
CSE 215, Foundations of Computer Science

Stony Brook University

http://www.cs.stonybrook.edu/~cse215

Recursion

http://www.cs.stonybrook.edu/~cse215

(c) Paul Fodor (CS Stony Brook)

Recursion: Sequences
 A sequence can be defined in 3 ways:

 enumeration: -2,3,-4,5,...

 general pattern: an=(-1)n(n+1), for all integers n ≥ 1

 recursion: a1=-2 and an=(-1)n-1 an-1 +(-1)n

 define one or more initial values for the sequence AND

 define each later term in the sequence by reference to earlier terms

 A recurrence relation for a sequence a0, a1, a2,... is a formula that

relates each term ak to certain of its predecessors ak-1, ak-2,..., ak-i, where

i is an integer with k−i ≥ 0

 The initial conditions for a recurrence relation specify the values of

a0, a1, a2,..., ai-1, if i is a fixed integer, OR

a0, a1,..., am, where m is an integer with m ≥ 0, if i depends on k.

2

(c) Paul Fodor (CS Stony Brook)

Recursion
 Computing Terms of a Recursively Defined Sequence:

 Example:

initial conditions: c0 = 1 and c1 = 2

recurrence relation: ck = ck-1 + k ck-2 + 1, for all integers k≥2

c2 = c1 + 2 c0 + 1 by substituting k = 2 into the recurrence relation

= 2 + 2·1 + 1 since c1 = 2 and c0 = 1 by the initial conditions

= 5

c3 = c2 + 2 c1 + 1 by substituting k = 3 into the recurrence relation

= 5 + 3·2 + 1 since c2 = 5 and c1 = 2

= 12

c4 = c3 + 2 c2 + 1 by substituting k = 4 into the recurrence relation

= 12 + 3·5 + 1 since c3 = 12 and c2 = 5

= 33

3

(c) Paul Fodor (CS Stony Brook)

Recursion
 Writing a Recurrence Relation in More Than One Way:

 Example:

initial condition: s0 = 1

recurrence relation 1: sk = 3sk-1 - 1, for all integers k≥1

recurrence relation 2: sk+1 = 3sk - 1, for all integers k≥0

4

(c) Paul Fodor (CS Stony Brook)

Recursion
 Sequences That Satisfy the Same Recurrence Relation:

 Example:

initial conditions: a1 = 2 and b1 = 1

recurrence relations: ak = 3ak-1 and bk = 3bk-1 for all integers k≥2

a2 = 3a1 = 3·2 = 6 b2 = 3b1 = 3·1 = 3

a3 = 3a2 = 3·6 = 18 b3 = 3b2 = 3·3 = 9

a4 = 3a3 = 3·18 = 54 b4 = 3b3 = 3·9 = 27

5

(c) Paul Fodor (CS Stony Brook)

Recursion
 Fibonacci numbers:

1. We have one pair of rabbits (male and female) at the beginning of a year.

2. Rabbit pairs are not fertile during their first month of life but thereafter give birth

to one new male&female pair at the end of every month.

6

(c) Paul Fodor (CS Stony Brook)

Recursion
 Fibonacci numbers:

The initial number of rabbit pairs: F0 = 1

Fn : the number of rabbit pairs at the end of month n, for each integer n ≥ 1

Fn = Fn-1 + Fn-2 , for all integers k ≥ 2

F1 = 1 , because the first pair of rabbits is not fertile until the second month

How many rabbit pairs are at the end of one year?

January 1st: F0 = 1 September 1st : F8=F7+F6=21+13=34

February 1st: F1 = 1 October 1st : F9=F8+F7=34+21=55

March 1st : F2 = F1 + F0 = 1+1= 2 November 1st : F10=F9+F8=55+34=89

April 1st : F3 = F2 + F1 = 2+1= 3 December 1st :

F11=F10+F9=89+55=144

May 1st : F4 = F3 + F2 = 3+2= 5 January 1st : F12=F11+F10=144+89=233

June 1st : F5 = F4 + F3 = 5+3= 8

July 1st : F6 = F5 + F4 = 8+5= 13

August 1st : F7 = F6 + F5 = 13+8= 21

7

(c) Paul Fodor (CS Stony Brook)

Recursion
 Compound Interest:

 A deposit of $100,000 in a bank account earning 4% interest

compounded annually:

the amount in the account at the end of any particular year =

the amount in the account at the end of the previous year +

the interest earned on the account during the year

= the amount in the account at the end of the previous year +

0.04 · the amount in the account at the end of the previous year

A0 = $100,000

Ak = Ak-1 + (0.04) · Ak-1 = 1.04 · Ak-1 , for each integer k ≥ 1

A1 = 1.04 · A0 = $104,000

A2 = 1.04 · A1 = 1.04 · $104,000 = $108, 160
...

