
Paul Fodor

CSE260, Computer Science B: Honors

Stony Brook University

http://www.cs.stonybrook.edu/~cse260

Lists, Stacks, Queues, and

Priority Queues

1

http://www.cs.stonybrook.edu/~cse260

(c) Paul Fodor (CS Stony Brook) & Pearson

Objectives
 To explore the relationship between interfaces and classes in the Java Collections

Framework hierarchy.

 To use the common methods defined in the Collection interface for operating

collections.

 To use the Iterator interface to traverse the elements in a collection.

 To use a for-each loop to traverse the elements in a collection.

 To explore how and when to use ArrayList or LinkedList to store elements.

 To compare elements using the Comparable interface and the Comparator

interface.

 To use the static utility methods in the Collections class for sorting, searching,

shuffling lists, and finding the largest and smallest element in collections.

 To distinguish between Vector and ArrayList and to use the Stack class for

creating stacks.

 To explore the relationships among Collection, Queue, LinkedList, and

PriorityQueue and to create priority queues using the PriorityQueue class.

 To use stacks to write a program to evaluate expressions.
2

(c) Paul Fodor (CS Stony Brook) & Pearson

Data structures
 A data structure or collection is a collection of data

organized in some fashion

not only stores data but also supports operations for

accessing and manipulating the data
 Choosing the best data structures and algorithms for a particular

task is one of the keys to developing high-performance software

 In object-oriented thinking, a data structure, also known

as a container, is an object that stores other objects,

referred to as elements

3

(c) Paul Fodor (CS Stony Brook) & Pearson

Java Collection Framework hierarchy
 Java provides several data structures that can be used to organize

and manipulate data efficiently, commonly known as Java

Collections Framework

 The Java Collections Framework supports two types of containers:

 One for storing a collection of elements, simply called a collection

 Lists store an ordered collection of elements

 Sets store a group of nonduplicate elements

 Stacks store objects that are processed in a last-in, first-out fashion

 Queues store objects that are processed in a first-in, first-out fashion

 PriorityQueues store objects that are processed in the order of their

priorities

 One for storing key/value pairs, called a map

 Note: this is called a dictionary in Python

4

(c) Paul Fodor (CS Stony Brook) & Pearson

Java Collection Framework hierarchy
 All the interfaces and classes defined in the Java Collections

Framework are grouped in the java.util package

 The design of the Java Collections Framework is an excellent

example of using interfaces, abstract classes, and concrete classes

 The interfaces define the framework/general API

 The abstract classes provide partial implementation

 Providing an abstract class that partially implements an interface makes

it convenient for the user to write the code for the specialized

containers

 AbstractCollection is provided for convenience (for this

reason, it is called a convenience abstract class)

 The concrete classes implement the interfaces with concrete

data structures5

(c) Paul Fodor (CS Stony Brook) & Pearson
6

(c) Paul Fodor (CS Stony Brook) & Pearson

Java Collection Framework hierarchy
 The Collection interface is the root interface for

manipulating a collection of objects

 The AbstractCollection class provides partial

implementation for the Collection interface (all the

methods in Collection except the add, size, and

iterator methods)

 Note: the Collection interface implements the

Iterable interface

We can obtain an Iterator object for traversing

elements in the collection

 Also used by for-each loops

7

(c) Paul Fodor (CS Stony Brook) & Pearson
8

(c) Paul Fodor (CS Stony Brook) & Pearson

 Example of using the methods in the Java Collection Framework:
import java.util.*;

public class TestCollection {

public static void main(String[] args) {

ArrayList<String> collection1 = new ArrayList<>();

collection1.add("New York"); // add

collection1.add("Atlanta");

collection1.add("Dallas");

collection1.add("Madison");

System.out.println("A list of cities in collection1:");

System.out.println(collection1);

// the Collection interface’s contains method

System.out.println("\nIs Dallas in collection1? "

+ collection1.contains("Dallas")); // contains

// the Collection interface’s remove method

collection1.remove("Dallas"); // remove

// the Collection interface’s size method

System.out.println("\n" + collection1.size() + // size

" cities are in collection1 now");9

(c) Paul Fodor (CS Stony Brook) & Pearson
10

Collection<String> collection2 = new ArrayList<>();

collection2.add("Seattle");

collection2.add("Portland");

