
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

Properties of High Quality Software

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor & O'Reilly Media

Software Engineering Basics

Important Principles for creating a

Software Solution:

First, define the problem

Design, then code

Always Provide Feedback

Learn a methodology for constructing

software systems of high quality.

 2

(c) Paul Fodor & O'Reilly Media

What properties make a software

system of high quality?
 Correctness

 Efficiency

 Ease of use

 for the user

 for other programmers using your framework

 Reliability/robustness

 Reusability (i.e., code reuse with slight or no modification)

 Extensibility

 Scalability (i.e., to handle a growing amount of work in a

capable manner)

 Maintainability, Readability, Modifiability, Testability, etc.

3

(c) Paul Fodor & O'Reilly Media

 Correctness (think of GE or IBM large engineering systems)

 Efficiency (think of Google Search)

 Ease of use

 for the user (think of Apple UI and products)

 for other programmers using your framework (see MS Visual...)

 Reliability/robustness (think of NASA software)

 Reusability (see Apache Software Foundation software, e.g. HTTP server)

 Extensibility (see Android OS growth to most popular mobile platform)

 Scalability (think of Oracle DBs)

 Maintainability, Readability, Modifiability, Testability, etc.

 4

What properties make a software

system of high quality?

(c) Paul Fodor & O'Reilly Media

Correctness
Does the program perform its intended function?

And does it produce the correct results?

This is not just an implementation (coding) issue

Correctness is a function of the problem

definition

A flawed Requirements Analysis results in a

flawed Design

A flawed Design results in a flawed program

Garbage In – Garbage Out

5

(c) Paul Fodor & O'Reilly Media

Efficiency
 Plan for efficiency

 wisely choose your data structures & algorthms (including their

complexity, e.g., O(N)) in the design phase.

 tools & technologies too.

 Does the program meet user performance expectations?

 If not, find the bottlenecks

 done after implementation

 called profiling

6

(c) Paul Fodor & O'Reilly Media

Ease of Use for End User
 Is the GUI easy to learn to use?

a gently sloped learning curve

 What makes a GUI easy to use?

 familiar GUI structures

 familiar icons when possible instead of text

components logically organized & grouped

appealing to look at

 colors, alignment, balance, etc.

 forgiving of user mistakes

help, tooltips, and other cues available

etc.

7

(c) Paul Fodor & O'Reilly Media

Ease of Use for other Programmers
 In particular for frameworks and tools

 the Java API is developed to be easy to use

 Should you even build a framework?

Yes, you will be a software developer.

 What makes a framework easy to use?

 logical structure

naming choices (classes, methods, etc.)

 flexibility (usable for many purposes)

 feedback (exceptions for improper use)

documentation (APIs & tutorials)

etc.

8

(c) Paul Fodor & O'Reilly Media

Reliability/Robustness
 Does your program:

anticipate erroneous input?

anticipate all potential program conditions?

handle erroneous input intelligently?
 think about this in the design stage

provide graceful degradation?

 Graceful degradation (or Fault-tolerance) is the property that enables a system to

continue operating properly in the event of the failure of (or one or more faults

within) some of its components.

 If an error condition occurs in your program, should your program:

o crash?, exit?, notify the user and exit?, provide an approximated service?

Not always possible to save it.

 For example: What should Web Browsers do with poorly formatted HTML?

9

(c) Paul Fodor & O'Reilly Media

Feedback
Provide feedback to End users due to: bad input,

equipment failure, missing files, etc.

How?

popup dialogs, highlighting (red text in Web

form), etc.

Provide feedback to other programmers using

your framework due to: passing bad data,

incorrect initialization, etc.

How?

exception throwing, error value returning, etc.

10

(c) Paul Fodor & O'Reilly Media

Flexibility in a Framework
 Programmers need to know:

when and why things in a framework might go wrong

AND

when and why things in a framework do go wrong

 How?

customized response:

System.out.println notifications

GUI notifications

 Web page generated and sent via Servlet notification

 etc.

 11

(c) Paul Fodor & O'Reilly Media

Applications Using Frameworks

 Making a framework is much more difficult than
making a single application

12

Framework

Application #1 Application #2

App1 calls

methods of

Framework

objects

App2 calls

methods of

Framework

objects
Framework calls

methods of App1 &

App2 objects

(c) Paul Fodor & O'Reilly Media

Reusability
 Code serving multiple purposes.

 Who cares?

management does

avoid duplication of work (save $)

software engineering does

avoid duplication of work (save time & avoid mistakes)

 How can we achieve this?

careful program decomposition (from methods to classes

and packages)

separate technology-dependent components

13

(c) Paul Fodor & O'Reilly Media

Extensibility
 Can the software easily be extended?

can it be used for other purposes

 plug-ins,

 exporters,

 add-ons,

 etc

 Extensibility Example:

 In NetBeans, Tools → Plugins

 Anyone can make a plugin

 Download, install, and use

 In Eclipse IDE, Help → Install New Software plugin

14

(c) Paul Fodor & O'Reilly Media

Scalability
How will the program perform when we increase:

of users/connections

amount of data processed

of geographic locations users are from

A function of design as well as technology

15

(c) Paul Fodor & O'Reilly Media

More Software Engineering steps

Maintainability

Readability

Modifiability

Testability

etc.

