
Paul Fodor

CSE260, Computer Science B: Honors

Stony Brook University

http://www.cs.stonybrook.edu/~cse260

Sets and Maps

1

http://www.cs.stonybrook.edu/~cse260

(c) Paul Fodor (CS Stony Brook) & Pearson

Objectives
 To store unordered, nonduplicate elements using sets

 To explore how and when to use HashSet,

LinkedHashSet or TreeSet to store elements

 To compare performance of sets and lists

 To use sets to develop a program that counts the distinct

keywords in a Java source file

 To tell the differences between Collection and Map and

describe when and how to use HashMap,

LinkedHashMap, and TreeMap to store values associated

with keys

 To use maps to develop a program that counts the occurrence of

the words in a text

2

(c) Paul Fodor (CS Stony Brook) & Pearson

Motivation
 Suppose we need to write a program that checks whether a

student is in a class
 You can use a list to store the names of the students and search

for the student with linear search
 Or sort the list of students and search with binary search

 However, a more efficient data structure for this application is a

set with efficient methods to search for elements

 Moreover, suppose your program also needs to store detailed

information about the students in the class (e.g., grades for labs,

homework submissions, submission times, GPA) and all can be

retrieved using the name of the student as the key

 A map is an efficient data structure for such a task

3

(c) Paul Fodor (CS Stony Brook) & Pearson

Review of Java Collection

Framework hierarchy
 Set is a sub-interface of Collection

 You can create a set using one of its three concrete classes:

HashSet, LinkedHashSet, or TreeSet

4

(c) Paul Fodor (CS Stony Brook) & Pearson

 The Collection interface is the root interface

for manipulating a collection of objects.

5

Reminder Collection

(c) Paul Fodor (CS Stony Brook) & Pearson

The Set Interface
 The Set interface extends the Collection

interface, but it does not introduce new methods or

constants, but it stipulates that an instance of Set

contains no duplicate elements

That is, no two elements e1 and e2 can be in the

set such that e1.equals(e2) is true

 The concrete classes that implement Set must ensure that

no duplicate elements can be added to the set

6

(c) Paul Fodor (CS Stony Brook) & Pearson

AbstractSet

 The AbstractSet class extends

AbstractCollection and partially implements

Set

7

(c) Paul Fodor (CS Stony Brook) & Pearson

AbstractSet

 The AbstractSet class provides concrete

implementations for the equals method and the

hashCode method

The hash code of a set is the sum of the hash

codes of all the elements in the set

 Since the size method and iterator method are

not implemented in the AbstractSet class,

AbstractSet is an abstract class

8

(c) Paul Fodor (CS Stony Brook) & Pearson

Hash codes
 Hash codes:

 hashCode method is defined in the Object class

 The hash codes of two objects must be the same if the two objects are

equal

 Two unequal objects may have the same hash code, but you should

implement the hashCode method to avoid too many such cases

 API Java hashcode examples:

 hashCode in the Integer class returns its int value

 hashCode in the Character class returns the Unicode of the character

 hashCode in the String class returns

s0 *31(n - 1) + s1 *31(n - 2) + … + sn - 1

where si is s.charAt(i).

31 is an odd prime with a nice property that the multiplication can be replaced

by a shift and a subtraction for better performance: 31*i == (i<<5)-i.

Modern VMs do this sort of optimization automatically.
9

(c) Paul Fodor (CS Stony Brook) & Pearson

The Set Interface

Hierarchy

10

(c) Paul Fodor (CS Stony Brook) & Pearson

The HashSet Class

 The HashSet class is a concrete class that implements Set

 You can create an empty hash set using its no-arg constructor

or create a hash set from an existing collection

 The elements are not stored in the order in which they are

inserted into the set

 There is no particular order for the elements in a hash set

 To impose such an order on them, you need to use the

LinkedHashSet class

11

(c) Paul Fodor (CS Stony Brook) & Pearson

The HashSet Class
 By default, the initial capacity is 16 and the load factor is 0.75

 The load factor is the number of elements in the set divided by the

capacity
 It is a value between 0.0 (the set is empty) and 1.0 (the set is full to capacity)

 It measures how full the set is allowed to be before its capacity is increased
 When the number of elements exceeds (greater or equal) the product of the

capacity and load factor, the capacity is automatically doubled

 For example, if the capacity is 16 and load factor is 0.75, when the size

reaches 12 (16*0.75 = 12) the capacity will be doubled to 32
 A higher load factor decreases the space costs but increases the

search time

 The default load factor 0.75 is a good tradeoff between time and

space costs – we will see how search works when we implement

hashing.