System.out.println("\nA list of cities in collection2:");

System.out.println(collection2);

ArrayList<String> c1 = (ArrayList<String>)

(collection1.clone()); // clone

c1.addAll(collection2); // addAll

System.out.println("\nCities in collection1 or collection2:");

System.out.println(c1);

c1 = (ArrayList<String>)(collection1.clone());

c1.retainAll(collection2); // retainAll

System.out.print("\nCities in collection1 and collection2:");

System.out.println(c1);

c1 = (ArrayList<String>)(collection1.clone());

c1.removeAll(collection2); // removeAll

System.out.print("\nCities in collection1, but not in 2: ");

System.out.println(c1);

}

}

(c) Paul Fodor (CS Stony Brook) & Pearson

Output:

A list of cities in collection1:

[New York, Atlanta, Dallas, Madison]

Is Dallas in collection1? true

3 cities are in collection1 now

A list of cities in collection2:

[Seattle, Portland]

Cities in collection1 or collection2:

[New York, Atlanta, Madison, Seattle, Portland]

Cities in collection1 and collection2:[]

Cities in collection1, but not in 2: [New York, Atlanta,

Madison]

11

(c) Paul Fodor (CS Stony Brook) & Pearson

Java Collection Framework hierarchy
 All the concrete classes in the Java Collections Framework implement

the java.lang.Cloneable and java.io.Serializable interfaces

except that java.util.PriorityQueue does not implement the

Cloneable interface

 Some of the methods in the Collection interface cannot be

implemented in the concrete subclass (e.g., the read-only collections

cannot add or remove)

 In this case, the method would throw

java.lang.UnsupportedOperationException, like this:

public void someMethod() {

throw new UnsupportedOperationException

("Method not supported");

}

12

(c) Paul Fodor (CS Stony Brook) & Pearson

Iterators
 Each collection is Iterable

 Iterator is a classic design pattern for walking through a

data structure without having to expose the details of how

data is stored in the data structure
o Also used in for-each loops:

for(String element: collection)

System.out.print(element + " ");

 The Collection interface extends the Iterable interface

 You can obtain a collection Iterator object to traverse all the

elements in the collection with the iterator() method in

the Iterable interface which returns an instance of
Iterator

 The Iterable interface defines the iterator method, which

returns an Iterator
13

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.util.*;

public class TestIterator {

public static void main(String[] args) {

Collection<String> collection = new ArrayList<>();

collection.add("New York");

collection.add("Atlanta");

collection.add("Dallas");

collection.add("Madison");

Iterator<String> iterator = collection.iterator();

while (iterator.hasNext()) {

System.out.print(iterator.next().toUpperCase() + " ");

}

System.out.println();

}

}

Output: NEW YORK ATLANTA DALLAS MADISON

14

(c) Paul Fodor (CS Stony Brook) & Pearson

The List Interface

15

(c) Paul Fodor (CS Stony Brook) & Pearson

The List Interface

A list collection stores elements in a sequential

order, and allows the user to specify where the

element is stored

The user can also access the elements by index

The List interface stores elements in sequence

and permits duplicates

Two concrete classes in Java Collections

Framework: ArrayList and LinkedList

16

(c) Paul Fodor (CS Stony Brook) & Pearson
17

The List Interface

(c) Paul Fodor (CS Stony Brook) & Pearson

The ListIterator

18

 The listIterator() and listIterator(startIndex)

methods return an instance of ListIterator

 The ListIterator interface extends the Iterator interface for

bidirectional traversal of the list and add elements to the list

(c) Paul Fodor (CS Stony Brook) & Pearson

The nextIndex() method returns the index

of the next element in the iterator, and the

previousIndex() returns the index of the

previous element in the iterator

The add(element) method inserts the

specified element into the list immediately before

the next element that would be returned by the

next() method defined in the Iterator

interface

19

The ListIterator

(c) Paul Fodor (CS Stony Brook) & Pearson

ArrayList and LinkedList
The ArrayList class and the LinkedList

class are concrete implementations of the List

interface

A list can grow or shrink dynamically

While an array is fixed once it is created

If your application does not require insertion

or deletion of elements, the most efficient

data structure is an array

20

(c) Paul Fodor (CS Stony Brook) & Pearson

java.util.ArrayList

«interface»
java.util.List<E>

Creates an empty list with the default initial capacity.

