Set Theory

CSE 215, Foundations of Computer Science
Stony Brook University
http: / /www.cs.stonybrook.edu/ $\sim_{\text {cse }} 215$

Set theory

- Abstract set theory is one of the foundations of mathematical thought
- Most mathematical objects (e.g. numbers) can be defined in terms of sets
- Let S denote a set:
- a $\in S$ means that a is an element of S
- Example: $1 \in\{1,2,3\}, 3 \in\{1,2,3\}$
- a $\notin S$ means that a is not an element of S
- Example: $4 \notin\{1,2,3\}$
- If S is a set and $P(x)$ is a property that elements of S may or may not satisfy: $A=\{x \in S \mid P(x)\}$ is the set of all elements x of S such that $\mathrm{P}(\mathrm{x})$

Subsets: Proof and Disproof

- Def. $: A \subseteq B \Leftrightarrow \forall x$, if $x \in A$ then $x \in B$
(it is a formal universal conditional statement)
- Negation: $A \nsubseteq B \Leftrightarrow \exists x$ such that $x \in A$ and $x \notin B$
- A is a proper subset of $B(A \subset B) \Leftrightarrow$
(1) $A \subseteq B \quad A N D$
(2) there is at least one element in B that is not in A
- Examples:

$$
\begin{array}{ll}
\{1\} \subseteq\{1\} & \{1\} \subseteq\{1,\{1\}\} \\
\{1\} \subset\{1,2\} & \{1\} \subset\{1,\{1\}\}
\end{array}
$$

Set Theory

- Element Argument: The Basic Method for Proving That One Set Is a Subset of Another Let sets X and Y be given. To prove that $\mathbf{X} \subseteq \mathbf{Y}$, 1. Suppose that x is a particular [but arbitrarily chosen] element of X,

2. show that x is also an element of Y .

Set Theory

- Example of an Element Argument Proof: $\mathbf{A} \subseteq \mathbf{B}$?

$$
\begin{aligned}
& A=\{m \in Z \mid m=6 r+12 \text { for some } r \in Z\} \\
& B=\{n \in Z \mid n=3 \text { s for some } s \in Z\}
\end{aligned}
$$

Suppose x is a particular but arbitrarily chosen element of A. [We must show that $\mathrm{x} \in \mathrm{B}$].
By definition of A, there is an integer r such that
$\mathrm{x}=6 \mathrm{r}+12 \Leftrightarrow \mathrm{x}=3(2 \mathrm{r}+4)$
But, $\mathrm{s}=2 \mathrm{r}+4$ is an integer because products and sums of integers are integers.
$\mathrm{x}=3 \mathrm{~s} . \rightarrow$ By definition of B, x is an element of B .

$$
A \subseteq B
$$

Set Theory

- Disprove $\mathbf{B} \subseteq \mathbf{A}: \mathbf{B} \nsubseteq \mathbf{A}$.
$\mathrm{A}=\{\mathrm{m} \in \mathbf{Z} \mid \mathrm{m}=6 \mathrm{r}+12$ for some $\mathrm{r} \in \mathbf{Z}\}$
$B=\{n \in \mathbf{Z} \mid n=3$ for some $s \in \mathbf{Z}\}$
Disprove $=$ show that the statement $\mathbf{B} \subseteq \mathbf{A}$ is false.
We must find an element of $B(x=3 s)$ that is not an element of A $(x=6 r+12)$.
Let $\mathrm{x}=3=3 * 1 \rightarrow 3 \in \mathrm{~B}$
$3 \in \mathrm{~A}$? We assume by contradiction $\exists \mathrm{r} \in \mathrm{Z}$, such that:

$$
6 \mathrm{r}+12=3 \text { (assumption) } \rightarrow 2 \mathrm{r}+4=1 \rightarrow 2 \mathrm{r}=-3 \rightarrow \mathrm{r}=-3 / 2
$$

But $\mathrm{r}=-3 / 2$ is not an integer $(\notin \mathbf{Z})$. Thus, contradiction $\rightarrow 3 \notin \mathrm{~A}$.
$3 \in \mathrm{~B}$ and $3 \notin \mathrm{~A}$, so $\mathbf{B} \nsubseteq \mathbf{A}$.

Set Equality

- $A=B$, if, and only if, every element of A is in B and every element of B is in A.

$$
A=B \quad \Leftrightarrow \quad A \subseteq B \text { and } B \subseteq A
$$

- Example:
$A=\{m \in Z \mid m=2 a$ for some integer $a\}$
$B=\{n \in Z \mid n=2 b-2$ for some integer $b\}$
- Proof Part 1: A \subseteq B

Suppose x is a particular but arbitrarily chosen element of A . By definition of A , there is an integer a such that $\mathrm{x}=2 \mathrm{a}$
Let $\mathrm{b}=\mathrm{a}+1,2 \mathrm{~b}-2=2(\mathrm{a}+1)-2=2 \mathrm{a}+2-2=2 \mathrm{a}=\mathrm{x}$
Thus, $x \in B$.

