test) terminates after a finite number of steps, then the value of CheckHalt(Test, Test) is "halts" and so Test(Test) loops forever. Contradiction!
- If Test(Test) does not terminate after a finite number of steps, then CheckHalt(Test, Test) prints "loops forever" and so Test(Test) terminates. Contradiction!

So, CheckHalt doesn't exist.