Creates an array list from an existing collection.

Creates an empty list with the specified initial capacity.

Trims the capacity of this ArrayList instance to be the

list's current size.

+ArrayList()

+ArrayList(c: Collection<? extends E>)

+ArrayList(initialCapacity: int)

+trimToSize(): void

«interface»
java.util.Collection<E>

java.util.ArrayList<E>

21

(c) Paul Fodor (CS Stony Brook) & Pearson

java.util.ArrayList
 Implemented with arrays, e.g., before inserting a new element at a

specified index, shift all the elements after the index to the right and

increase the ArrayList size by 1

 e0

 0 1
…

 i i+1 k-1 Before inserting
e at insertion point i

e1 … ei ei+1

…

… ek-1

data.length -1
Insertion point e

 e0

 0 1
…

 i i+1 After inserting
e at insertion point i,

list size is

incremented by 1

e1 … e ei

…

… ek-1

data.length -1 e inserted here

ek

ek

k

ei-1

ei-1

k+1 k

ei+1

 i+2

…shift…

22

(c) Paul Fodor (CS Stony Brook) & Pearson

java.util.LinkedList

«interface»
java.util.List<E>

Creates a default empty linked list.

Creates a linked list from an existing collection.

Adds the object to the head of this list.

Adds the object to the tail of this list.

Returns the first element from this list.

Returns the last element from this list.

Returns and removes the first element from this list.

Returns and removes the last element from this list.

+LinkedList()

+LinkedList(c: Collection<? extends E>)

+addFirst(o: E): void

+addLast(o: E): void

+getFirst(): E

+getLast(): E

+removeFirst(): E

+removeLast(): E

«interface»
java.util.Collection<E>

java.util.LinkedList<E>

23

(c) Paul Fodor (CS Stony Brook) & Pearson

Nodes in Linked Lists
 A linked list consists of nodes:

 Each node contains an element/value, and each node is linked to its next

neighbor:

 A node can be defined as a class, as follows:

class Node<E> {

E element;

Node<E> next;

public Node(E o) {

element = o;

}

}

 element

head

next

Node 1

 element

next

Node 2

…
 element

null

Node n

tail

24

(c) Paul Fodor (CS Stony Brook) & Pearson

ArrayList and LinkedList
 Which of the two classes ArrayList class and the

LinkedList class you use depends on your specific needs:

 The critical difference between them pertains to internal

implementation, which affects their performance.

 If you need to support random access through an index

without inserting or removing elements from any place

other than the end, ArrayList offers the most

efficient collection

 If your application requires the insertion or deletion of

elements from at the beginning of the list, you should

choose LinkedList

25

(c) Paul Fodor (CS Stony Brook) & Pearson

Using ArrayList and LinkedList
 The next example creates an ArrayList filled with

numbers, and inserts new elements into the specified

location in the list

 The example also creates a LinkedList from the

array list, inserts and removes the elements from the list

 Finally, the example traverses the list forward and

backward

Note: A list can hold identical elements: Integer 1 is

stored twice in the list.

26

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.util.*;

public class TestArrayAndLinkedList {

public static void main(String[] args) {

List<Integer> arrayList = new ArrayList<>();

arrayList.add(1); // 1 is autoboxed to new Integer(1)

arrayList.add(2);

arrayList.add(3);

arrayList.add(1);

arrayList.add(4);

arrayList.add(0, 10);

arrayList.add(3, 30);

System.out.println("A list of integers in the array list:");

System.out.println(arrayList);

LinkedList<Object> linkedList = new LinkedList<>(arrayList);

linkedList.add(1, "red");

linkedList.removeLast();

linkedList.addFirst("green");