- Proof Part 2: $\mathrm{B} \subseteq \mathrm{A}$ (proved in similar manner)

Venn Diagrams

$-\mathrm{A} \subseteq \mathrm{B}$

- $\mathrm{A} \nsubseteq \mathrm{B}$

Relations among Sets of Numbers

- \mathbf{Z}, \mathbf{Q}, and \mathbf{R} denote the sets of integers, rational numbers, and real numbers
- $\mathbf{Z} \subseteq \mathbf{Q}$ because every integer is rational (any integer n can be written in the form $\mathrm{n} / 1$)
- \mathbf{Z} is a proper subset of \mathbf{Q} : there are rationals that are not integers (e.g., 1/2)
- $\mathbf{Q} \subseteq \mathbf{R}$ because every rational is real
- \mathbf{Q} is a proper subset of \mathbf{R} because there are real numbers that are not rational (e.g., $\sqrt{2}$)

Operations on Sets

Let A and B be subsets of a universal set U.

1. The union of A and $B: A \cup B$ is the set of all elements that are in at least one of A or B :

$$
A \cup B=\{x \in U \mid x \in A \text { or } x \in B\}
$$

2. The intersection of A and $B: A \cap B$ is the set of all elements that are common to both A and B .

$$
A \cap B=\{x \in U \mid x \in A \text { and } x \in B\}
$$

3. The difference of B minus A (relative complement of A in B): $B-A($ or $B \backslash A)$ is the set of all elements that are in B and not A.

$$
B-A=\{x \in U \mid x \in B \text { and } x \notin A\}
$$

4. The complement of $\mathrm{A}: \mathrm{A}^{\mathrm{c}}$ is the set of all elements in U that are not in A.

$$
\mathbf{A}^{\mathbf{c}}=\{\mathbf{x} \in \mathbf{U} \mid \mathbf{x} \notin \mathbf{A}\}
$$

Operations on Sets

- Example: Let $\mathrm{U}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$ and let
$A=\{a, c, e, g\}$ and $B=\{d, e, f, g\}$.
- $A \cup B=\{a, c, d, e, f, g\}$
- $A \cap B=\{e, g\}$
- $\mathrm{B}-\mathrm{A}=\{\mathrm{d}, \mathrm{f}\}$
- $\mathrm{A}^{\mathrm{c}}=\{\mathrm{b}, \mathrm{d}, \mathrm{f}\}$

Subsets of real numbers

- Given real numbers a and b with $\mathrm{a} \leq \mathrm{b}$:
- $(\mathrm{a}, \mathrm{b})=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{a}<\mathrm{x}<\mathrm{b}\}$
- $(\mathrm{a}, \mathrm{b}]=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{a}<\mathrm{x} \leq \mathrm{b}\}$
- $[\mathrm{a}, \mathrm{b})=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{a} \leq \mathrm{x}<\mathrm{b}\}$
- $[\mathrm{a}, \mathrm{b}]=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$
- The symbols ∞ and $-\infty$ are used to indicate intervals that are unbounded either on the right or on the left:
- $(a, \infty)=\{x \in R \mid a<x\}$
- $[\mathrm{a}, \infty)=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{a} \leq \mathrm{x}\}$
- $(-\infty, b)=\{x \in R \mid x<b\}$
- $(-\infty, b]=\{x \in R \mid x \leq b\}$

Subsets of real numbers

- Example: Let

$$
\begin{aligned}
& A=(-1,0]=\{x \in R \mid-1<x \leq 0\} \\
& B=[0,1)=\{x \in R \mid 0 \leq x<1\} \\
& A \cup B=\{x \in R \mid x \in(-1,0] \text { or } \\
& \qquad x \in[0,1)\} \\
& \qquad=\{x \in R \mid x \in(-1,1)\}=(-1,1) \\
& A \cap B=\{x \in R \mid x \in(-1,0] \text { and } \\
& \qquad x \in[0,1)\}=\{0\} .
\end{aligned}
$$

$\mathrm{B}-\mathrm{A}=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{x} \in[0,1)$ and $\mathrm{x} \notin(-1,0]\}=(0,1)$

$A^{c}=\{x \in R \mid$ it is not the case that $x \in(-1,0]\}$
$=(-\infty,-1] \cup(0, \infty)$

Set theory

- Unions and Intersections of an Indexed Collection of Sets
- Given sets $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots$ that are subsets of a universal set U and given a nonnegative integer n (set sequence)
- $\bigcup_{i=0}^{n} A_{i}=\left\{x \in U \mid x \in A_{i}\right.$ for at least one $\left.i=0,1,2, \ldots, n\right\}$
- $\bigcup_{i=1}^{\infty} A_{i}=\left\{x \in U \mid x \in A_{i}\right.$ for at least one nonnegative integer $\left.i\right\}$
- $\bigcap_{i=0}^{n} A_{i}=\left\{x \in U \mid x \in A_{i}\right.$ for all $\left.i=0,1,2, \ldots, n\right\}$
- $\bigcap_{i=1}^{\infty} A_{i}=\left\{x \in U \mid x \in A_{i}\right.$ for all nonnegative integers $\left.i\right\}$

