SML

Paul Fodor
CSE260, Computer Science B: Honors
Stony Brook University
http: / / www.cs.stonybrook.edu / ~ cse 260

Objectives

- Functional Programming
- Standard ML of New Jersey (SML)
- Dynamic Typing
- Function Definitions in SML
- Recursive Definitions
- Operators on integers and reals
- Tuples
- Polymorphic functions
- List Functions
- Definition by Patterns
- Higher-Order Functions
- Function Composition
- Currying (partial application)
- Lazy evaluation
- Mutually recursive functions
- Local declarations
- Nested recursions
- Tail recursion
- Records, Strings and char
- Beyond functional programming

Functional Programming

- Function evaluation is the basic concept for a programming paradigm that has been implemented in functional programming languages
- The language ML ("Meta Language") was originally introduced in 1977 as part of a theorem proving sT2tem, and was intended for describing and implementing proof strategies in the Logic for Computable Functions (LCF) theorem prover (whose language, pplambda, a combination of the first-order predicate calculus and the simply typed polymorphic lambda calculus, had ML as its metalanguage)
- Standard ML of New Jersey (SML) is an implementation of ML
- The basic mode of computation in SML is the use of the definition and application of functions

Install Standard ML

- Download from:
- http: / / www.smlnj.org
- Start Standard ML:
- Type sml from the shell (run command line in Windows)
- Exit Standard ML:
- Ctrl-Z under Windows
- Ctrl-D under Unix/Mac
- OR Use SML online:
- https: / / sosml.org / editor
- https: / / www.tutorialspoint.com / execute smlnj online.php

tandard ML

- The basic cycle of SML activity has
three parts:
- Read input from the user
- Evaluate it
- Print the computed value (or an error message)
-This is called "Read-eval-print loop"

First SML example

- SML prompt:
—
- Simple example:
- 3;
val it = 3 : int
- The first line contains the SML prompt, followed by an expression typed in by the user and ended by a semicolon
- The second line is SML's response, indicating the value of the input expression and its type

Interacting with SML

- SML has a number of built-in operators and data types.
- it provides the standard arithmetic operators

$$
\begin{aligned}
& -3+2 ; \\
& \text { val it }=5 \text { : int }
\end{aligned}
$$

- The boolean values true and false are available, as are logical operators such as: not (negation), andalso (conjunction), and orelse (disjunction) - not(true);
val it = false : bool
- true andalso false;
val it = false : bool
(c) Paul Fodor (CS Stony Brook)

Types in SML

- As part of the evaluation process, SML determines the type of the output value using methods of type inference.
- Simple types include int, real, bool, and string
- One can also associate identifiers with values

$$
\begin{aligned}
& \text { - val five }=3+2 ; \\
& \text { val five }=5 \text { : int }
\end{aligned}
$$

and thereby establish a new value binding

$$
\begin{aligned}
& \text { - five; } \\
& \text { val it }=5 \text { : int }
\end{aligned}
$$

Function Definitions in SML

- The general form of a function definition in SML is: fun <identifier> (<parameters>) = <expression>;
- For example,
- fun double(x) = 2*x;
val double $=$ fn : int $->$ int declares double as a function from integers to integers, i.e., of type int \rightarrow int
- Apply a function to an argument of the wrong type results in an error message:
- double(2.0);

Error: operator and operand don't agree ...

Function Definitions in SML

- The user may also explicitly indicate types:
- fun max(x:int,y:int,z:int):int = if ($(x>y)$ andalso ($x>z)$) then x else (if (y>z) then y else $z)$;
val max $=$ fn : int * int * int -> int
- max (3,2,2);
val it = 3 : int

Recursive Definitions

- The use of recursive definitions is a main characteristic of functional programming languages, and these languages encourage the use of recursion over iterative constructs such as while loops:
- fun factorial(x) $=$ if $x=0$ then 1 else x*factorial (x-1) ;
val factorial $=$ fn : int $->$ int
- The definition is used by SML to evaluate applications of the function to specific arguments:
- factorial (5) ;
val it $=120$: int
- factorial(10);
val it $=3628800$: int

