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(c) Paul Fodor (CS Stony Brook)

Recursion: Sequences 
 A sequence can be defined in 3 ways:

 enumeration: -2,3,-4,5,...

 general pattern: an=(-1)n(n+1), for all integers n ≥ 1

 recursion: a1=-2 and an=(-1)n-1 an-1 +(-1)n

 define one or more initial values for the sequence AND

 define each later term in the sequence by reference to earlier terms

 A recurrence relation for a sequence a0, a1, a2,... is a formula that 

relates each term ak to certain of its predecessors ak-1, ak-2,..., ak-i, where 

i is an integer with k−i ≥ 0

 The initial conditions for a recurrence relation specify the values of 

a0, a1, a2,..., ai-1, if i is a fixed integer, OR 

a0, a1,..., am, where m is an integer with m ≥ 0, if i depends on k.
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Recursion
 Computing Terms of a Recursively Defined Sequence:

 Example:

initial conditions: c0 = 1 and c1 = 2

recurrence relation: ck = ck-1 + k ck-2 + 1, for all integers k≥2

c2 = c1 + 2 c0 + 1 by substituting k = 2 into the recurrence relation

= 2 + 2·1 + 1 since c1 = 2 and c0 = 1 by the initial conditions

= 5

c3 = c2 + 2 c1 + 1 by substituting k = 3 into the recurrence relation

= 5 + 3·2 + 1 since c2 = 5 and c1 = 2

= 12

c4 = c3 + 2 c2 + 1 by substituting k = 4 into the recurrence relation

= 12 + 3·5 + 1 since c3 = 12 and c2 = 5

= 33
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Recursion
 Writing a Recurrence Relation in More Than One Way:

 Example:

initial condition: s0 = 1 

recurrence relation 1: sk = 3sk-1 - 1, for all integers k≥1

recurrence relation 2: sk+1 = 3sk - 1, for all integers k≥0
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Recursion
 Sequences That Satisfy the Same Recurrence Relation:

 Example:

initial conditions:    a1 = 2      and      b1 = 1 

recurrence relations: ak = 3ak-1 and bk = 3bk-1 for all integers k≥2

a2 = 3a1 = 3·2 = 6 b2 = 3b1 = 3·1 = 3

a3 = 3a2 = 3·6 = 18 b3 = 3b2 = 3·3 = 9

a4 = 3a3 = 3·18 = 54 b4 = 3b3 = 3·9 = 27
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Recursion
 Fibonacci numbers:

1. We have one pair of rabbits (male and female) at the beginning of a year.

2. Rabbit pairs are not fertile during their first month of life but thereafter give birth 

to one new male&female pair at the end of every month.
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Recursion
 Fibonacci numbers:

The initial number of rabbit pairs:   F0 = 1

Fn : the number of rabbit pairs at the end of month n, for each integer n ≥ 1

Fn = Fn-1 + Fn-2 , for all integers k ≥ 2

F1 = 1 , because the first pair of rabbits is not fertile until the second month

How many rabbit pairs are at the end of one year?

January 1st: F0 = 1 September 1st : F8=F7+F6=21+13=34

February 1st: F1 = 1 October 1st : F9=F8+F7=34+21=55

March 1st : F2 = F1 + F0 = 1+1= 2 November 1st : F10=F9+F8=55+34=89

April 1st : F3 = F2 + F1 = 2+1= 3 December 1st : 

F11=F10+F9=89+55=144

May 1st : F4 = F3 + F2 = 3+2= 5 January 1st : F12=F11+F10=144+89=233

June 1st : F5 = F4 + F3 = 5+3= 8

July 1st : F6 = F5 + F4 = 8+5= 13

August 1st : F7 = F6 + F5 = 13+8= 21
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Recursion
 Compound Interest:

 A deposit of $100,000 in a bank account earning 4% interest 

compounded annually:

the amount in the account at the end of any particular year =

the amount in the account at the end of the previous year +

the interest earned on the account during the year

= the amount in the account at the end of the previous year +

0.04 · the amount in the account at the end of the previous year

A0 = $100,000

Ak = Ak-1 + (0.04) · Ak-1 = 1.04 · Ak-1 , for each integer k ≥ 1

A1 = 1.04 · A0 = $104,000

A2 = 1.04 · A1 = 1.04 · $104,000 = $108, 160
...
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Recursion
 Compound Interest with Compounding Several Times a 

Year:

 An annual interest rate of i is compounded m times per year:

the interest rate paid per each period is i/m

Pk is the sum of the the amount at the end of the (k − 1) period

+ the interest earned during k-th period

Pk = Pk-1 + Pk-1 · i/m = Pk-1 · (1+ i/m)

 If 3% annual interest is compounded quarterly, then the interest rate 

paid per quarter is 0.03/4 = 0.0075
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Compound Interest
 Example: deposit of $10,000 at 3% compounded quarterly

For each integer n ≥ 1, Pn = the amount on deposit after n 

consecutive quarters.