All of these, as with the others,

must be considered early in design

16

(c) Paul Fodor & O'Reilly Media

How can these properties be achieved?

By using well proven, established

processes:

preferably while taking advantage of

good tools

Software Development Life Cycle

17

Requirements

Analysis

Design &

Document
Code Test

Debug

Profile

Deploy Evaluate

Design

(c) Paul Fodor & O'Reilly Media

Software Development Life Cycle

 Requirements Analysis & design stages:

 Correctness, Efficiency, Ease of use,

Reliability/robustness, Reusability, Maintainability,

Modifiability, Testability, Extensibility, Scalability

 do we consider these properties in the implementation stages?

 Little because it is too late to make a big impact.
18

Requirements

Analysis

Design &

Document
Code Test

Debug

Profile

Deploy Evaluate

Design

(c) Paul Fodor & O'Reilly Media

Where to begin?
Understand and Define the problem

the point of a requirements analysis

What are system input & output?

How will users interact with the system?

What data must the system maintain?

Generate a problem specification document

defines the problem

defines what needs to be done to solve the

problem

19

(c) Paul Fodor & O'Reilly Media

Requirements Analysis
 i.e. Software Specification (spec.)

 A textual document

 It serves two roles. It:

 defines the problem to be solved

 explains how to solve it

 This is the input into the software design stage

 What goes in a requirements analysis (RA)?
 The why, where, when, what, how, and who:

 Why are we making this software?

 Where and when will it be created?

 What, exactly, are we going to make?

 How are we going to make it?

 Who will be performing each role?
20

(c) Paul Fodor & O'Reilly Media

Requirements Analysis
What really goes in a RA?
Detailed descriptions of all:

 necessary data (including how to query it, views, forms,

inserts)

 program input and output

 GUI screens & controls

 user actions and program reactions

Where do you start?
 Interviews with the end users

 What do they need?

 What do they want?

21

(c) Paul Fodor & O'Reilly Media

UML Use Case Diagrams
 A set of scenarios that describe an interaction between a

user and a system

 Done first in a project design

helps you to better understand the system

requirements

 To draw a Use Case Diagram:

List a sequence of steps a user might take in order to

complete an action.

Example actor: a user placing an order with a sales

company

 22

(c) Paul Fodor & O'Reilly Media

UML Use Case Diagrams

 Human Actor: Stick figure with name underneath.

Name usually identifies type of actor.

Use Case: Oval enclosing name of use case.

 Non-Human Actor: Stick figure, or a rectangle enclosing the

stereotype <<actor>> and the name of the actor. A stereotype

indicates the type of UML element (when it isn’t evident from

the shape).

23

(c) Paul Fodor & O'Reilly Media

UML Use Case Diagrams
 Relationships Between Actors and Use Cases:

Solid edge between an actor A and a use case U

means that actor A participates in use case U.

24

(c) Paul Fodor & O'Reilly Media

UML Use Case Diagrams
 Relationships Between Use Cases:

 Include: dashed arrow labeled <<include>> from use case U1 to

use case U2 means U2 is part of the primary flow of events of U1.

 Extend: dashed arrow labeled <<extend>> from use case U2 to

use case U1 means U2 is part of a secondary flow of events of U1.

25

(c) Paul Fodor & O'Reilly Media

Relationships Between Actors
 Generalization: Solid line with triangular arrowhead

from actor A1 to actor A2 means that A2 is a

generalization of A1. This implies that A1 participates in

all use cases that A2 participates in. Generalization is

similar to inheritance.

26

(c) Paul Fodor & O'Reilly Media

Relationships Between Use Cases
 Generalization: Solid line with triangular arrowhead

from use case U1 to use case U2 means that U2 is a

generalization of U1 (equivalently, U1 is a specialized

version of U2). Generalization is similar to inheritance.

27

(c) Paul Fodor & O'Reilly Media
28

(c) Paul Fodor & O'Reilly Media

Formal UML

Use Case

Diagram

(c) Paul Fodor & O'Reilly Media

Textbook example: Design well,

Then code.
 Head First Object Oriented Analysis and Design (chapter 1):

“Rick decided to throw out his paper-based system for keeping track

of guitars, and start using a computer-based system to store his

inventory.”

30

Down and dirty!

Company

produced:

AND

(c) Paul Fodor & O'Reilly Media

Eliminate Strings and add enumerations of types

More design needed to meet

the user demands