Indexed Sets

- Example: for each positive integer i,
$\mathrm{A}_{\mathrm{i}}=\{\mathrm{x} \in \mathbf{R} \mid-1 / \mathrm{i}<\mathrm{x}<1 / \mathrm{i}\}=(-1 / \mathrm{i}, 1 / \mathrm{i})$
- $A_{1} \cup A_{2} \cup A_{3}=\{x \in \mathbf{R} \mid x$ is in at least one of the intervals $(-1,1),(-1 / 2,1 / 2),(-1 / 3,1 / 3)\}=(-1,1)$
- $A_{1} \cap A_{2} \cap A_{3}=\{x \in \mathbf{R} \mid x$ is in all of the intervals $(-1,1)$, $(-1 / 2,1 / 2),(-1 / 3,1 / 3)\}=(-1 / 3,1 / 3)$
- $\cup A_{i}=\{x \in \mathbf{R} \mid x$ is in at least one of the intervals $(-1 / i, 1 / i)$ ${ }_{\sim}^{i}{\underset{w}{\infty}}_{1}^{1}$ ere i is a positive integer $\}=(-1,1)$
- $\bigcap_{i=1}^{\infty} A_{i}=\{x \in \mathbf{R} \mid \mathrm{x}$ is in all of the intervals $(-1 / \mathrm{i}, 1 / \mathrm{i})$, where i is $\underset{i=1}{i=1}$ positive integer $\}=\{0\}$

The Empty Set \varnothing ($\})$

- $\emptyset=\{ \}$ a set that has no elements
- Examples:

Partitions of Sets

- A and B are disjoint $\Leftrightarrow \mathrm{A} \cap \mathrm{B}=\varnothing$
- the sets A and B have no elements in common
- Sets $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots$ are mutually disjoint (pairwise disjoint or non-overlapping) \Leftrightarrow no two sets A_{i} and $\mathrm{A}_{\mathrm{j}}(\mathrm{i} \neq \mathrm{j})$ have any elements in common
- $\forall \mathrm{i}, \mathrm{j}=1,2,3, \ldots, \mathrm{i} \neq \mathrm{j} \rightarrow \mathrm{A}_{\mathrm{i}} \cap \mathrm{A}_{\mathrm{j}}=\varnothing$
- A finite or infinite collection of nonempty sets $\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots\right\}$ is a partition of a set $\mathrm{A} \Leftrightarrow$

1. $\mathrm{A}=\bigcup_{i=1}^{\infty} \mathrm{A}_{\mathrm{i}}$
2. $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots$ are mutually disjoint

Partitions of Sets

- Examples:
- $A=\{1,2,3,4,5,6\}$
$A_{1}=\{1,2\} \quad A_{2}=\{3,4\}$

$$
A_{3}=\{5,6\}
$$

$\left\{A_{1}, A_{2}, A_{3}\right\}$ is a partition of A :
$-\mathrm{A}=\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \mathrm{~A}_{3}$
$-\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3} are mutually disjoint:

$$
\mathrm{A}_{1} \cap \mathrm{~A}_{2}=\mathrm{A}_{1} \cap \mathrm{~A}_{3}=\mathrm{A}_{2} \cap \mathrm{~A}_{3}=\emptyset
$$

- $\mathrm{T}_{1}=\{\mathrm{n} \in \mathbf{Z} \mid \mathrm{n}=3 \mathrm{k}$, for some integer k$\}$
$\mathrm{T}_{2}=\{\mathrm{n} \in \mathbf{Z} \mid \mathrm{n}=3 \mathrm{k}+1$, for some integer k$\}$
$\mathrm{T}_{3}=\{\mathrm{n} \in \mathbf{Z} \mid \mathrm{n}=3 \mathrm{k}+2$, for some integer k$\}$
$\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}\right\}$ is a partition of \mathbf{Z}

Power Set

- Given a set A , the power set of $\mathrm{A}, \mathrm{P}(\mathrm{A})$, is the set of all subsets of A
- Examples:

$$
\begin{aligned}
& \mathrm{P}(\{\mathrm{x}, \mathrm{y}\})=\{\varnothing,\{\mathrm{x}\},\{\mathrm{y}\},\{\mathrm{x}, \mathrm{y}\}\} \\
& \mathrm{P}(\emptyset)=\{\varnothing\} \\
& \mathrm{P}(\{\varnothing\})=\{\varnothing,\{\emptyset\}\}
\end{aligned}
$$

Cartesian Product

- An ordered n-tuple ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$) consists of the elements $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ together with the ordering: first x_{1}, then x_{2}, and so forth up to x_{n}
- Two ordered n-tuples $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ and $\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ are equal: $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \Leftrightarrow \mathrm{x}_{1}=\mathrm{y}_{1}$ and $\mathrm{x}_{2}=\mathrm{y}_{2}$ and $\ldots \mathrm{x}_{\mathrm{n}}=\mathrm{y}_{\mathrm{n}}$
- The Cartesian product of $A_{1}, A_{2}, \ldots, A_{n}$:
$A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}\right\}$
- Example: $A=\{1,2\}, B=\{3,4\}$

$$
\mathrm{A} \times \mathrm{B}=\{(1,3),(1,4),(2,3),(2,4)\}
$$

Cartesian Product

- Example: let $\mathrm{A}=\{\mathrm{x}, \mathrm{y}\}, \mathrm{B}=\{1,2,3\}$, and $\mathrm{C}=\{\mathrm{a}, \mathrm{b}\}$ $A \times B \times C=\{(u, v, w) \mid u \in A, v \in B$, and $w \in C\}$

$$
\begin{aligned}
& =\{(x, 1, a),(x, 2, a),(x, 3, a),(y, 1, a),(y, 2, a) \\
& (y, 3, a),(x, 1, b),(x, 2, b),(x, 3, b),(y, 1, b) \\
& (y, 2, b),(y, 3, b)\}
\end{aligned}
$$