 The position of an element in the Set is close to the remainder of the

division of the hashCode and the capacity
12

(c) Paul Fodor (CS Stony Brook) & Pearson

Example: Using HashSet and Iterator
 This example creates a hash set filled with strings, and uses an iterator

to traverse the elements in the list.
import java.util.*;

public class TestHashSet {

public static void main(String[] args) {

// Create a hash set

Set<String> set = new HashSet<>();

// Add strings to the set

set.add("London");

set.add("Paris");

set.add("New York");

set.add("San Francisco");

set.add("Beijing");

set.add("New York");

System.out.println(set);

// Display the elements in the hash set

for (String s: set) {

System.out.print(s.toUpperCase() + " ");

}

System.out.println();

// Process the elements using the forEach method

set.forEach(e -> System.out.print(e.toLowerCase() + " "));

}

}

13

(c) Paul Fodor (CS Stony Brook) & Pearson

The HashSet Class
 Since a set is an instance of Collection, all methods

defined in Collection can be used for sets

 Including for-each loops can be used to traverse all

the elements in the set

Collection interface extends the Iterable

interface, so the elements in a set are iterable

14

(c) Paul Fodor (CS Stony Brook) & Pearson

Collection methods
public class TestMethodsInCollection {

public static void main(String[] args) {

// Create set1

java.util.Set<String> set1 = new java.util.HashSet<>();

// Add strings to set1

set1.add("London");

set1.add("Paris");

set1.add("New York");

set1.add("San Francisco");

set1.add("Beijing");

System.out.println("set1 is " + set1);

System.out.println(set1.size() + " elements in set1");

// Delete a string from set1

set1.remove("London");

System.out.println("\nset1 is " + set1);

System.out.println(set1.size() + " elements in set1");

// Create set2

java.util.Set<String> set2 = new java.util.HashSet<>();

15

(c) Paul Fodor (CS Stony Brook) & Pearson

// Add strings to set2

set2.add("London");

set2.add("Shanghai");

set2.add("Paris");

System.out.println("\nset2 is " + set2);

System.out.println(set2.size() + " elements in set2");

System.out.println("\nIs Taipei in set2? "

+ set2.contains("Taipei"));

set1.addAll(set2);

System.out.println("\nAfter adding set2 to set1, set1 is "

+ set1);

set1.removeAll(set2);

System.out.println("After removing set2 from set1, set1 is "

+ set1);

set1.retainAll(set2);

System.out.println("After removing common elements in set2 "

+ "from set1, set1 is " + set1);

}

}

16

(c) Paul Fodor (CS Stony Brook) & Pearson

Output (cont.):

set1 is [San Francisco, New York, Paris, Beijing, London]

5 elements in set1

set1 is [San Francisco, New York, Paris, Beijing]

4 elements in set1

set2 is [Shanghai, Paris, London]

3 elements in set2

Is Taipei in set2? false

After adding set2 to set1, set1 is

[San Francisco, New York, Shanghai, Paris, Beijing, London]

After removing set2 from set1, set1 is

[San Francisco, New York, Beijing]

After removing common elements in set2 from set1, set1 is []