Pk = 1.0075 · Pk-1

P0 = $10,000

P1 = 1.0075· P0 = 1.0075 · $10,000 = $10, 075.00

P2 = 1.0075· P1 = (1.0075) ·$10, 075.00 = $10, 150.56

P3 = 1.0075· P2 ~ (1.0075) ·$10, 150.56 = $10, 226.69

P4 = 1.0075· P3 ~ (1.0075) ·$10, 226.69 = $10, 303.39

The annual percentage rate (APR) is the percentage increase in the value 

of the account over a one-year period:

APR = (10303.39 − 10000)/ 10000 = 0.03034 = 3.034%
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Recursive Definitions of Sum and Product

 The summation from i=1 to n of a sequence is defined using 

recursion:

 The product from i=1 to n of a sequence is defined using 

recursion:
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Sum of Sums
 For any positive integer n, if a1,a2,...,an and b1,b2,...,bn are 

real numbers, then

 Proof by induction

 base step: 

 inductive hypothesis: 
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Sum of Sums
 Cont.: We must show that: 
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Recursion
 Arithmetic sequence: there is a constant d such that

ak = ak−1 + d for all integers k ≥ 1

It follows that, an = a0 + d*n for all integers n ≥ 0.

 Geometric sequence: there is a constant r such that

ak = r * ak−1 for all integers k ≥ 1

It follows that, an = rn * a0 for all integers n ≥ 0.
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Recursion
 A second-order linear homogeneous 

recurrence relation with constant coefficients is a 

recurrence relation of the form:

ak = A * ak-1 + B * ak-2

for all integers k ≥ some fixed integer

where A and B are fixed real numbers with B = 0.
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Recursively Defined Sets
1. Identify a few core objects as belonging to the set AND 

2. Give rules showing how to build new set elements from old

 A recursive definition for a set consists of:

I. BASE: A statement that certain objects belong to the set.

II. RECURSION: A collection of rules indicating how to form 

new set objects from those already known to be in the set.

III. RESTRICTION: A statement that no objects belong to the 

set other than those coming from I and II.
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Recursive Definition of Boolean Expressions

 The set of Boolean expressions over a general alphabet is 

defined recursively:

I. BASE: Each symbol of the alphabet is a Boolean expression.

II. RECURSION: If P and Q are Boolean expressions, then so 

are:

(a) (P ∧ Q) and 

(b) (P ∨ Q) and 

(c) ∼P.

III. RESTRICTION: There are no Boolean expressions over the 

alphabet other than those obtained from I and II.
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Recursive Definition of Boolean Expressions

 Example: the following is a Boolean expression over the English 

alphabet {a, b, c, . . . , x, y, z}:

(∼(p ∧ q) ∨ (∼r ∧ p))

(1) By I, p, q, and r are Boolean expressions.

(2) By (1) and II(a) and (c), (p ∧ q) and ∼r are Boolean 

expressions.

(3) By (2) and II(c) and (a), ∼(p ∧ q) and (∼r ∧ p) are Boolean 

expressions.

(4) By (3) and II(b), (∼(p ∧ q) ∨ (∼r ∧ p)) is a Boolean 

expression.
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Recursive String Definitions
 A string over S (a finite set with at least one element) is a 

finite sequence of elements from S. 

The elements of S are called characters of the string.

The length of a string is the number of characters it 

contains. 

The null string over S is defined to be the “string” with 

no characters. 

 It is usually denoted ε (epsilon) and is said to have length 0.
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Recursive String Definitions
 Example: the Set of Strings over an Alphabet:

 Consider the set S of all strings in a’s and b’s - S is defined 

recursively as:

I. BASE: ε is in S, where ε is the null string.

II. RECURSION: If s ∈ S, then

(a) sa ∈ S and (b) sb ∈ S,

where sa and sb are the concatenations of s with a and b.

III. RESTRICTION: Nothing is in S other than objects defined 

in I and II above. 

Derive the fact that ab ∈ S.
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Recursive String Definitions

Derive the fact that ab ∈ S.

(1) By I, ε ∈ S.

(2) By (1) and II(a), εa ∈ S. But εa is the 

concatenation of the null string ε and a, which 

equals a. So a ∈ S.