8

(c) Paul Fodor (CS Stony Brook)

Recursion
 Compound Interest with Compounding Several Times a

Year:

 An annual interest rate of i is compounded m times per year:

the interest rate paid per each period is i/m

Pk is the sum of the the amount at the end of the (k − 1) period

+ the interest earned during k-th period

Pk = Pk-1 + Pk-1 · i/m = Pk-1 · (1+ i/m)

 If 3% annual interest is compounded quarterly, then the interest rate

paid per quarter is 0.03/4 = 0.0075

9

(c) Paul Fodor (CS Stony Brook)

Compound Interest
 Example: deposit of $10,000 at 3% compounded quarterly

For each integer n ≥ 1, Pn = the amount on deposit after n

consecutive quarters.

Pk = 1.0075 · Pk-1

P0 = $10,000

P1 = 1.0075· P0 = 1.0075 · $10,000 = $10, 075.00

P2 = 1.0075· P1 = (1.0075) ·$10, 075.00 = $10, 150.56

P3 = 1.0075· P2 ~ (1.0075) ·$10, 150.56 = $10, 226.69

P4 = 1.0075· P3 ~ (1.0075) ·$10, 226.69 = $10, 303.39

The annual percentage rate (APR) is the percentage increase in the value

of the account over a one-year period:

APR = (10303.39 − 10000)/ 10000 = 0.03034 = 3.034%

10

(c) Paul Fodor (CS Stony Brook)

Recursive Definitions of Sum and Product

 The summation from i=1 to n of a sequence is defined using

recursion:

 The product from i=1 to n of a sequence is defined using

recursion:

11

(c) Paul Fodor (CS Stony Brook)

Sum of Sums
 For any positive integer n, if a1,a2,...,an and b1,b2,...,bn are

real numbers, then

 Proof by induction

 base step:

 inductive hypothesis:

12

(c) Paul Fodor (CS Stony Brook)

Sum of Sums
 Cont.: We must show that:

13

Q.E.D.

(c) Paul Fodor (CS Stony Brook)

Recursion
 Arithmetic sequence: there is a constant d such that

ak = ak−1 + d for all integers k ≥ 1

It follows that, an = a0 + d*n for all integers n ≥ 0.

 Geometric sequence: there is a constant r such that

ak = r * ak−1 for all integers k ≥ 1

It follows that, an = rn * a0 for all integers n ≥ 0.

14

(c) Paul Fodor (CS Stony Brook)

Recursion
 A second-order linear homogeneous

recurrence relation with constant coefficients is a

recurrence relation of the form:

ak = A * ak-1 + B * ak-2

for all integers k ≥ some fixed integer

where A and B are fixed real numbers with B = 0.

15

(c) Paul Fodor (CS Stony Brook)

Recursively Defined Sets
1. Identify a few core objects as belonging to the set AND

2. Give rules showing how to build new set elements from old

 A recursive definition for a set consists of:

I. BASE: A statement that certain objects belong to the set.

II. RECURSION: A collection of rules indicating how to form

new set objects from those already known to be in the set.

III. RESTRICTION: A statement that no objects belong to the

set other than those coming from I and II.

16

(c) Paul Fodor (CS Stony Brook)

Recursive Definition of Boolean Expressions

 The set of Boolean expressions over a general alphabet is

defined recursively:

I. BASE: Each symbol of the alphabet is a Boolean expression.

II. RECURSION: If P and Q are Boolean expressions, then so

are:

(a) (P ∧ Q) and

(b) (P ∨ Q) and

(c) ∼P.

III. RESTRICTION: There are no Boolean expressions over the

alphabet other than those obtained from I and II.

17

(c) Paul Fodor (CS Stony Brook)

Recursive Definition of Boolean Expressions

 Example: the following is a Boolean expression over the English

alphabet {a, b, c, . . . , x, y, z}:

(∼(p ∧ q) ∨ (∼r ∧ p))

(1) By I, p, q, and r are Boolean expressions.

(2) By (1) and II(a) and (c), (p ∧ q) and ∼r are Boolean

expressions.

(3) By (2) and II(c) and (a), ∼(p ∧ q) and (∼r ∧ p) are Boolean

expressions.

(4) By (3) and II(b), (∼(p ∧ q) ∨ (∼r ∧ p)) is a Boolean

expression.

18

(c) Paul Fodor (CS Stony Brook)

Recursive String Definitions
 A string over S (a finite set with at least one element) is a

finite sequence of elements from S.

The elements of S are called characters of the string.

The length of a string is the number of characters it

contains.

The null string over S is defined to be the “string” with

no characters.

 It is usually denoted ε (epsilon) and is said to have length 0.

19

(c) Paul Fodor (CS Stony Brook)

Recursive String Definitions
 Example: the Set of Strings over an Alphabet:

 Consider the set S of all strings in a’s and b’s - S is defined

recursively as:

I. BASE: ε is in S, where ε is the null string.

II. RECURSION: If s ∈ S, then

(a) sa ∈ S and (b) sb ∈ S,

where sa and sb are the concatenations of s with a and b.

III. RESTRICTION: Nothing is in S other than objects defined

in I and II above.

Derive the fact that ab ∈ S.

20

(c) Paul Fodor (CS Stony Brook)

Recursive String Definitions

Derive the fact that ab ∈ S.