Example: Greatest Common Divisor

- The greatest common divisor (gad) of two positive integers can defined recursively based on the following observations:
$\operatorname{gcd}(\mathrm{n}, \mathrm{n})=\mathrm{n}$,
$\operatorname{gcd}(m, n)=\operatorname{gcd}(m-n, n), i f m>n$, $\operatorname{gcd}(m, n)=\operatorname{gcd}(m, n-m), i f m<n$.
- These identities suggest the following recursive definition:
- fun $\operatorname{gcd}(m, n)$ int $=$ if $m=n$ then n else if $m>n$ then $\operatorname{gcd}(m-n, n)$ else ged (m ,n-m) ;
val ged = in : int * int -> int
- ged $(12,30) ;-\operatorname{gcd}(1,20) ; \quad-\operatorname{gcd}(125,56345)$;
val it = 6 : int val it = 1 : int val it = 5 : int

Basic operators on the integers

$o p$	$:$	type	form	precedence
+	$:$	int \times int \rightarrow int	infix	6
-	$:$	int \times int \rightarrow int	infix	6
$*$	$:$	int \times int \rightarrow int	infix	7
div	$:$	int \times int \rightarrow int	infix	7
mod	$:$	int \times int \rightarrow int	infix	7
$=$	$:$	int \times int \rightarrow bool $*$	infix	4
$<>$	$:$	int \times int \rightarrow bool ${ }^{*}$	infix	4
$<$	$:$	int \times int \rightarrow bool	infix	4
$<=$	$:$	int \times int \rightarrow bool	infix	4
$>$	$:$	int \times int \rightarrow bool	infix	4
$>=$	$:$	int \times int \rightarrow bool	infix	4
\sim	$:$	int \rightarrow int	prefix \longleftarrow	unary operator minus
abs	$:$	int \rightarrow int	prefix	is represented by \sim

- The infix operators associate to the left
- The operands are alwaT2 all evaluated

Basic operators on the reals

$o p$	$:$	type	form	precedence
+	$:$	real \times real \rightarrow real	infix	6
-	$:$	real \times real \rightarrow real	infix	6
$*$	$:$	real \times real \rightarrow real	infix	7
$/$	$:$	real \times real \rightarrow real	infix	7
$<$	$:$	real \times real \rightarrow bool	infix	4
$<=$	$:$	real \times real \rightarrow bool	infix	4
$>$	$:$	real \times real \rightarrow bool	infix	4
$>=$	$:$	real \times real \rightarrow bool	infix	4
\sim	$:$	real \rightarrow real	prefix	
abs	$:$	real \rightarrow real	prefix	
Math.sqrt	$:$	real \rightarrow real	prefix	
Math. $I n$	$:$	real \rightarrow real	prefix	

Basic operators on the reals

Equality for reals:

- Real. $==(1.0,1.0)$;
val it = true : bool
- Real. $==(1.0,2.0)$;
val it = false : bool

Type conversions

op : type
real : int \rightarrow real
ceil : real \rightarrow int
floor : real \rightarrow int
round : real \rightarrow int
trunc : real \rightarrow int

- real(2) + 3.5 ;
val it $=5.5$: real
- ceil(23.65) ;
val it = 24 : int
- ceil(~23.65) ;
val it $=\sim 23$: int
- foor (23.65) ;
val it $=23$: int

More recursive functions

- fun $\exp (b, n)=$ if $n=0$ then 1.0 else b * $\exp (b, n-1)$;
val exp $=$ fn : real * int -> real
- $\exp (2.0,10)$;
val it = 1024.0 : real

Tuples in SML

- In SML tuples are finite sequences of arbitrary but fixed length, where different components need not be of the same type
- (1, "two");
val it = (1,"two") : int * string
- val t1 = (1,2,3);
val t1 $=(1,2,3)$: int * int * int
- val t2 = (4, $5.0,6)$);
val t2 $=(4,(5.0,6))$: int * (real * int)
- The components of a tuple can be accessed by applying the built-in functions \# i, where i is a positive number
- \#1(t1);
val it = 1 : int
If a function \#i is applied to a tuple with fewer than i components, an error results.
- \#2(t2);

Tuples in SML

- Functions using tuples should completely define the type of tuples, otherwise SML cannot detect the type, e.g., nth argument
- fun firstThird(Tuple:'a * 'b * 'c):'a * 'c = (\#1 (Tuple), \#3(Tuple));
val firstThird = fn : 'a * 'b * 'c -> 'a * 'c
- firstThird((1,"two", 3));
val it $=(1,3)$: int * int
- Without types, we would get an error:
- fun firstThird(Tuple) = (\#1(Tuple), \#3(Tuple));
stdIn: Error: unresolved flex record (need to know the names of ALL the fields in this context)