27

(c) Paul Fodor (CS Stony Brook) & Pearson
28

System.out.println("Display the linked list backward with index:");

for (int i = linkedList.size() - 1; i >= 0; i--) {

System.out.print(linkedList.get(i) + " ");

}

System.out.println();

System.out.println("Display the linked list forward:");

ListIterator<Object> listIterator =

linkedList.listIterator();

while (listIterator.hasNext()) {

System.out.print(listIterator.next() + " ");

}

System.out.println();

System.out.println("Display the linked list backward:");

listIterator = linkedList.listIterator(linkedList.size());

while (listIterator.hasPrevious()) {

System.out.print(listIterator.previous() + " ");

}

}

}

(c) Paul Fodor (CS Stony Brook) & Pearson

 Output:

A list of integers in the array list:

[10, 1, 2, 30, 3, 1, 4]

Display the linked list backward with index:

1 3 30 2 1 red 10 green

Display the linked list forward:

green 10 red 1 2 30 3 1

Display the linked list backward:

1 3 30 2 1 red 10 green

29

(c) Paul Fodor (CS Stony Brook) & Pearson

 The get(i) method is available for a linked list, but it is a more

time-consuming operation to find each element

 Instead you should use an iterator or for-each loops:

30

ArrayList and LinkedList

(c) Paul Fodor (CS Stony Brook) & Pearson

The Comparator Interface
 Sometimes you want to compare the elements that are not instances of

Comparable or by a different criteria than Comparable

 You can define a Comparator to compare these elements

 Define a class that implements the

java.util.Comparator<T> interface

 The Comparator interface has two methods: compare and

equals

public int compare(T element1, T element2)

 Returns a negative value if element1 is less than element2

a positive value if element1 is greater than element2, and

zero if they are equal

31

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.util.Comparator;

public class GeometricObjectComparator

implements Comparator<GeometricObject>,

java.io.Serializable {

// It is generally a good idea for comparators to implement

// Serializable, as they may be used as ordering methods in

// serializable data structures.

public int compare(GeometricObject o1,

GeometricObject o2) {

double area1 = o1.getArea();

double area2 = o2.getArea();

if (area1 < area2)

return -1;

else if (area1 == area2)

return 0;

else

return 1;

}

}

32

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.util.Comparator;

public class TestComparator {

public static void main(String[] args) {

GeometricObject g1 = new Rectangle(5, 5);

GeometricObject g2 = new Circle(5);

GeometricObject g = max(g1, g2,

new GeometricObjectComparator());

System.out.println("The area of the larger object is " +

g.getArea());

}

public static GeometricObject max(GeometricObject g1,

GeometricObject g2,

Comparator<GeometricObject> c) {

if (c.compare(g1, g2) > 0)

return g1;

else

return g2;

}

}
33

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections
 The java.util.Collections class contains static

methods to perform common operations in a collection or a list

max, min, disjoint, and frequency methods for

collections

sort, binarySearch, reverse, shuffle, copy,

and fill methods for lists
static <T extends Comparable<? super T>> void

sort(List<T> list)

uses the compareTo method in the Comparable interface

static <T extends Comparator<? super T>> void

sort(List<T> list, Comparator<T> c)

uses the compare method in the Comparator interface

34

(c) Paul Fodor (CS Stony Brook) & Pearson

The Collections Class UML Diagram

35

(c) Paul Fodor (CS Stony Brook) & Pearson
36

Other Collections class useful static methods:

• rotate(List list, int distance) - Rotates all of the elements in the list

by the specified distance.

• replaceAll(List list, Object oldVal, Object newVal) - Replaces all

occurrences of one specified value with another.

• indexOfSubList(List source, List target) - Returns the index of the

first sublist of source that is equal to target.

• lastIndexOfSubList(List source, List target) - Returns the index of

the last sublist of source that is equal to target.

• swap(List, int, int) - Swaps the elements at the specified positions in

the specified list.