$(A \times B) \times C=\{(u, v) \mid u \in A \times B$ and $v \in C\}$

$$
\begin{aligned}
= & \{((x, 1), a),((x, 2), a),((x, 3), a),((y, 1), a) \\
& ((y, 2), a),((y, 3), a),((x, 1), b),((x, 2), b),((x, 3), b), \\
& ((y, 1), b),((y, 2), b),((y, 3), b)\}
\end{aligned}
$$

Supplemental: Algorithm to Check Subset

Input: m, n [positive integers], a,b [one-dimensional arrays] Algorithm Body:
$\mathrm{i}:=1, \quad$ answer $:=$ " $\mathrm{A} \subseteq \mathrm{B}$ "
while ($\mathrm{i} \leq \mathrm{m}$ and answer $=$ " $\mathrm{A} \subseteq \mathrm{B}$ ")

$$
\begin{aligned}
& \mathrm{j}:=1, \quad \text { found }:=\text { "no" } \\
& \text { while }(\mathrm{j} \leq \mathrm{n} \text { and found }=\text { "no" }) \\
& \quad \text { if a }[\mathrm{i}]=\mathrm{b}[\mathrm{j}] \text { then found }:=\text { "yes" } \\
& \quad \mathrm{j}:=\mathrm{j}+1
\end{aligned}
$$

end while
if found $=$ "no" then answer := "A $\nsubseteq \mathrm{B}$ "
i : = i + 1
end while
Output: answer [a string]: "A \subseteq B" or "A $\nsubseteq \mathrm{B}$ "

Properties of Sets

- Inclusion of Intersection:

$$
\mathrm{A} \cap \mathrm{~B} \subseteq \mathrm{~A} \quad \text { and } \quad \mathrm{A} \cap \mathrm{~B} \subseteq \mathrm{~B}
$$

- Inclusion in Union:

$$
\mathrm{A} \subseteq \mathrm{~A} \cup \mathrm{~B} \quad \text { and } \quad \mathrm{B} \subseteq \mathrm{~A} \cup \mathrm{~B}
$$

- Transitive Property of Subsets:

$$
\mathrm{A} \subseteq \mathrm{~B} \text { and } \mathrm{B} \subseteq \mathrm{C} \rightarrow \mathrm{~A} \subseteq \mathrm{C}
$$

- $x \in A \cup B \Leftrightarrow x \in A$ or $x \in B$
- $x \in A \cap B \Leftrightarrow x \in A$ and $x \in B$
- $x \in B-A \Leftrightarrow x \in B$ and $x \notin A$
- $\mathrm{x} \in \mathrm{A}^{\mathrm{c}} \Leftrightarrow \mathrm{x} \notin \mathrm{A}$
- $(x, y) \in A \times B \Leftrightarrow x \in A$ and $y \in B$

Proof of a Subset Relation

- For all sets A and $\mathrm{B}, \mathrm{A} \cap \mathrm{B} \subseteq \mathbf{A}$.

The statement to be proved is universal:

$$
\forall \text { sets } \mathrm{A} \text { and } \mathrm{B}, \mathrm{~A} \cap \mathrm{~B} \subseteq \mathrm{~A}
$$

Suppose A and B are any (particular but arbitrarily chosen) sets.
$\mathrm{A} \cap \mathrm{B} \subseteq \mathrm{A}$, we must show $\forall \mathrm{x}, \mathrm{x} \in \mathrm{A} \cap \mathrm{B} \rightarrow \mathrm{x} \in \mathrm{A}$
Suppose x is any (particular but arbitrarily chosen) element in $\mathrm{A} \cap \mathrm{B}$.

By definition of $A \cap B, x \in A$ and $x \in B$.
Therefore, $\quad \therefore \mathrm{x} \in \mathrm{A}$
Q.E.D.

Set Identities

- For all sets A, B, and C:
- Commutative Laws: $\mathrm{A} \cup \mathrm{B}=\mathrm{BUA}$ and $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
- Associative Laws: $(A \cup B) \cup C=A \cup(B \cup C)$ and $(A \cap B) \cap C=A \cap(B \cap C)$
- Distributive Laws: $\mathrm{AU}(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{A} \cup \mathrm{C}), \mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \mathrm{U}(\mathrm{A} \cap \mathrm{C})$
- Identity Laws: $A \cup \emptyset=A$ and $A \cap U=A$
- Complement Laws: $\mathrm{AUA}^{\mathrm{c}}=\mathrm{U}$ and $\mathrm{A} \cap \mathrm{A}^{\mathrm{c}}=\varnothing$
- Double Complement Law: $\left(\mathrm{A}^{\mathrm{c}}\right)^{\mathrm{c}}=\mathrm{A}$
- Idempotent Laws: AUA = A and $\mathrm{A} \cap \mathrm{A}=\mathrm{A}$
- Universal Bound Laws: A U U = U and $\mathrm{A} \cap \varnothing=\varnothing$
- De Morgan's Laws: $(A \cup B)^{c}=A^{c} \cap B^{c}$ and $(A \cap B)^{c}=A^{c} \cup B^{c}$
- Absorption Laws: $\mathrm{A} \cup(\mathrm{A} \cap \mathrm{B})=\mathrm{A}$ and $\mathrm{A} \cap(\mathrm{A} \cup \mathrm{B})=\mathrm{A}$
- Complements of U and $\emptyset: \mathrm{U}^{\mathrm{c}}=\varnothing$ and $\emptyset^{\mathrm{c}}=\mathrm{U}$
- Set Difference Law: $\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{B}^{\mathrm{c}}$

Proof of a Set Identity

- For all sets A, B, and $C, A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Suppose A, B, and C are arbitrarily chosen sets.