Polymorphic functions

- fun id $x=x$;
val id $=$ in : 'a $->$ 'a
- (id 1, id "two") ;
val it $=(1$, "two") : int * string
- fun fit $(x, y)=x$;
val fit $=f n: \quad$ 'a * 'b $->$ 'a
- fun sid $(x, y)=Y$;
val ind $=f n: \operatorname{la}^{\prime} \mathrm{a}$ 'b $->$ 'b
- fun $\operatorname{switch}(x, y)=(y, x)$;
val switch $=$ fin : 'a * 'b $->$ 'b * 'a

Polymorphic functions

- 'a means "any type", while ' ' a means "any type that can be compared for equality" (see the concat function later which compares a polymorphic variable list with [])
- There will be a "Warning: calling polyEqual" that means that you're comparing two values with polymorphic type for equality
- Why does this produce a warning? Because it's less efficient than comparing two values of known types for equality
- How do you get rid of the warning? By changing your function to only work with a specific type instead of any type
- Should you do that or care about the warning? Probably not. In most cases having a function that can work for any type is more important than having the most efficient code possible, so you should just ignore the warning.

Lists in SML

- A list in SML is a finite sequence of objects, all of the same type:
- [1,2,3];
val it $=[1,2,3]$: int list
- [true,false,true];
val it = [true,false,true] : bool list
- [[1,2,3],[4,5],[6]];
val it $=[[1,2,3],[4,5],[6]]$:
int list list
- The last example is a list of lists of integers

Lists in SML

- All objects in a list must be of the same type:
- [1,[2]];

Error: operator and operand don't agree

- An empty list is denoted by one of the following expressions:
- [];
val it $=[]$: 'a list
- nil;
val it $=$ [] : 'a list
- Note that the type is described in terms of a type variable 'a. Instantiating the type variable, by types such as int, results in (different) empty lists of corresponding types
- tl([1](:%5B2,3%5D;));
val it = [] : int list
(c) Paul Fodor (CS Stony Brook)

Operations on Lists

- SML provides various functions for manipulating lists
- The function hd returns the first element of its argument list
- hd ([1,2,3]);
val it = 1 : int
- hd[[1,2],[3]];

val it = [1,2] : int list
Applying this function to the empty list will result in an error.
- The function $t l$ removes the first element of its argument lists, and returns the remaining list
- tl[1,2,3];
val it $=[2,3]$: int list
- tl([[1,2],[3]]);
val it = [[3]] : int list list
- The application of this function to the empty list will also result in an error

Operations on Lists

- Lists can be constructed by the (binary) function :: (read cons) that adds its first argument to the front of the second argument.
- 5:: [];

```
val it = [5] : int list
```

- 1:: [2,3];
val it $=[1,2,3]$: int list
- [1,2]:: [[3],[4,5,6,7]];
val it $=[[1,2],[3],[4,5,6,7]]$: int list list
- IMPORTANT:The arguments must be of the right type (such that the result is a list of elements of the same type):
-

Error: operator and operand don't agree

Operations on Lists

- : : is right associative:
- 1::2::[];
val it $=[1,2]$: int list
- 1::(2::[]);
val it $=[1,2]$: int list
- Once a type is inferred even empty list cannot change the type:
- 1::tl([true]);

Error: operator and operand don't agree [overload conflict]
operator domain: [int ty] * [int ty] list operand: [int ty] * bool list

Operations on Lists

- Lists can also be compared for equality:
- $[1,2,3]=[1,2,3]$;
val it = true : bool
- $[1,2]=[2,1]$;
val it = false : bool
- tl[1](:%5B2,3%5D;) = [];
val it = true : bool

Defining List Functions

- Recursion is particularly useful for defining functions that process lists
- For example, consider the problem of defining an SML function that takes as arguments two lists of the same type and returns the concatenated list.
- concat ([1, 2, 3], [4,5,6]) ;
val it $=[1,2,3,4,5,6]:$ int list
- concat([true,false], [true]) ;
[true,false,true] : bool list

Defining List Functions

- In defining such list functions, it is helpful to keep in mind that a list is either
- an empty list [] or
- of the form hd (L): : tl (L) if it contains at least an element

Concatenation

- In designing a function for concatenating two lists $\mathbf{L} 1$ and $\mathbf{L} 2$ we thus distinguish two cases, depending on the form of $\mathbf{L} \mathbf{1}$:
- If $\mathbf{L 1}$ is an empty list [] , then concatenating $\mathbf{L 1}=[$] with $\mathbf{L} 2$ yields just L2.
- If $\mathbf{L 1}$ has at least 1 element, then concatenating L 1 with L 2 is a list of the form hd(L1): : L3, where L 3 is the result of concatenating tl (L1) with L2.

