
CSE219, Computer Science III

Stony Brook University

http://www.cs.stonybrook.edu/~cse219

Code Style and Conventions

http://www.cs.stonybrook.edu/~cse219

(c) Paul Fodor

Next three lectures
Next three lectures are about “What you

always wanted to know about Java (but you

never dared to ask)”

Documentation, conventions and code style

Includes annotations and reflection

Compiling source code into bytecode

Includes profiling and optimization

2

(c) Paul Fodor

What are code conventions?

A common style standard

Encouraged, not enforced

Think programmer etiquette

Vary between languages

3

(c) Paul Fodor
4

(c) Paul Fodor

Why have code conventions?
 Why have code conventions?

~80% of the lifetime cost of software is maintenance

rarely maintained by the original author

5

(c) Paul Fodor

Java Code Conventions
Code conventions improve the

readability of the software, allowing

engineers to understand new code

more quickly and thoroughly.

If you ship your source code as a product,

you need to make sure it is as well

packaged and clean as any other product

you create.

 6

(c) Paul Fodor

What are the benefits of

code conventions?
 Improve readability

 Make learning curve less steep

 Ship neatly packaged, clean code

7

(c) Paul Fodor

Java Recommendations

8

• http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

• Files (file names and extensions)

• No source files more than 2000 lines of code.

• Order of appearance:

1. Class/interface documentation comment

2. Class or interface statement

3. Class/interface implementation comment (/*...*/), if

necessary

4. Class (static) variables

5. Instance variables

6. Constructors

7. Methods

/**

 * The Example class

 * provides ...

 */

public class Example { ...

First public, then protected, then package

level (no access modifier), and then private.

group these by functionality (those that work together)

http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

(c) Paul Fodor

More Conventions
 Avoid lines longer than 70 characters

 not handled well by many terminals and tools.

 When an expression will not fit on a single line, break it

according to these general principles:

 Break after a comma.

 Break before an operator.

 Prefer higher-level breaks to lower-level breaks.

 Align the new line with the beginning of the expression at the

same level on the previous line.

 If the above rules lead to confusing code or to code that's

squished up against the right margin, just indent 8 spaces

instead.

9

(c) Paul Fodor

Declaration Conventions
• One declaration per line is recommended since

it encourages commenting. In other words,
 int level; // indentation level

 int size; // size of table

is preferred over
 int level, size;

• Do not put different types on the same line,

Ex:

 int foo[], bar; //WRONG!

 10

(c) Paul Fodor

Class & Method Conventions
• No space between a method name and the

parenthesis "(" starting its parameter list

• Open brace "{" appears at the end of the same line
as the declaration statement

• Closing brace "}" starts a line by itself indented to
match its corresponding opening statement,
– when it is a empty method the "}" should appear immediately after the "{"
class Sample extends Object {

 int ivar1;

 int ivar2;

 Sample(int i, int j) {

 ivar1 = i;

 ivar2 = j;

 }

 int emptyMethod() {}

 ...

}

11

(c) Paul Fodor

If, Loop, & Try/Catch conventions
if (condition) {

 statements;

}

if (condition) {

 statements;

} else {

 statements;

}

for (initialization; condition; update) {

 statements;

}

try {

 statements;

} catch (ExceptionClass e) {

 statements;

} 12

(c) Paul Fodor

Additional Conventions

• Avoid using an object to access a class

(static) variable or method -> Use a class

name instead. For example:
 classMethod(); //OK in the same class

 AClass.classMethod(); //OK

 anObject.classMethod(); //AVOID!

 /* It gives the wrong impression

 that the method is dynamic */

13

(c) Paul Fodor

Javadoc
Javadoc collects HTML comments from the

code into HTML files

The comments may contain HTML tags

 /**
 * Graphics is the abstract base class for all graphics contexts

 * which allow an application to draw onto components realized on

 * various devices or onto off-screen images.

 * A Graphics object encapsulates the state information needed

 * for the various rendering operations that Java supports. This

 * state information includes:

 *

 * The Component to draw on …

The comments contain Javadoc tags

14

(c) Paul Fodor

Javadoc Tag Conventions
 Javadoc tags:

Order of Tags - include tags in the following order:

 @author (classes and interfaces only, required)

 @version (classes and interfaces only, required)

 @param (methods and constructors only)

 @return (methods only)

 @exception (@throws is a synonym added in Javadoc 1.2)

 @see

 @since

 @serial (or @serialField or @serialData)

 @deprecated
15

(c) Paul Fodor

Example
/**

 * @param ch the character to be tested

 * @since 1.2

 * @throws IOException If an input or output

 * exception occurred

 * @deprecated As of JDK 1.1, replaced by

 * setBounds

 * @see #setBounds(int,int,int,int)

 * ...

 */ 16