1. $\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C}) \subseteq(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{A} \cup \mathrm{C})$

Show: $\forall x$, if $x \in A \cup(B \cap C)$ then $x \in(A \cup B) \cap(A \cup C)$
Suppose $x \in A \cup(B \cap C)$, arbitrarily chosen.
We must show $x \in(A \cup B) \cap(A \cup C)$.
From (1), by definition of union, $x \in A$ or $x \in B \cap C$
Case 1.1: $x \in A$. By definition of union: $x \in A \cup B$ and $x \in A \cup C$ By definition of intersection: $x \in(A \cup B) \cap(A \cup C)$.
Case 1.2: $x \in B \cap C$. By definition of intersection: $x \in B$ and $x \in C$ By definition of union: $x \in A \cup B$ and $x \in A \cup C$. And (2) again.
2. $(A \cup B) \cap(A \cup C) \subseteq A \cup(B \cap C)$ (proved in similar manner)

Proof of a De Morgan's Law for Sets

- For all sets A and $B:(A \cup B)^{c}=A^{c} \cap B^{c}$

Suppose A and B are arbitrarily chosen sets.
$(\boldsymbol{\leftrightharpoons})$ Suppose $\mathrm{x} \in(\mathrm{A} \cup \mathrm{B})^{\mathrm{c}}$.
By definition of complement: $x \notin A \cup B$ it is false that (x is in A or x is in B)
By De Morgan's laws of logic: x is not in A and x is not in B .

$$
x \notin \mathrm{~A} \text { and } \mathrm{x} \notin \mathrm{~B}
$$

Hence $\mathrm{x} \in \mathrm{A}^{\mathrm{c}}$ and $\mathrm{x} \in \mathrm{B}^{\mathrm{c}}$

$$
\mathrm{x} \in \mathrm{~A}^{\mathrm{c}} \cap \mathrm{~B}^{\mathrm{c}}
$$

($\mathbf{\leftarrow}$) Proved in similar manner.

Intersection and Union with a Subset

- For any sets A and B , if $\mathrm{A} \subseteq \mathrm{B}$, then $\mathrm{A} \cap \mathrm{B}=\mathrm{A}$ and $\mathrm{A} \cup \mathrm{B}=\mathrm{B}$
$\mathrm{A} \cap \mathrm{B}=\mathrm{A} \Leftrightarrow(1) \mathrm{A} \cap \mathrm{B} \subseteq \mathrm{A}$ and (2) $\mathrm{A} \subseteq \mathrm{A} \cap \mathrm{B}$
(1) $\mathrm{A} \cap \mathrm{B} \subseteq \mathrm{A}$ is true by the inclusion of intersection property
(2) Suppose $\mathrm{x} \in \mathrm{A}$ (arbitrary chosen).

From $A \subseteq B$, then $x \in B$ (by definition of subset relation).
From $x \in A$ and $x \in B$, thus $x \in A \cap B$ (by definition of \cap)

$$
\mathrm{A} \subseteq \mathrm{~A} \cap \mathrm{~B}
$$

$\mathrm{A} \cup \mathrm{B}=\mathrm{B} \Leftrightarrow(3) \mathrm{A} \cup \mathrm{B} \subseteq \mathrm{B}$ and (4) $\mathrm{B} \subseteq \mathrm{A} \cup \mathrm{B}$
(3) and (4) proved in similar manner to (1) and (2)

The Empty Set

- A Set with No Elements Is a Subset of Every Set: If E is a set with no elements and A is any set, then $\mathrm{E} \subseteq \mathrm{A}$
Proof (by contradiction): Suppose there exists an empty set E with no elements and a set A such that $\mathrm{E} \nsubseteq \mathrm{A}$.

By definition of \nsubseteq : there is an element of $\mathrm{E}(\mathrm{x} \in \mathrm{E})$ that is not an element of A ($\mathrm{x} \notin \mathrm{A}$).

Contradiction with E was empty, so $x \notin E$.

- Uniqueness of the Empty Set: There is only one set with no elements.

Proof: Suppose E_{1} and E_{2} are both sets with no elements.
By the above property: $\mathrm{E}_{1} \subseteq \mathrm{E}_{2}$ and $\mathrm{E}_{2} \subseteq \mathrm{E}_{1} \rightarrow \mathrm{E}_{1}=\mathrm{E}_{2} \quad$ Q.E.D.

The Element Method

- To prove that a set $\mathrm{X}=\varnothing$, prove that X has no elements by contradiction:
- suppose X has an element and derive a contradiction.
- Example 1: For any set A, $\mathrm{A} \cap \emptyset=\emptyset$.

Proof: Let A be a particular (arbitrarily chosen) set.
$\mathrm{A} \cap \varnothing=\emptyset \Leftrightarrow \mathrm{A} \cap \emptyset$ has no elements
Proof by contradiction: suppose there is x such that $x \in A \cap \emptyset$.

By definition of intersection, $\mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \in \emptyset$
Contradiction since \varnothing has no elements
Q.E.D.