Concatenation

- fun concat (L1,L2) =if $\mathrm{L} 1=[]$ then L2 else hd (L1) : : concat (tl (L1) , L2) ; val concat $=f n$: ''a list * ''a list -> ''a list - Applying the function yields the expected results:
- concat $([1,2],[3,4,5])$;
val it $=[1,2,3,4,5]$: int list
- concat([],[1,2]);
val it $=[1,2]$: int list
- concat([1,2],[]);
val it $=[1,2]$: int list

ength

- The following function computes the length of its argument list:
- fun length (L) = if $\mathrm{L}=$ nil then 0 else 1 + length (tl(L));
val length $=$ fn : 'ra list -> int
- length[1,2,3];
val it $=3$: int
- length [[5,4,3],[2,1]];
val it = 2 : int
- length[];
val it $=0$: int

Length

- How does it work?
- length ([true,false,true,false]) ;
$=1+$ length ([false,true,false])
$=1+1+$ length ([true,false])
$=1+1+1+l e n g t h([f a l s e])$
$=1+1+1+1+$ length ([])
$=1+1+1+1+0$
$=4$

Length

- A tail-recursive way to write length:
- fun length_helper $(L, P)=$ if $L=[]$ then P
else length_helper (tl(L), P+1);
- fun length(L) = length_helper ($L, 0$);
- length([true,false,true,false]);
=length_helper([true,false,true,false],0)
=length_helper ([false,true,false],1)
=length_helper([true,false],2)
=length_helper ([false],3)
=length_helper ([],4)
$=4$

doubleall

- The following function doubles all the elements in its argument list (of integers):
- fun doubleall(L) $=$ if $\mathrm{L}=[$ [then [] else (2*hd(L)): :doubleall(tl(L)) ;
val doubleall $=$ fn $:$ int list $->$ int list
- doubleall([1, 3,5,7]);
val it $=[2,6,10,14]$: int list

Reversing a List

- fun reverse (L) = if $L=$ nil then nil else concat(reverse(tl(L)), [h deL)]);
val reverse $=\mathrm{fn}$: ''a list -> ''a list How does it work?
- reverse [1,2,3];
calls:
- concat(reverse([2,3]), [1](:%5B2,3%5D;));
- concat([3,2], [1](:%5B2,3%5D;));
val it $=[3,2,1]$: int list

Reversing a List

- Concatenation of lists (for which we gave a recursive definition) is actually a built-in operator in SML, denoted by the symbol @
- We can use this operator in reversing:
- fun reverse (L) =
if $L=$ nil then nil
else reverse(tl(L)) @ [h deL)];
val reverse $=f n$: 'ra list -> ''a list
- reverse [1,2,3];
val it $=[3,2,1]$: int list

Reversing a List

- fun reverse (L) =
if $\mathrm{L}=$ nil then nil
else concat(reverse(tl(L)), [h deL)]) ;
Complexity analT2is:
$T(N)=T(N-1) \quad+(N-1)=$
reverse(tl(L)) concat

$$
\begin{aligned}
& =T(N-2)+(N-2)+(N-1)= \\
& =1+2+3+\ldots+N-1=N *(N-1) / 2
\end{aligned}
$$

This method is not efficient: $O\left(n^{2}\right)$

Reversing a List

- This way (using an accumulator) is better: $O(n)$
- fun reverse_helper (L,L2) =
if $\mathrm{L}=$ nil then L 2
else reverse_helper(tl(L),hd(L)::L2);
- fun reverse(L) = reverse_helper(L, []) ;
- reverse [1,2,3];
- reverse_helper([1,2,3],[]);
- reverse_helper([2,3],[1](:%5B2,3%5D;));
- reverse_helper([3],[2,1]);
- reverse_helper([],[3,2,1]);
[3,2,1]

Removing List Elements

- The following function removes all occurrences of its first argument from its second argument list
- fun remove (x,L) = if L=[] then []

```
else if x=hd(L)then remove(x,tl(L))
else hd(L)::remove(x,tl(L));
```

val remove $=$ fn : ''a * ''a list -> 'ra list

- remove (1, [5, 3,1]);
val it $=[5,3]$: int list
- remove (2,[4,2,4,2,4,2,2]);
val it $=[4,4,4]$: int list