17

(c) Paul Fodor (CS Stony Brook) & Pearson

The LinkedHashSet Class

 LinkedHashSet extends HashSet with a linked-

list implementation that supports an ordering of the

elements in the set

The elements in a LinkedHashSet can be retrieved in

the order in which they were inserted into the set

 To impose a different order (e.g., increasing or

decreasing order), you can use the TreeSet class

18

(c) Paul Fodor (CS Stony Brook) & Pearson

Example: Using LinkedHashSet

19

 This example creates a hash set filled with strings, and uses an iterator

to traverse the elements in the list.
import java.util.*;

public class TestLinkedHashSet {

public static void main(String[] args) {

// Create a hash set

Set<String> set = new LinkedHashSet<>();

// Add strings to the set

set.add("London");

set.add("Paris");

set.add("New York");

set.add("San Francisco");

set.add("Beijing");

set.add("New York");

System.out.println(set);

// Display the elements in the hash set

for (String element: set)

System.out.print(element.toLowerCase() + " ");

}

} [London, Paris, New York, San Francisco, Beijing]

london paris new york san francisco beijing

(c) Paul Fodor (CS Stony Brook) & Pearson

The SortedSet Interface and

the TreeSet Class

20

(c) Paul Fodor (CS Stony Brook) & Pearson

The SortedSet Interface and

the TreeSet Class
 SortedSet is a sub-interface of Set, which guarantees that the

elements in the set are sorted

 NavigableSet extends SortedSet to provide navigation methods

lower(e), floor(e), ceiling(e), and higher(e) that

return elements respectively less than, less than or equal, greater than or

equal, and greater than a given element and return null if there is no such

element

 The pollFirst() and pollLast() methods remove and return the

first and last element in the tree set, respectively

 headSet(toElement) and tailSet(fromElement) return

a portion of the set whose elements are less than toElement and greater

than or equal to fromElement, respectively

21

(c) Paul Fodor (CS Stony Brook) & Pearson

The SortedSet Interface and

the TreeSet Class
 You can use an iterator to traverse the elements in the

sorted order

The elements can be sorted in two ways

One way is to use the Comparable interface

The other way (order by comparator) is to specify a

comparator for the elements in the set if the class for

the elements does not implement the Comparable

interface, or you don’t want to use the compareTo

method in the class that implements the

Comparable interface
22

(c) Paul Fodor (CS Stony Brook) & Pearson

The SortedSet Interface and

the TreeSet Class
 TreeSet is a concrete class that implements the SortedSet and

NavigableSet interfaces

 It provides the methods first() and last() for returning the first

and last elements in the set

 You can add objects into a tree set as long as they can be compared with

each other

 The following example creates a hash set filled with strings, and

then creates a tree set for the same strings

 The strings are sorted in the tree set using the compareTo

method in the Comparable interface

23

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.util.*;

public class TestTreeSet {

public static void main(String[] args) {

// Create a hash set

Set<String> set = new HashSet<>();

// Add strings to the set

set.add("London");

set.add("Paris");

set.add("New York");

set.add("San Francisco");

set.add("Beijing");

set.add("New York");

TreeSet<String> treeSet = new TreeSet<>(set);

System.out.println("Sorted tree set: " + treeSet);

// Use the methods in SortedSet interface

System.out.println("first(): " + treeSet.first());

System.out.println("last(): " + treeSet.last());

System.out.println("headSet(\"New York\"): " +

treeSet.headSet("New York"));

System.out.println("tailSet(\"New York\"): " +

treeSet.tailSet("New York"));

24

(c) Paul Fodor (CS Stony Brook) & Pearson
25

// Use the methods in NavigableSet interface

System.out.println("lower(\"P\"): " + treeSet.lower("P"));

System.out.println("higher(\"P\"): " + treeSet.higher("P"));

System.out.println("floor(\"P\"): " + treeSet.floor("P"));

System.out.println("ceiling(\"P\"): " + treeSet.ceiling("P"));

System.out.println("pollFirst(): " + treeSet.pollFirst());

System.out.println("pollLast(): " + treeSet.pollLast());

System.out.println("New tree set: " + treeSet);

}

}

Output:
Sorted tree set: [Beijing, London, New York, Paris, San Francisco]

first(): Beijing

last(): San Francisco

headSet("New York"): [Beijing, London]

tailSet("New York"): [New York, Paris, San Francisco]