• addAll(Collection<? super T>, T...) - Adds all of the elements in the

specified array to the specified collection.

http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.htmlrotate(java.util.List,%20int)
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.htmlreplaceAll(java.util.List,%20T,%20T)
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.htmlindexOfSubList(java.util.List,%20java.util.List)
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.htmllastIndexOfSubList(java.util.List,%20java.util.List)
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.htmlswap(java.util.List,%20int,%20int)
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.htmladdAll(java.util.Collection,%20T...)

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists
Sorting:
List<String> list = Arrays.asList("red", "green",

"blue");

Collections.sort(list);

System.out.println(list);

The output is: [blue, green, red]

 To sort it in descending order, you can simply use the

Collections.reverseOrder() method to return a

Comparator object that orders the elements in reverse of their

natural order
Collections.sort(list,

Collections.reverseOrder());

System.out.println(list);

The output is [yellow, red, green, blue]
37

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists
 Binary search:

 You can use the binarySearch method to search for a key in

a sorted list

 To use this method, the list must be sorted in increasing order

 If the key is not in the list, the method returns -(insertion point + 1)

List<Integer> list1 =

Arrays.asList(2, 4, 7, 10, 11, 45, 50, 59, 60, 66);

System.out.println("(1) Index: " +

Collections.binarySearch(list1, 7)); //2

System.out.println("(2) Index: " +

Collections.binarySearch(list1, 9)); //-4

List<String> list2 = Arrays.asList("blue", "green", "red");

System.out.println("(3) Index: " +

Collections.binarySearch(list2, "red")); //2

System.out.println("(4) Index: " +

Collections.binarySearch(list2, "cyan")); //-2
38

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections

Reverse:

List<String> list =

Arrays.asList("yellow", "red",

"green", "blue");

Collections.reverse(list);

System.out.println(list);

The code displays: [blue, green, red, yellow]

39

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections

Shuffle:
List<String> list =

Arrays.asList("yellow", "red", "green", "blue");

Collections.shuffle(list);

System.out.println(list);

 You can also use the shuffle(List, Random) method to

randomly reorder the elements in a list with a specified

Random object.

 Using a specified Random object is useful to shuffle another list with

an identical sequences of elements

40

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections
import java.util.Arrays;

import java.util.Collections;

import java.util.List;

import java.util.Random;

public class SameShuffle {

public static void main(String[] args) {

List<String> list1 = Arrays.asList("yellow", "red", "green",

"blue");

List<String> list2 = Arrays.asList("Y", "R", "G", "B");

Collections.shuffle(list1, new Random(20));

Collections.shuffle(list2, new Random(20));

System.out.println(list1);

System.out.println(list2);

}

} [blue, yellow, red, green]

[B, Y, R, G]
41

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections
 copy(dest, src): copy all the elements from a source list to

a destination list on the same index

List<String> list1 = Arrays.asList("yellow",

"red", "green", "blue");

List<String> list2 = Arrays.asList("white",

"black");

Collections.copy(list1, list2);

System.out.println(list1);

The output for list1 is [white, black, green, blue].

 The copy method performs a shallow copy: only the references of

the elements from the source list are copied

42

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections

 If the destination list is smaller than the source list

then we get a runtime error:
List<String> list2 = Arrays.asList("yellow",

"red", "green", "blue");

List<String> list1 = Arrays.asList("white",

"black");

Collections.copy(list1, list2);

Runtime error:

java.lang.IndexOutOfBoundsException: Source

does not fit in destination

43

(c) Paul Fodor (CS Stony Brook) & Pearson

 Java provides the static asList method for creating a

list from a variable-length list of arguments
List<String> list1 = Arrays.asList("red",

"green", "blue");

List<Integer> list2 = Arrays.asList(10, 20,

30, 40, 50);

returns a List reference of inner class object defined

within Arrays :

java.util.Arrays$ArrayList, which is

also called ArrayList but it is just a wrapper for an

array

44

Arrays$ArrayList

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections
 You can use the nCopies(int n, Object o)

method to create an immutable list that consists of n

copies of the specified object

List<GregorianCalendar> list1 =

Collections.nCopies(3,

new GregorianCalendar(2022,0,1));

list1 is a list with three Calendar objects.