The Element Method

- Example 2: For all sets A, B, and C, if $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{C}^{\mathrm{c}}$, then $\mathrm{A} \cap \mathrm{C}=\emptyset$.
Proof: Suppose A, B, and C are any sets such that

$$
\mathrm{A} \subseteq \mathrm{~B} \text { and } \mathrm{B} \subseteq \mathrm{C}^{\mathrm{c}}
$$

Suppose there is an element $x \in A \cap C$.
By definition of intersection, $x \in A$ and $x \in C$.
From $x \in A$ and $A \subseteq B$, by definition of subset, $x \in B$.
From $\mathrm{x} \in \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{C}^{\mathrm{c}}$, by definition of subset, $\mathrm{x} \in \mathrm{C}^{\mathrm{c}}$.
By definition of complement $\mathrm{x} \notin \mathrm{C}$ (contradiction with $\mathrm{x} \in \mathrm{C}$).

Disproofs

- Disproving an alleged set property amounts to finding a counterexample for which the property is false.
- Example: Disprove that for all sets A,B, and C,

The property is false \Leftrightarrow there are sets A, B, and C for which the equality does not hold
Counterexample 1: $A=\{1,2,4,5\}, B=\{2,3,5,6\}, C=\{4,5,6,7\}^{A}$ $(A-B) \cup(B-C)=\{1,4\} \cup\{2,3\}=\{1,2,3,4\} \neq\{1,2\}=A-C$
Counterexample 2: $\mathrm{A}=\varnothing, \mathrm{B}=\{1\}, \mathrm{C}=\varnothing$

Cardinality of a set

- The cardinality of a set $A: N(A)$ or $|A|$ is a measure of the "number of elements of the set"
- Example: $|\{2,4,6\}|=3$
- For any sets A and B,

$$
|\mathrm{A} \cup \mathrm{~B}|+|\mathrm{A} \cap \mathrm{~B}|=|\mathrm{A}|+|\mathrm{B}|
$$

- If A and B are disjoint sets, then

$$
|\mathrm{A} \cup \mathrm{~B}|=|\mathrm{A}|+|\mathrm{B}|
$$

The Size of the Power Set

- For all int. $\mathrm{n} \geq 0, \mathrm{X}$ has n elements $\rightarrow P(\mathrm{X})$ has 2^{n} elements.

Proof (by mathematical induction): $\mathrm{Q}(\mathrm{n})$: Any set with n elements has 2^{n} subsets.
$Q(0)$: Any set with 0 elements has 2^{0} subsets:
The power set of the empty set \emptyset is the set $P(\varnothing)=\{\varnothing\}$.
$P(\varnothing)$ has $1=2^{0}$ element: the empty set \emptyset.
For all integers $k \geq 0$, if $Q(k)$ is true then $Q(k+1)$ is also true.
$\mathrm{Q}(\mathrm{k})$: Any set with k elements has 2^{k} subsets.
We show $\mathrm{Q}(\mathrm{k}+1)$: Any set with $\mathrm{k}+1$ elements has $2^{\mathrm{k}+1}$ subsets.
Let X be a set with $\mathrm{k}+1$ elements and $\mathrm{z} \in \mathrm{X}$ (since X has at least one element).
$X-\{z\}$ has k elements, so $P(X-\{z\})$ has 2^{k} elements.
Any subset A of $X-\{z\}$ is a subset of $X: A \in P(X)$.
Any subset A of $X-\{z\}$, can also be matched with $\{z\}: A \cup\{z\} \in P(X)$
All subsets A and $\mathrm{A} \mathrm{\cup}\{\mathrm{z}\}$ are all the subsets of $\mathrm{X} \rightarrow \mathrm{P}(\mathrm{X})$ has $2 * 2^{\mathrm{k}}=2^{\mathrm{k}+1}$ elements

Algebraic Proofs of Set Identities

- Algebraic Proofs = Use of laws to prove new identities

1. Commutative Laws: $A \cup B=B U A$ and $A \cap B=B \cap A$
2. Associative Laws: $(A \cup B) \cup C=A \cup(B \cup C)$ and $(A \cap B) \cap C=A \cap(B \cap C)$
3. Distributive Laws: $\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{A} \cup \mathrm{C})$ and $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
4. Identity Laws: $A \cup \emptyset=A$ and $A \cap U=A$
5. Complement Laws: $A \cup A^{c}=U$ and $A \cap A^{c}=\varnothing$
6. Double Complement Law: $\left(\mathrm{A}^{\mathrm{c}}\right)^{\mathrm{c}}=\mathrm{A}$
7. Idempotent Laws: $\mathrm{A} \cup \mathrm{A}=\mathrm{A}$ and $\mathrm{A} \cap \mathrm{A}=\mathrm{A}$
8. Universal Bound Laws: $\mathrm{A} \cup \mathrm{U}=\mathrm{U}$ and $\mathrm{A} \cap \emptyset=\emptyset$
9. De Morgan's Laws: $(\mathbf{A} \cup B)^{c}=A^{c} \cap B^{c}$ and $(A \cap B)^{c}=A^{c} \cup B^{c}$
10. Absorption Laws: $A \cup(A \cap B)=A$ and $A \cap(A \cup B)=A$
11. Complements of U and $\emptyset: \mathbf{U}^{c}=\emptyset$ and $\emptyset^{c}=\mathbf{U}$
(35). Set Difference Law: $\mathbf{A}-\mathbf{B}=\mathbf{A} \cap \mathbf{B}^{\mathbf{c}}$
(c) Paul Fodor (CS Stony Brook)

Algebraic Proofs of Set Identities

- Example: for all sets A, B, and $\mathrm{C},(\mathrm{A} \cup \mathrm{B})-\mathrm{C}=(\mathrm{A}-\mathrm{C}) \cup(\mathrm{B}-\mathrm{C})$.