Sorted tree set: [Beijing, London, New York, Paris, San Francisco]

lower("P"): New York

higher("P"): Paris

floor("P"): New York

ceiling("P"): Paris

pollFirst(): Beijing

pollLast(): San Francisco

New tree set: [London, New York, Paris]

(c) Paul Fodor (CS Stony Brook) & Pearson

Example: Using Comparator to

Sort Elements in a Set

The following example creates a tree set of geometric

objects

The geometric objects are sorted using the compare

method in the Comparator interface

26

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.util.*;

public class TestTreeSetWithComparator {

public static void main(String[] args) {

// Create a tree set for geometric objects using a comparator

Set<GeometricObject> set =

new TreeSet<>(new GeometricObjectComparator());

set.add(new Rectangle(4, 5));

set.add(new Circle(40));

set.add(new Circle(40));

set.add(new Rectangle(4, 1));

// Display geometric objects in the tree set

System.out.println("A sorted set of geometric objects");

for (GeometricObject element: set)

System.out.println("area = " + element.getArea());

}

}

A sorted set of geometric objects

area = 4.0

area = 20.0

area = 5021.548245743669

27

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.util.Comparator;

public class GeometricObjectComparator

implements Comparator<GeometricObject>,

java.io.Serializable {

// It is generally a good idea for comparators to implement

// Serializable, as they may be used as ordering methods in

// serializable data structures.

public int compare(GeometricObject o1,

GeometricObject o2) {

double area1 = o1.getArea();

double area2 = o2.getArea();

if (area1 < area2)

return -1;

else if (area1 == area2)

return 0;

else

return 1;

}

}

28

(c) Paul Fodor (CS Stony Brook) & Pearson

Performance of Sets and Lists

 Sets are more efficient than lists for storing

nonduplicate elements

 Lists are useful for accessing elements through

the index

 Sets do not support indexing because the

elements in a set are unordered

 To traverse all elements in a set, use a for-each loop or

iterator

29

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.util.*;

public class SetListPerformanceTest {

static final int N = 50000;

public static long getTestTime(Collection<Integer> c) {

long startTime = System.currentTimeMillis();

// Test if a number is in the collection

for (int i = 0; i < N; i++)

c.contains((int)(Math.random() * 2 * N));

return System.currentTimeMillis() - startTime;

}

public static long getRemoveTime(Collection<Integer> c) {

long startTime = System.currentTimeMillis();

for (int i = 0; i < N; i++)

c.remove(i);

return System.currentTimeMillis() - startTime;

}

30

(c) Paul Fodor (CS Stony Brook) & Pearson

public static void main(String[] args) {

// Add numbers 0, 1, 2, ..., N - 1 to an array list

// to populate all data structures

List<Integer> list = new ArrayList<>();

for (int i = 0; i < N; i++)

list.add(i);

Collections.shuffle(list); // Shuffle the array list

// Create a hash set, and test its performance

Collection<Integer> set1 = new HashSet<>(list);

System.out.println("Member test time for hash set is " +

getTestTime(set1) + " milliseconds");

System.out.println("Remove element time for hash set is " +

getRemoveTime(set1) + " milliseconds");

// Create a linked hash set, and test its performance

Collection<Integer> set2 = new LinkedHashSet<>(list);

System.out.println("Member test time for linked hash set is "

+ getTestTime(set2) + " milliseconds");

System.out.println("Remove element time for linked hash set is "

+ getRemoveTime(set2) + " milliseconds");

31

(c) Paul Fodor (CS Stony Brook) & Pearson

// Create a tree set, and test its performance

Collection<Integer> set3 = new TreeSet<>(list);

System.out.println("Member test time for tree set is " +

getTestTime(set3) + " milliseconds");

System.out.println("Remove element time for tree set is " +

getRemoveTime(set3) + " milliseconds\n");

// Create an array list, and test its performance

Collection<Integer> list1 = new ArrayList<>(list);

System.out.println("Member test time for array list is " +

getTestTime(list1) + " milliseconds");