 The list created from the nCopies method is immutable,

so you cannot add/remove elements in the list --- All

the elements have the same reference!
45

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections
import java.util.*;

public class Test {

public static void main(String[] args) {

List<GregorianCalendar> list1 =

Collections.nCopies(3,

new GregorianCalendar(2022,0,1));

list1.get(0).set(Calendar.YEAR, 2024);

for(GregorianCalendar g:list1)

System.out.println(g.get(Calendar.YEAR));

}

}

2024

2024

2024

46

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections
List<GregorianCalendar> list1 =

Collections.nCopies(3,

new GregorianCalendar(2020,0,1));

list1 is an instance of an inner class of Collections:

class java.util.Collections$CopiesList

47

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections
 fill(List list, Object o) method replaces all

the elements in the list with the specified element

List<String> list =

Arrays.asList("red","green","blue");

Collections.fill(list, "black");

System.out.println(list);

 Output: [black, black, black]

48

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections

The max and min methods find the maximum and

minimum elements in a collection
Collection<String> collection =

Arrays.asList("red", "green", "blue");

System.out.println(Collections.max(collection));

System.out.println(Collections.min(collection));

49

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections

 disjoint(collection1, collection2) method

returns true if the two collections have no elements in

common
Collection<String> collection1 = Arrays.asList("red", "cyan");

Collection<String> collection2 = Arrays.asList("red", "blue");

Collection<String> collection3 = Arrays.asList("pink", "tan");

System.out.println(Collections.disjoint(collection1,

collection2)); // false

System.out.println(Collections.disjoint(collection1,

collection3)); // true

50

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections

 frequency(collection, element) method finds

the number of occurrences of the element in the
collection

Collection<String> collection =

Arrays.asList("red", "cyan", "red");

System.out.println(

Collections.frequency(collection,"red"));

returns 2

51

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections
Collection<String> collection =

Arrays.asList(new String("red"),

"cyan", new String("red"), "red");

System.out.println(

Collections.frequency(collection,"red"));

returns 3 because it uses the .equals method

52

(c) Paul Fodor (CS Stony Brook) & Pearson

Static Methods for Lists and

Collections
Also

Collection<String> collection =

Arrays.asList("red", "cyan", "red");

System.out.println(

Collections.frequency(collection,

new String("red")));

returns 2

53

(c) Paul Fodor (CS Stony Brook) & Pearson

The Vector and Stack Classes
 The Java Collections Framework was introduced with Java 2 (JDK1.2)

 Several data structures were supported prior to Java 2

 Among them are the Vector class and the Stack class

 These classes were redesigned to fit into the Java Collections Framework, but their

old-style methods are retained for compatibility

54

(c) Paul Fodor (CS Stony Brook) & Pearson

The Vector Class
 Vector is the same as ArrayList, except that it contains

synchronized methods for accessing and modifying the vector

 Synchronized methods can prevent data corruption when a vector is

accessed and modified by two or more threads concurrently

 None of the classes discussed until now are synchronized

 For many applications that do not require synchronization, using

ArrayList is more efficient than using Vector

 Method retained from Java 2:

 addElement(Object element) is the same as the

add(Object element) method, except that the

addElement method is synchronized

55

(c) Paul Fodor (CS Stony Brook) & Pearson

The Vector Class

56

(c) Paul Fodor (CS Stony Brook) & Pearson

The Stack Class

 The Stack class represents a last-in-first-out stack

of objects

The elements are accessed only from the top of the

stack

 You can insert with push(o:E), retrieve with peek() and

remove with pop() (all from the top of the stack)

Stack is implemented as an extension of Vector

 Method retained from Java 2:

 empty() method is the same as isEmpty()

57

(c) Paul Fodor (CS Stony Brook) & Pearson

The Stack Class

java.util.Stack<E>

+Stack()

+empty(): boolean

+peek(): E

+pop(): E

+push(o: E) : E

+search(o: Object) : int

java.util.Vector<E>

Creates an empty stack.

Returns true if this stack is empty.

Returns the top element in this stack.

Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

Returns the position of the specified element in this stack.