Removing Duplicates

- The remove function can be used in the definition of another function that removes all duplicate occurrences of elements from its argument list:
- fun removedupl(L) =
if (L=[]) then []
else hd (L) : : removedupl (remove (hd (L), tl(L)));
val removedupl $=\mathrm{fn}:$ 'ra list $->$ 'ra list
- removedupl ([3, $2,4,6,4,3,2,3,4,3,2,1])$;
val it $=[3,2,4,6,1]$: int list

Definition by Patterns

- In SML functions can also be defined via patterns.
- The general form of such definitions is:
fun <identifier>(<pattern1>) = <expression1>
| <identifier>(<pattern2>) = <expression2>
| ...
| <identifier> (<patternK>) = <expressionK>; where the identifiers, which name the function, are all the same, all patterns are of the same type, and all expressions are of the same type.
- Example:
- fun reverse(nil) = nil
| reverse(H::T) = reverse(T) @ [H];
val reverse = fn : 'a list -> 'a list
The patterns are inspected in order and the first match determines the value of the function.

Sets with lists in SML

fun member (H, L) =

```
if L=[] then false
else if H=hd(L) then true
else member(H,tl(L));
```

OR with patterns:
fun member ($\mathrm{H},[\mathrm{l}$) = false
| member(H,H2::T2) =

$$
\begin{aligned}
& \text { if }(H=H 2) \text { then true } \\
& \text { else member }(H, T 2) \text {; }
\end{aligned}
$$

member (1, [1,2]); (* true *) member (1, [2,1]); (* true *) member (1, [2,3]); (* false *)

Sets UNION

fun union (L1,L2) =

$$
\begin{aligned}
& \text { if } \mathrm{L} 1=[] \text { then } \mathrm{L} 2 \\
& \text { else if member(hd(L1), L2) } \\
& \quad \text { then union(tl(L1),L2) } \\
& \quad \text { else hd(L1)::union (tl (L1), L2) ; }
\end{aligned}
$$

or
fun union([],L2) = L2
| union(H::T,L2) =
if member (H,L2) then union(T,L2)
else H::union(T,L2);
union([1,5,7,9],[2,3,5,10]);
(* $[1,7,9,2,3,5,10]$ *)
union([],[1,2]); (* [1,2] *)
union([1,2],[]); (* [1,2] *)

Sets Intersection ($($)

fun intersection(L1,L2) =
if L1=[] then []
else if member (hd (L1), L2)
then hd(L1): :intersection (tl (L1) ,L2)
else intersection(tl(L1),L2);
intersection([1,5,7,9],[2,3,5,10]);
(* [5] *)

Sets \cap with patterns

fun intersection([],L2) = []
| intersection(L1,[]) = [] | intersection(H::T,L2) = if member (H,L2)
then H: :intersection (T,L2) else intersection(T,L2);

Sets subset

fun subset(L1,L2) = if L1=[] then true else if L2=[] then false else if member (hd (L1), L2) then subset(tl (L1), L2) else false;
subset([1,5,7,9],[2,3,5,10]); (* false *) subset([5,2],[2,3,5,10]); (* true *)

Sets subset patterns

 fun subset([],L2) = true| subset(L1,[]) = false | subset(H::T,L2) =
if member (H,L2)
then subset(T,L2)
else false;

Sets equal

fun setEqual (L1,L2) =
subset (L1, L2) andalso subset(L2,L1);
setEqual ([1,5,7], [7,5,1,2]);(* false *) setEqual ([1,5,7],[7,5,1]); (* true *)

Set difference

fun minus (L1,L2) $=$ if $\mathrm{L} 1=[]$ then []
else if member (hd (L1), L2)
then minus (tl (L1), L2)
else hd(L1) : :minus (tl (L1) ,L2) ;
minus ([1,5,7,9],[2,3,5,10]);

$$
(*[1,7,9] *)
$$

Set difference patterns

 fun minus ([],L2) = []| minus (H: : T,L2) = if member (H,L2) then minus (T,L2) else H: :minus (T,L2) ;
minus ([1,5,7,9],[2,3,5,10]); (* $[1,7,9]$ *)

Sets Cartesian product

 fun product_one (X,L) = if L=[] then [] else (X,hd(L)): :product_one(X,tl(L)); product_one(1,[2,3]);(* $[(1,2),(1,3)]$ *)
fun product(L1,L2) = if L1=[] then [] else concat(product_one(hd(L1), L2), product(tl(L1),L2));
product([1,5,7,9],[2,3,5,10]);

$$
\begin{gathered}
(*[(1,2),(1,3),(1,5),(1,10),(5,2), \\
(5,3),(5,5),(5,10),(7,2),(7,3), \ldots] *)
\end{gathered}
$$