System.out.println("Remove element time for array list is " +

getRemoveTime(list1) + " milliseconds");

// Create a linked list, and test its performance

Collection<Integer> list2 = new LinkedList<>(list);

System.out.println("Member test time for linked list is " +

getTestTime(list2) + " milliseconds");

System.out.println("Remove element time for linked list is " +

getRemoveTime(list2) + " milliseconds");

}

}

32

(c) Paul Fodor (CS Stony Brook) & Pearson

Member test time for hash set is 20 milliseconds

Remove element time for hash set is 27 milliseconds

Member test time for linked hash set is 27 milliseconds

Remove element time for linked hash set is 26

milliseconds

Member test time for tree set is 47 milliseconds

Remove element time for tree set is 34 milliseconds

Member test time for array list is 39802 milliseconds

Remove element time for array list is 16196 milliseconds

Member test time for linked list is 52197 milliseconds

Remove element time for linked list is 14870 milliseconds

33

(c) Paul Fodor (CS Stony Brook) & Pearson

Case Study: Counting Keywords

An application that counts the number of the

keywords in a Java source file

For each word in a Java source file, we need to

determine whether the word is a keyword

To handle this efficiently, store all the keywords

in a HashSet and use the contains

method to test if a word is in the keyword set

34

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.util.*;

import java.io.*;

public class CountKeywords {

public static void main(String[] args) throws Exception {

Scanner input = new Scanner(System.in);

System.out.print("Enter a Java source file: ");

String filename = input.nextLine();

File file = new File(filename);

if (file.exists()) {

System.out.println("The number of keywords in " + filename

+ " is " + countKeywords(file));

}

else {

System.out.println("File " + filename + " does not exist");

}

}

public static int countKeywords(File file) throws Exception {

// Array of all Java keywords + true, false and null

String[] keywordString = {"abstract", "assert", "boolean",

"break", "byte", "case", "catch", "char", "class", "const",

"continue", "default", "do", "double", "else", "enum",

"extends", "for", "final", "finally", "float", "goto",

"if", "implements", "import", "instanceof", "int",
35

(c) Paul Fodor (CS Stony Brook) & Pearson

"interface", "long", "native", "new", "packgrade", "private",

"protected", "public", "return", "short", "static",

"strictfp", "super", "switch", "synchronized", "this",

"throw", "throws", "transient", "try", "void", "volatile",

"while", "true", "false", "null"};

Set<String> keywordSet =

new HashSet<>(Arrays.asList(keywordString));

int count = 0;

Scanner input = new Scanner(file);

while (input.hasNext()) {

// read the file line by line

String line = input.next();

String[] words = line.split("\\W");

for(String word:words)

if (keywordSet.contains(word))

count++;

}

return count;

}

}

36

(c) Paul Fodor (CS Stony Brook) & Pearson

The Map Interface
 The Map interface maps keys to elements

 The keys are like indexes, but can be anything (not restricted to

integers
 In List, the indexes are integer

 In Map, the keys can be any objects

37

(c) Paul Fodor (CS Stony Brook) & Pearson

Map Interface and Class Hierarchy
 There are three types of maps: HashMap, LinkedHashMap, and

TreeMap

 The common features of these maps are defined in the Map interface

38

(c) Paul Fodor (CS Stony Brook) & Pearson

The Map Interface UML Diagram

39

 The Map interface provides the methods for querying,

updating, and obtaining a collection of values and a set of keys

(c) Paul Fodor (CS Stony Brook) & Pearson

Concrete Map Classes

40

(c) Paul Fodor (CS Stony Brook) & Pearson

The Map Interface UML Diagram

41

 You can obtain a set of the keys in the map using the

keySet() method

 The entrySet() method returns a set of entries

The entries are instances of the Map.Entry interface,

where Entry is an inner interface for the Map interface

(c) Paul Fodor (CS Stony Brook) & Pearson

HashMap and TreeMap
 The HashMap, LinkedHashMap and TreeMap classes are the

concrete implementations of the Map interface

 The HashMap class is efficient for locating a value, inserting a

mapping, and deleting a mapping

 LinkedHashMap extends HashMap with a linked-list

implementation that supports an ordering of the entries in the map

 the entries in a LinkedHashMap can be retrieved either in the

order in which they were inserted into the map (known as the insertion

order) or in the order in which they were last accessed, from least

recently to most recently accessed (access order).