58

(c) Paul Fodor (CS Stony Brook) & Pearson

Queues and Priority Queues

59

(c) Paul Fodor (CS Stony Brook) & Pearson

Queues and Priority Queues
 A queue is a first-in/first-out data structure:

 Elements are appended to the end of the queue and are removed from the

beginning of the queue

 The offer(o:E) method is used to add an element to the queue

 This method is similar to the add method in the Collection

interface, but the offer method is preferred for queues

 The poll and remove methods are similar, except that poll()

returns null if the queue is empty, whereas remove() throws an

exception

 The peek and element methods are similar, except that peek()

returns null if the queue is empty, whereas element() throws an

exception

 In a priority queue, elements are assigned priorities

 When accessing elements, the element with the highest priority is removed first
60

(c) Paul Fodor (CS Stony Brook) & Pearson

The Queue Interface

61

• Queue interface extends java.util.Collection with

additional insertion, extraction, and inspection operations

(c) Paul Fodor (CS Stony Brook) & Pearson

Using LinkedList for Queue

62

• The LinkedList class implements the Deque interface, which extends the

Queue interface

(c) Paul Fodor (CS Stony Brook) & Pearson

Queues
 Deque interface supports element insertion and removal at both ends

 The name deque is short for “double-ended queue”

 The Deque interface extends Queue with additional methods for inserting and removing

elements from both ends of the queue

 The methods addFirst(e), removeFirst(), addLast(e),

removeLast(), getFirst(), and getLast() are defined in the Deque

interface

java.util.Queue<String> queue =

new java.util.LinkedList<>();

queue.offer("Oklahoma");

queue.offer("Indiana");

queue.offer("Georgia");

queue.offer("Texas");

while (queue.size() > 0)

System.out.print(queue.remove() + " ");

returns Oklahoma Indiana Georgia Texas

 LinkedList is the concrete class for queue and it supports inserting and removing

elements from both ends of a list

63

(c) Paul Fodor (CS Stony Brook) & Pearson

Priority Queues
 java.util.PriorityQueue<T>

 By default, the priority queue orders its elements according to

their natural ordering using Comparable

 The element with the least value is assigned the highest

priority and thus is removed from the queue first

 If there are several elements with the same highest priority, the

tie is broken arbitrarily

 You can also specify an ordering using Comparator in the

constructor

PriorityQueue(initialCapacity,comparator)

64

(c) Paul Fodor (CS Stony Brook) & Pearson

The PriorityQueue Class

65

(c) Paul Fodor (CS Stony Brook) & Pearson
66

import java.util.*;

public class PriorityQueueDemo {

public static void main(String[] args) {

PriorityQueue<String> queue1 = new PriorityQueue<>();

queue1.offer("Oklahoma");

queue1.offer("Indiana");

queue1.offer("Georgia");

queue1.offer("Texas");

System.out.println("Priority queue using Comparable:");

while (queue1.size() > 0) {

System.out.print(queue1.remove() + " ");

} // Georgia Indiana Oklahoma Texas

PriorityQueue<String> queue2 = new PriorityQueue<>(

4, Collections.reverseOrder());

queue2.offer("Oklahoma");

queue2.offer("Indiana");

queue2.offer("Georgia");

queue2.offer("Texas");

System.out.println("\nPriority queue using Comparator:");

while (queue2.size() > 0) {

System.out.print(queue2.remove() + " ");

} // Texas Oklahoma Indiana Georgia

}

}

(c) Paul Fodor (CS Stony Brook) & Pearson

Case Study: Evaluating Expressions

 Stacks can be used to evaluate expressions

67

(c) Paul Fodor (CS Stony Brook) & Pearson

Example Stack Algorithm for parsing
 Phase 1: Scan the expression with infix operators from left to right

to extract operands, operators, and the parentheses and compute

the value of the expression

 1.1. If the extracted item is an operand, push it to operandStack

 1.2. If the extracted item is a + or - operator, process all the operators on the

operatorStack and push the extracted operator to operatorStack

 1.3. If the extracted item is a * or / operator, process the * or / operators at the

top of operatorStack and push the extracted operator to

operatorStack

 1.4. If the extracted item is a (symbol, push it to operatorStack

 1.5. If the extracted item is a) symbol, repeatedly process the operators from the

top of operatorStack until seeing the (symbol on the stack.