Sets Cartesian product

 fun product_one (X, []) = []| product_one(X,H2: :T2) =

(X,H2) : : product_one (X,T2) ;

product_one (1, [2, 3]); (* [(1, 2), (1, 3)] *)
fun product([],L2) = []
| product(L1,[]) = []
| product(H::T,L2) =
union (product_one (H,L2),
product(T,L2));
product ([1,5,7,9],[2,3,5,10]);

$$
\begin{gathered}
(*[(1,2),(1,3),(1,5),(1,10),(5,2), \\
(5,3),(5,5),(5,10),(7,2),(7,3), \ldots] *)
\end{gathered}
$$

Sets Powerset

- We want a function to compute the powerset of a set:
- powerSet([1,2,3]);
[[],[1](:%5B2,3%5D;),[2],[3],[1,2],[1,3],[2,3],[1,2,3]]
- powerSet([2,3]);
[[],[2],[3],[2,3]]
- The recursive relation shows us that the powerset can be computed by computing the powerset of a tail and UNION it with the sets where the head is inserted in each subset in the powerset of the tail
[[],[1](:%5B2,3%5D;),[2],[3],[1,2],[1,3],[2,3],[1,2,3]]
$=[[],[2],[3],[2,3]]$ UNION
insert_all(1, [[],[2],[3],[2,3]])
$=[[],[2],[3],[2,3]]$ UNION
[[1](:%5B2,3%5D;),[1,2],[1,3],[1,2,3]])

Sets Powerset

fun insert_all (E,L) =

$$
\begin{aligned}
& \text { if } L=[] \text { then [] } \\
& \text { else }(E: \text { hd (L)) : : insert_all (E,tl(L)) ; }
\end{aligned}
$$

insert_all(1,[[],[2],[3],[2,3]]);
(* [[1](:%5B2,3%5D;), [1,2], [1,3], [1,2,3]] *)
fun powerSet(L) =

```
if \(\mathrm{L}=[]\) then [[]]
else powerSet(tl(L)) @ (* concat *)
``` insert_all(hd(L) ,powerSet(tl(L))) ;
powerSet([]); (* [[]] *)
powerSet ([1,2,3]); (* [[],[1],[2],[3],[1,2],
\([1,3],[2,3],[1,2,3]] *)\)
powerSet ([2,3]); (* [[],[2],[3],[2,3]] *)

\section*{Sets Powerset patterns}
fun insert_all(E,[]) = []
| insert_all(E,H2::T2) = (E::H2)::insert_all(E,T2);
insert_all(1,[[],[2],[3],[2,3]]);
(* [[1], [1,2], [1,3], [1,2,3]] *)
fun powerSet([]) = [[]]
| powerset(H::T) = powerSet(T) @ insert_all(H, powerSet(T));
powerSet([]); (* [[]] *)
powerSet([1,2,3]); (* [[],[1],[2],[3],[1,2],
\[
[1,3],[2,3],[1,2,3]] *)
\]
powerSet([2,3]);(* [[],[2],[3],[2,3]] *)

\section*{Higher-Order Functions}
- In functional programming languages functions (called first-class functions) can be used as parameters or return value in definitions of other (called higher-order) functions
- The following function, map, applies its first argument (a function) to all elements in its second argument (a list of suitable type):
- fun map \((f, L)=\) if \(L=[]\) then [] else \(\mathrm{f}(\mathrm{hd}(\mathrm{L})):\) : (map(f,tl(L)));
val map \(=f n\) : (''a -> 'b) * ''a list -> 'b list OR
- fun \(\operatorname{map}(f,[])=[]\)
```

$\mid \operatorname{map}(f, H:: T)=f(H):: m a p(f, T) ;$

```
- We may apply map with any function as argument:
- fun square (X) \(=\) (X:int) *X;
val square \(=f n\) : int \(->\) int
- map(square, [2,3,4]);

\section*{McCarthy's 91 function}
- McCarthy's 91 function:
- fun mc91(N) = if \(N>100\) then \(N-10\) else mc91 (mc91 (N+11)) ;
val mc91 \(=\) fn : int \(->\) int
- map mc91 [101, 100, 99, 98, 97, 96]; val it \(=[91,91,91,91,91,91]\) : int list