(3) By (2) and II(b), ab ∈ S.
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 The MIU-system:

I. BASE: MI is in the MIU-system.

II. RECURSION:

a. If x I is in the MIU-system, where x is a string, then x I U is in the MIU-system = i.e., we  can add 

a U to any string that ends in I. For example, since MI is in the system, so is MIU.

b. If Mx is in the MIU-system, where x is a string, then Mxx is in the MIUsystem = i.e., we can 

repeat all the characters in a string that follow an initial M. For example, if MUI is in the system, 

so is MUIUI.

c. If x I I I y is in the MIU-system, where x and y are strings (possibly null), then xUy is also in the 

MIU-system = i.e., we can replace I I I by U. For example, if M I I I I is in the system, so are MIU 

and MUI.

d. If xUUy is in the MIU-system, where x and y are strings (possibly null), then xUy is also in the 

MIU-system = i.e., can replace UU by U. For example, if MIIUU is in the system, so is MIIU.

III. RESTRICTION: No strings other than those derived from I and II are in the MIUsystem.

Derive the fact that MUIU is in the MIU-system:

(1) By I, MI is in the MIU-system.

(2) By (1) and II(b), M I I is in the MIU-system.

(3) By (2) and II(b), M I I I I is in the MIU-system.

(4) By (3) and II(c), MUI is in the MIU-system.

(5) By (4) and II(a), MUIU is in the MIU-system.
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 Legal Parenthesis Structures:

I. BASE: () is in P.

II. RECURSION:

a. If E is in P, so is (E).

b. If E and F are in P, so is EF.

III. RESTRICTION: No configurations of parentheses are in P 

other than those derived from I and II above.

Derive the fact that (())() is in P:

(1) By I, () is in P.

(2) By (1) and II(a), (()) is in P.

(3) By (2), (1), and II(b), (())() is in P.
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Structural Introduction for 

Recursively Defined Sets
 Let S be a set that has been defined recursively, and consider a 

property that objects in S may or may not satisfy. 

To prove that every object in S satisfies the property:

1. Show that each object in the BASE for S satisfies the property;

2. Show that for each rule in the RECURSION, if the rule is applied 

to objects in S that satisfy the property, then the objects defined by 

the rule also satisfy the property.

Because no objects other than those obtained through the BASE and 

RECURSION conditions are contained in S, it must be the case 

that every object in S satisfies the property.
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Legal Parenthesis Structures
I. BASE: () is in P.

II. RECURSION:

a. If E is in P, so is (E).

b. If E and F are in P, so is EF.

III. RESTRICTION: No configurations of parentheses are in P other than those derived from I 

and II above.

 Every configuration in P contains an equal number of left and right parentheses:

Property: any parenthesis configuration has an equal number of left and right parentheses!

Show that each object in the BASE for P satisfies the property: The only object in the

base for P is (), which has one left parenthesis and one right parenthesis.

Show that for each rule in the RECURSION for P, if the rule is applied to an object in P that 

satisfies the property, then the object defined by the rule also satisfies the property: 

The recursion for P consists of two rules denoted II(a) and II(b).

Suppose E and F are parenthesis configurations that have equal numbers of left and right parentheses.

When rule II(a) is applied to E, the result is (E), so both the number of left parentheses and the number of 

right parentheses are increased by one ➔ same number of parenthesis.

When rule II(b) is applied, the result is EF, which has an equal number, m(in E) + n(in F), of left and right 

parentheses.25
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Recursive Functions
 McCarthy’s 91 Function: M : Z+→ Z

M(n) =

M(99) = M(M(110)) since 99 ≤ 100

= M(100) since 110 > 100

= M(M(111)) since 100 ≤ 100

= M(101) since 111 > 100

= 91 since 101 > 100

26
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Recursive Functions
 The Ackermann Function:

A(0, n) = n + 1 for all nonnegative integers n (1)

A(m, 0) = A(m − 1, 1)   for all positive integers m (2)

A(m, n) = A(m − 1, A(m, n − 1)) for all positive integers m and n

(3)

A(1, 2) = A(0, A(1, 1)) by (3) with m = 1 and n = 2

= A(0, A(0, A(1, 0))) by (3) with m = 1 and n = 1

= A(0, A(0, A(0, 1))) by (2) with m = 1

= A(0, A(0, 2)) by (1) with n = 1

= A(0, 3) by (1) with n = 2

= 4 by (1) with n = 3.

A(n, n) increases with extraordinary rapidity: A(4, 4) 
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