 The TreeMap class, implementing SortedMap, is efficient for

traversing the keys in a sorted order using the Comparable

interface or the Comparator interface
42

(c) Paul Fodor (CS Stony Brook) & Pearson

Example: Using HashMap and

TreeMap
 A hash map with the student’s name as its key and the

grade as its value

 The program then creates a tree map from the hash map

and displays the entries in ascending order of the keys

 Finally, the program creates a linked hash map with

access order, adds the same entries to the map, and

displays the entries

E.g., the entry with the key Lewis is last accessed, so it

is displayed last

43

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.util.*;

public class TestMap {

public static void main(String[] args) {

// Create a HashMap

Map<String, Integer> hashMap = new HashMap<>();

hashMap.put("Smith", 100);

hashMap.put("Anderson", 91);

hashMap.put("Lewis", 99);

hashMap.put("Cook", 89);

System.out.println("Display entries in HashMap");

System.out.println(hashMap + "\n");

// Create a TreeMap from the preceding HashMap

Map<String, Integer> treeMap = new TreeMap<>(hashMap);

System.out.println("Display entries in ascending order of key");

System.out.println(treeMap);

// Create a LinkedHashMap

Map<String, Integer> linkedHashMap =

new LinkedHashMap<>(16, 0.75f, true);

linkedHashMap.put("Smith", 100);

linkedHashMap.put("Anderson", 91);

linkedHashMap.put("Lewis", 99);

linkedHashMap.put("Cook", 89);
44

(c) Paul Fodor (CS Stony Brook) & Pearson

// Display the grade for Lewis

System.out.println("\nThe grade for " + "Lewis is " +

linkedHashMap.get("Lewis"));

System.out.println("Display entries in LinkedHashMap");

System.out.println(linkedHashMap);

// Display each entry with name and grade

System.out.print("\nNames and grades are ");

treeMap.forEach(

(name, grade) -> System.out.print(name + ": " + grade + " "));

}

}

Output:

Display entries in HashMap

{Cook=89, Smith=100, Lewis=99, Anderson=91}

Display entries in ascending order of key

{Anderson=91, Cook=89, Lewis=99, Smith=100}

The grade for Lewis is 99

Display entries in LinkedHashMap

{Smith=100, Anderson=91, Cook=89, Lewis=99}

45

(c) Paul Fodor (CS Stony Brook) & Pearson

Case Study: Counting the

Occurrences of Words in a Text
 This program counts the occurrences of words in a text and

displays the words and their occurrences in ascending order

of the words.

 The program uses a hash map to store a pair consisting of a

word and its count.

 For each word, check whether it is already a key in the map.

 If not, add the key and value 1 to the map.

Otherwise, increase the value for the word (key) by 1 in

the map.

 To sort the map, we use a tree map.

46

(c) Paul Fodor (CS Stony Brook) & Pearson

import java.util.*;

public class CountOccurrenceOfWords {

public static void main(String[] args) {

// Set text in a string

String text = "Good morning. Have a good class. " +

"Have a good visit. Have fun!";

// Create a TreeMap to hold words as key and count as value

Map<String, Integer> map = new TreeMap<>();

String[] words = text.split("[\\W]+");

for (int i = 0; i < words.length; i++) {

String key = words[i].toLowerCase();

if (key.length() > 0) {

if (!map.containsKey(key)) {

map.put(key, 1);

}

else {

int value = map.get(key);

value++;

map.put(key, value);

}

}

}
47

(c) Paul Fodor (CS Stony Brook) & Pearson

// Display key and value for each entry

map.forEach((k, v) -> System.out.println(k + "\t" + v));

}

}

Output:

a 2

class 1

fun 1

good 3

have 3

morning 1

visit 1

48