\section*{Higher-Order Functions}
- Anonymous functions:
- map(fn \(X=>X+1\), \([1,2,3,4,5])\);
val it \(=[2,3,4,5,6]\) : int list
- fun incr(list) \(=\) map (fn \(X=>X+1\), list);
val incr \(=\) fn : int list -> int list
- incr[1,2,3,4,5];
val it \(=[2,3,4,5,6]\) : int list

\section*{Filter = findall}
- Filter function: keep in a list only the values that satisfy some logical condition/boolean function:
- fun filter (f,L) =
if \(\mathrm{L}=[]\) then []
else if \(f(h d\) L)
then (hd L): (filter (f, tl L)) else filter (f, tl L) ;
val filter \(=\) fn : ('a -> bool) * 'a list -> 'a list
- filter ((fn X \(=>\mathrm{X}>0)\), [~1,0,1,2,3,~2,4]);
val it \(=[1,2,3,4]\) : int list

\section*{Find (first)}
- Pick only the first element of a list that satisfies a given predicate:
- fun myFind pred nil = raise Fail "No such element" | myFind pred (H::T) = if pred \(H\) then \(H\) else myFind pred T;
val myFind = fn : ('a -> bool) -> 'a list -> 'a
- myFind (fn X => X > 0) [~1, ~3, 5, 7]; val it = 5 : int
- myFind (fn \(\mathrm{X}=>\mathrm{X}>0.0\)) [~1.2, ~3.4, 5.6, 7.8]; val it = 5.6 : real

\section*{Reduce (aka. foldr)}
- We can generalize the notion of recursion over lists as follows: all recursions have a base case, an iterative case, and a way of combining results:
- fun reduce f B nil \(=\mathrm{B}\) | reduce \(\mathrm{f} \mathrm{B}(\mathrm{H}:: \mathrm{T})=\mathrm{f}(\mathrm{H}\), reduce \(\mathrm{f} \mathrm{B} T\)); Note: This is called fold right (foldr) because the function is applied on returning.
- fun sumList aList = reduce (op +) O aList; val sumList \(=\) fn : int list -> int
- sumList [1, 2, 3];
val it = 6 : int

\section*{fold}
- fun foldl(f: ' 'a*'b->'b, Acc: 'b,
\[
\begin{aligned}
& \mathrm{L}: \text { ''a list) :'b }= \\
& \text { if } \mathrm{L}=[] \text { then Acc } \\
& \text { else foldl(f, } \mathrm{f}(\mathrm{hd}(\mathrm{~L}), \text { Acc) , tl }(\mathrm{L})) \text {; }
\end{aligned}
\]

Note: This is called fold left (foldl) because the function is applied incrementally.
- fun sum(L:int list):int = foldl((fn (X,Acc) => Acc+X), 0, L) ;
- sum[1, 2, 3];
val it \(=6\) : int
- foldl walks the list from left to right while evaluating \(f\)
- foldr evaluates \(f\) on the way back: \(f(H\), reduce \(f B T)\)

\section*{foldr vs. foldl execution}
- foldr:
- sumList [1, 2, 3];
- 1 + sumlist[2,3]
- \(1+2\) + sumlist[3]
\(-1+2+3+\) sumlist[]
\(-1+2+3+0\)
\(-1+2+3\)
\(-1+5\)
- 6
- foldl:
- sum 0 [1, 2, 3];
- sum 1 [2, 3];
- sum 3 [3];
- sum 6 []
- 6

\section*{Collect like in Java streams}
- fun collect(Acc, combine, accept, nil) = accept(Acc)
| collect(Acc, combine, accept, H::T) = collect (combine (Acc, H) , combine, accept, T);
- fun average(aList) \(=\operatorname{collect((0,0),~}\)
```

(fn ((total,count) ,X) => (total+X,count+1)), (fn (total,count) $=>$ real (total)/real (count)), aList) ;

```
- average [1, 2, 4];
val it \(=2.33333333333\) : real
- it is like foldl, but it also applies an accept function at the end

\title{
Numerical integration
}
- Computation of \(\int_{a}^{b} f(x) d x\) by the trapezoidal rule:

\[
=h *(f(a)+f(a+h)) / 2
\]
(c) Paul Fodor (CS Stony Brook)

\section*{Numerical integration}
- fun integrate (f,a,b,n) =
```

if n <= 0 orelse b <= a then 0.0