(1) By I, ε ∈ S.

(2) By (1) and II(a), εa ∈ S. But εa is the

concatenation of the null string ε and a, which

equals a. So a ∈ S.

(3) By (2) and II(b), ab ∈ S.

21

(c) Paul Fodor (CS Stony Brook)

 The MIU-system:

I. BASE: MI is in the MIU-system.

II. RECURSION:

a. If x I is in the MIU-system, where x is a string, then x I U is in the MIU-system = i.e., we can add

a U to any string that ends in I. For example, since MI is in the system, so is MIU.

b. If Mx is in the MIU-system, where x is a string, then Mxx is in the MIUsystem = i.e., we can

repeat all the characters in a string that follow an initial M. For example, if MUI is in the system,

so is MUIUI.

c. If x I I I y is in the MIU-system, where x and y are strings (possibly null), then xUy is also in the

MIU-system = i.e., we can replace I I I by U. For example, if M I I I I is in the system, so are MIU

and MUI.

d. If xUUy is in the MIU-system, where x and y are strings (possibly null), then xUy is also in the

MIU-system = i.e., can replace UU by U. For example, if MIIUU is in the system, so is MIIU.

III. RESTRICTION: No strings other than those derived from I and II are in the MIUsystem.

Derive the fact that MUIU is in the MIU-system:

(1) By I, MI is in the MIU-system.

(2) By (1) and II(b), M I I is in the MIU-system.

(3) By (2) and II(b), M I I I I is in the MIU-system.

(4) By (3) and II(c), MUI is in the MIU-system.

(5) By (4) and II(a), MUIU is in the MIU-system.
22

(c) Paul Fodor (CS Stony Brook)

 Legal Parenthesis Structures:

I. BASE: () is in P.

II. RECURSION:

a. If E is in P, so is (E).

b. If E and F are in P, so is EF.

III. RESTRICTION: No configurations of parentheses are in P

other than those derived from I and II above.

Derive the fact that (())() is in P:

(1) By I, () is in P.

(2) By (1) and II(a), (()) is in P.

(3) By (2), (1), and II(b), (())() is in P.

23

(c) Paul Fodor (CS Stony Brook)

Structural Introduction for

Recursively Defined Sets
 Let S be a set that has been defined recursively, and consider a

property that objects in S may or may not satisfy.

To prove that every object in S satisfies the property:

1. Show that each object in the BASE for S satisfies the property;

2. Show that for each rule in the RECURSION, if the rule is applied

to objects in S that satisfy the property, then the objects defined by

the rule also satisfy the property.

Because no objects other than those obtained through the BASE and

RECURSION conditions are contained in S, it must be the case

that every object in S satisfies the property.

24

(c) Paul Fodor (CS Stony Brook)

Legal Parenthesis Structures
I. BASE: () is in P.

II. RECURSION:

a. If E is in P, so is (E).

b. If E and F are in P, so is EF.

III. RESTRICTION: No configurations of parentheses are in P other than those derived from I

and II above.

 Every configuration in P contains an equal number of left and right parentheses:

Property: any parenthesis configuration has an equal number of left and right parentheses!

Show that each object in the BASE for P satisfies the property: The only object in the

base for P is (), which has one left parenthesis and one right parenthesis.

Show that for each rule in the RECURSION for P, if the rule is applied to an object in P that

satisfies the property, then the object defined by the rule also satisfies the property:

The recursion for P consists of two rules denoted II(a) and II(b).

Suppose E and F are parenthesis configurations that have equal numbers of left and right parentheses.

When rule II(a) is applied to E, the result is (E), so both the number of left parentheses and the number of

right parentheses are increased by one ➔ same number of parenthesis.

When rule II(b) is applied, the result is EF, which has an equal number, m(in E) + n(in F), of left and right

parentheses.25

(c) Paul Fodor (CS Stony Brook)

Recursive Functions
 McCarthy’s 91 Function: M : Z+→ Z

M(n) =

M(99) = M(M(110)) since 99 ≤ 100

= M(100) since 110 > 100

= M(M(111)) since 100 ≤ 100

= M(101) since 111 > 100

= 91 since 101 > 100

26

n − 10 if n > 100

M(M(n + 11)) if n ≤ 100

(c) Paul Fodor (CS Stony Brook)

Recursive Functions
 The Ackermann Function:

A(0, n) = n + 1 for all nonnegative integers n (1)

A(m, 0) = A(m − 1, 1) for all positive integers m (2)

A(m, n) = A(m − 1, A(m, n − 1)) for all positive integers m and n

(3)

A(1, 2) = A(0, A(1, 1)) by (3) with m = 1 and n = 2

= A(0, A(0, A(1, 0))) by (3) with m = 1 and n = 1

= A(0, A(0, A(0, 1))) by (2) with m = 1

= A(0, A(0, 2)) by (1) with n = 1

= A(0, 3) by (1) with n = 2

= 4 by (1) with n = 3.

A(n, n) increases with extraordinary rapidity: A(4, 4)
27