 Phase 2: Clearing the stack

 Repeatedly process the operators from the top of operatorStack until

operatorStack is empty.68

(c) Paul Fodor (CS Stony Brook) & Pearson
69

Example Stack Algorithm for parsing

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.util.Stack;

public class EvaluateExpression {

public static void main(String[] args) {

// Check number of arguments passed

if (args.length != 1) {

System.out.println(

"Usage: java EvaluateExpression \"expression\"");

System.exit(1);

}

try {

System.out.println(evaluateExpression(args[0]));

}

catch (Exception ex) {

System.out.println("Wrong expression: " + args[0]);

}

}

/** Evaluate an expression */

public static int evaluateExpression(String expression) {

// Create operandStack to store operands

Stack<Integer> operandStack = new Stack<>();

// Create operatorStack to store operators

Stack<Character> operatorStack = new Stack<>();70

(c) Paul Fodor (CS Stony Brook) & Pearson

// Insert blanks around (,), +, -, /, and *

expression = insertBlanks(expression);

// Extract operands and operators

String[] tokens = expression.split(" ");

// Phase 1: Scan tokens

for (String token: tokens) {

if (token.length() == 0) // Blank space

continue; // Back to the while loop to extract the next token

else if (token.charAt(0) == '+' || token.charAt(0) == '-') {

// Process all +, -, *, / in the top of the operator stack

while (!operatorStack.isEmpty() &&

(operatorStack.peek() == '+' ||

operatorStack.peek() == '-' ||

operatorStack.peek() == '*' ||

operatorStack.peek() == '/')) {

processAnOperator(operandStack, operatorStack);

}

// Push the + or - operator into the operator stack

operatorStack.push(token.charAt(0));

}

71

(c) Paul Fodor (CS Stony Brook) & Pearson

else if (token.charAt(0) == '*' || token.charAt(0) == '/') {

// Process all *, / in the top of the operator stack

while (!operatorStack.isEmpty() &&

(operatorStack.peek() == '*' ||

operatorStack.peek() == '/')) {

processAnOperator(operandStack, operatorStack);

}

// Push the * or / operator into the operator stack

operatorStack.push(token.charAt(0));

} else if (token.trim().charAt(0) == '(') {

operatorStack.push('('); // Push '(' to stack

} else if (token.trim().charAt(0) == ')') {

// Process all the operators in the stack until seeing '('

while (operatorStack.peek() != '(') {

processAnOperator(operandStack, operatorStack);

}

operatorStack.pop(); // Pop the '(' symbol from the stack

} else { // An operand scanned

// Push an operand to the stack

operandStack.push(new Integer(token));

}

}

72

(c) Paul Fodor (CS Stony Brook) & Pearson

// Phase 2: process all the remaining operators in the stack

while (!operatorStack.isEmpty()) {

processAnOperator(operandStack, operatorStack);

}

// Return the result

return operandStack.pop();

}

/** Process one operator: Take an operator from operatorStack and

* apply it on the operands in the operandStack */

public static void processAnOperator(

Stack<Integer> operandStack, Stack<Character> operatorStack) {

char op = operatorStack.pop();

int op1 = operandStack.pop();

int op2 = operandStack.pop();

if (op == '+')

operandStack.push(op2 + op1);

else if (op == '-')

operandStack.push(op2 - op1);

else if (op == '*')

operandStack.push(op2 * op1);

else if (op == '/')

operandStack.push(op2 / op1);

}

73

(c) Paul Fodor (CS Stony Brook) & Pearson

public static String insertBlanks(String s) {

String result = "";

for (int i = 0; i < s.length(); i++) {

if (s.charAt(i) == '(' || s.charAt(i) == ')' ||

s.charAt(i) == '+' || s.charAt(i) == '-' ||

s.charAt(i) == '*' || s.charAt(i) == '/')

result += " " + s.charAt(i) + " ";

else

result += s.charAt(i);

}

return result;

}

}

74