Algebraic proof:
$(\mathrm{A} \cup \mathrm{B})-\mathrm{C}=(\mathrm{A} \cup \mathrm{B}) \cap \mathrm{C}^{\mathrm{c}} \quad$ by the set difference law
$=C^{c} \cap(A \cup B) \quad$ by the commutative law for \cap
$=\left(\mathrm{C}^{\mathrm{c}} \cap \mathrm{A}\right) \cup\left(\mathrm{C}^{\mathrm{c}} \cap \mathrm{B}\right)$ by the distributive law
$=\left(\mathrm{A} \cap \mathrm{C}^{c}\right) \cup\left(\mathrm{B} \cap \mathrm{C}^{c}\right)$ by the commutative law for \cap
$=(\mathrm{A}-\mathrm{C}) \cup(\mathrm{B}-\mathrm{C})$ by the set difference law.

Algebraic Proofs of Set Identities

- Example: for all sets A and $\mathrm{B}, \mathrm{A}-(\mathrm{A} \cap \mathrm{B})=\mathrm{A}-\mathrm{B}$.
$A-(A \cap B)=A \cap(A \cap B)^{c}$ by the set difference law
$=A \cap\left(A^{c} \cup B^{c}\right)$ by De Morgan's laws
$=\left(A \cap A^{c}\right) \cup\left(A \cap B^{c}\right)$ by the distributive law
$=\emptyset \cup\left(A \cap B^{c}\right) \quad$ by the complement law
$=\left(\mathrm{A} \cap \mathrm{B}^{\mathrm{c}}\right) \cup \emptyset$ by the commutative law for \cup
$=A \cap B^{c} \quad$ by the identity law for U
$=\mathrm{A}-\mathrm{B} \quad$ by the set difference law.

Correspondence between logical equivalences and set identities

Logical Equivalences	Set Properties
For all statement variables p, q, and r :	For all sets A, B, and C :
a. $p \vee q \equiv q \vee p$ b. $p \wedge q \equiv q \wedge p$	a. $A \cup B=B \cup A$ b. $A \cap B=B \cap A$
a. $p \wedge(q \wedge r) \equiv p \wedge(q \wedge r)$ b. $p \vee(q \vee r) \equiv p \vee(q \vee r)$	a. $A \cup(B \cup C)=A \cup(B \cup C)$ b. $A \cap(B \cap C)=A \cap(B \cap C)$
a. $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$ b. $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$	a. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ b. $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
a. $p \vee \mathbf{c} \equiv p$ b. $p \wedge \mathbf{t} \equiv p$	a. $A \cup \emptyset=A$ b. $A \cap U=A$
a. $p \vee \sim p \equiv \mathbf{t}$ b. $p \wedge \sim p \equiv \mathbf{c}$	a. $A \cup A^{c}=U$ b. $A \cap A^{c}=\emptyset$
$\sim(\sim p) \equiv p$	$\left(A^{c}\right)^{c}=A$
a. $p \vee p \equiv p$ b. $p \wedge p \equiv p$	a. $A \cup A=A$ b. $A \cap A=A$
a. $p \vee \mathbf{t} \equiv \mathbf{t}$ b. $p \wedge \mathbf{c} \equiv \mathbf{c}$	a. $A \cup U=U$ b. $A \cap \emptyset=\emptyset$
a. $\sim(p \vee q) \equiv \sim p \wedge \sim q$ b. $\sim(p \wedge q) \equiv \sim p \vee \sim q$	a. $(A \cup B)^{c}=A^{c} \cap B^{c}$ b. $(A \cap B)^{c}=A^{c} \cup B^{c}$
a. $p \vee(p \wedge q) \equiv p$ b. $p \wedge(p \vee q) \equiv p$	a. $A \cup(A \cap B)=A$ b. $A \cap(A \cup B)=A$
a. $\sim \mathbf{t} \equiv \mathbf{c}$ b. $\sim \mathbf{c} \equiv \mathbf{t}$	a. $U^{c}=\emptyset$ b. $\emptyset^{c}=U$

Boolean Algebra

- V (or) corresponds to U (union)
- \wedge (and) corresponds to \cap (intersection)
- ~ (negation) corresponds to ${ }^{\mathrm{c}}$ (complementation)
- t (a tautology) corresponds to U (a universal set)
- c (a contradiction) corresponds to \emptyset (the empty set)
- Logic and sets are special cases of the same general structure Boolean algebra.

Boolean Algebra

- A Boolean algebra is a set B together with two operations + and \cdot, such that for all a and b in B both $\mathrm{a}+\mathrm{b}$ and $\mathrm{a} \cdot \mathrm{b}$ are in B and the following properties hold:

1. Commutative Laws: For all a and b in $B, a+b=b+a$ and $a \cdot b=b \cdot a$
2. Associative Laws: For all a, b, and c in B,

$$
(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c}) \text { and }(\mathrm{a} \cdot \mathrm{~b}) \cdot \mathrm{c}=\mathrm{a} \cdot(\mathrm{~b} \cdot \mathrm{c})
$$

3. Distributive Laws: For all a, b, and c in $B, a+(b \cdot c)=(a+b) \cdot(a+c)$ and $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
4. Identity Laws: There exist distinct elements 0 and 1 in B such that for all a in $\mathrm{B}, \mathrm{a}+0=\mathrm{a}$ and $\mathrm{a} \cdot 1=\mathrm{a}$
5. Complement Laws: For each a in B, there exists an element in B, \bar{a}, complement or negation of a, such that $a+\bar{a}=1$ and $a \cdot \bar{a}=0$

Properties of a Boolean Algebra

- Uniqueness of the Complement Law: For all a and x in B, if $\mathrm{a}+\mathrm{x}=1$ and $\mathrm{a} \cdot \mathrm{x}=0$ then $\mathrm{x}=\overline{\mathrm{a}}$
- Uniqueness of 0 and 1: If there exists x in B such that $a+x=a$ for all a in B, then $x=0$, and if there exists y in B such that $a \cdot y=a$ for all a in B, then $y=1$.
- Double Complement Law: For all $a \in B, \overline{(\bar{a})}=a$
- Idempotent Law: For all $a \in B, a+a=a$ and $a \cdot a=a$.
- Universal Bound Law: For all $a \in B, a+1=1$ and $a \cdot 0=0$.
- De Morgan's Laws: For all a and $b \in B, \overline{a+b}=\bar{a} \cdot \bar{b}$ and $\overline{a \cdot b}=\bar{a}+\bar{b}$
- Absorption Laws: For all a and $b \in B,(a+b) \cdot a=a$ and $(a \cdot b)+a=a$
- Complements of 0 and $1: \overline{0}=1$ and $\overline{1}=0$.

Properties of a Boolean Algebra

- Uniqueness of the Complement Law: For all a and x in B, if $a+x=1$ and $a \cdot x=0$ then $x=\bar{a}$

Proof: Suppose a and x are particular (arbitrarily chosen) in B that satisfy the hypothesis: $\mathrm{a}+\mathrm{x}=1$ and $\mathrm{a} \cdot \mathrm{x}=0$.

$$
\begin{aligned}
\mathrm{x} & =\mathrm{x} \cdot 1 & & \text { because } 1 \text { is an identity for } \cdot \\
& =\mathrm{x} \cdot(\mathrm{a}+\overline{\mathrm{a})} & & \text { by the complement law for }+ \\
& =\mathrm{x} \cdot \mathrm{a}+\mathrm{x} \cdot \overline{\mathrm{a}} & & \text { by the distributive law for } \cdot \text { over }+ \\
& =\mathrm{a} \cdot \mathrm{x}+\mathrm{x} \cdot \overline{\mathrm{a}} & & \text { by the commutative law for } \cdot \\
& =0+\mathrm{x} \cdot \overline{\mathrm{a}} & & \text { by hypothesis } \\
& =\mathrm{a} \cdot \overline{\mathrm{a}}+\mathrm{x} \cdot \overline{\mathrm{a}} & & \text { by the complement law for } \cdot \\
& =(\overline{\mathrm{a}} \cdot \mathrm{a})+(\overline{\mathrm{a}} \cdot \mathrm{x}) & & \text { by the commutative law for } \cdot \\
& =\overline{\mathrm{a}} \cdot(\mathrm{a}+\mathrm{x}) & & \text { by the distributive law for } \cdot \text { over }+ \\
& =\overline{\mathrm{a}} \cdot 1 & & \text { by hypothesis } \\
& =\overline{\mathrm{a}} & & \text { because 1 is an identity for } \cdot
\end{aligned}
$$

Russell's Paradox

- Most sets are not elements of themselves.
- Imagine a set A being an element of itself $A \in A$.
- Let S be the set of all sets that are not elements of themselves:

$$
S=\{A \mid A \text { is a set and } A \notin A\}
$$

- Is S an element of itself? Yes\&No contradiction.
- If $S \in S$, then S does not satisfy the defining property for $S: S \notin S$.
- If $\mathrm{S} \notin \mathrm{S}$, then satisfies the defining property for S , which implies that: $S \in S$.

The Barber Puzzle

- In a town there is a male barber who shaves all those men, and only those men, who do not shave themselves.
- Question: Does the barber shave himself?
- If the barber shaves himself, he is a member of the class of men who shave themselves. The barber does not shave himself because he doesn't shave men who shave themselves.
- If the barber does not shave himself, he is a member of the class of men who do not shave themselves. The barber shaves every man in this class, so the barber must shave himself.

Both Yes\&No derive contradiction!

Russell's Paradox

- One possible solution: except powersets, whenever a set is defined using a predicate as a defining property, the set is a subset of a known set.
- Then S (form Russell's Paradox) is not a set in the universe of sets.

The Halting Problem

- There is no computer algorithm that will accept any algorithm X and data set D as input and then will output "halts" or "loops forever" to indicate whether or not X terminates in a finite number of steps when X is run with data set D .

Proof sketch (by contradiction): Suppose there is an algorithm CheckHalt such that for any input algorithm X and a data set D, it prints "halts" or "loops forever".

A new algorithm Test(X)
loops forever if CheckHalt(X, X) prints "halts" or stops if CheckHalt(X, X) prints "loops forever".

Test(Test) $=$?

- If Test(Test) terminates after a finite number of steps, then the value of CheckHalt(Test, Test) is "halts" and so Test(Test) loops forever. Contradiction!
- If Test(Test) does not terminate after a finite number of steps, then CheckHalt(Test, Test) prints "loops forever" and so Test(Test) terminates. Contradiction!

So, CheckHalt doesn't exist.