```
else (((b-a) / real n)
* \((\mathrm{f}(\mathrm{a})+\mathrm{f}(\mathrm{a}+(\mathrm{b}-\mathrm{a}) / \mathrm{real} \mathrm{n})) \mathrm{l}) / 2.0\) +
integrate (f,a+((b-a) / real n),b,n-1); val integrate \(=\mathrm{fn}:(r e a l \rightarrow r e a l)\) * real \(*\) real * int \(\rightarrow\) real
- fun cube \(x\) :real \(=\mathbf{x} * \mathbf{x} * \mathbf{x}\); val cube \(=f n\) : real \(->\) real
- integrate (cube , 0.0 , 2.0 , 10); val it \(=4.04\) : real
um square sequence
- fun sum \(f \mathrm{~N}=\)
if \(N=0\) then 0
else \(\mathrm{f}(\mathrm{N})+\operatorname{sum} \mathrm{f}(\mathrm{N}-1)\);
val sum \(=\) fn \(:(i n t \rightarrow\) int) \(\rightarrow\) int \(\rightarrow\) int
- sum (fn X => X * X) 3 ;
val it = 14 : int because
\(f(3)+f(2)+f(1)+0=9+4+1+0=14\)

\section*{Composition}
- Composition is another example of a higher-order function:
- fun comp \((f, g)(X)=f(g(X))\);
val comp = fn : ('a -> 'b) * ('c -> 'a) -> 'c -> 'b
- val h = comp(Math.sin, Math.cos);
val \(h=f n\) : real -> real
- h(0.25);
val it \(=0.824270418114\) : real
- Math.sin(Math.cos(0.25));
val it \(=0.824270418114\) : real
SAME WITH:
- val i = Math.sin \(\circ\) Math.cos;
(* Composition "○" is predefined symbol *)
- i(0.25);
val it \(=0.824270418114\) : real

\section*{Permutations}
- We want a function to return all permutations of a list:
- permutations([1,2,3]);
val it \(=[[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2]\),
\[
[3,2,1]] \text { : int list list }
\]
- permutations([2,3]);
val it = [[2,3],[3,2]] : int list list
- The recursive relation is to insert the head in every possible position in each permutation of the tail
- inserting 1 in \([2,3]\) generates:
\[
[1,2,3],[2,1,3],[2,3,1]
\]
- inserting 1 in \([3,2]\) generates:
\[
[1,3,2],[3,1,2],[3,2,1]
\]

\section*{Permutations}
- fun interleave (X,[]) = [[X]]
| interleave (X,H::T) = (X: H: : T) : : (
```

map((fn L => H::L), interleave(X,T)));

```
- interleave(1,[]);
val it = [[1]] : int list list
- interleave(1,[3]);
val it \(=[[1,3],[3,1]]\) : int list list
- interleave(1,[2,3]);
val it \(=[[1,2,3],[2,1,3],[2,3,1]]\) : int list list

\section*{Permutations}
- fun appendAll(nil) = nil
| appendAll(H::T) = H @ (appendAll(T));
flattens one level of the list
- appendAll([[[1,2]],[[2,1]]]);
val it = [[1,2],[2,1]] : int list list
- fun permutations(nil) = [[]]
| permutations(H::T) = appendAll(map((fn L => interleave(H,L)), permutations(T)));
- permutations([1,2,3]);
val it \(=[[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2]\),
[3,2,1]] : int list list

\section*{Permutations}

Without higher-order functions:
fun insertAllAux (E,L,Prefix,Result) = if L=[] then Result@([Prefix @ [E]]) else insertAllAux (E,tl(L), Prefix@[hd(L)],Result@([Prefix@[E]@L]));
fun insertAll(E,L) = insertAllAux(E,L,[],[]);
insertAll (1, [2,3]);
[[1, 2, 3], [2, 1, 3], [2, 3,1]]
fun insertOneThenAll(E,P) = if \(\mathrm{P}=[\mathrm{C}\) then []
else insertAll(E,hd(P)) @ insertOneThenAll(E,tl(P));
fun permutations(L) \(=\) if \(L=[]\) then [[]]
else insertOneThenAll (hd(L), permutations (tl(L)));
permutations([1,2]);
[[1, 2], [2,1]]
permutations ([1,2,3]);
\([[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]\)

\section*{Currying = partial application}
- fun \(\operatorname{sum} A B=A+B\);
val \(f=f n\) : int \(->\) int \(->\) int
val \(f=f n:\) int -> (int -> int)
- val incl = sum (1);
val incl \(=f n\) : int \(->\) int
- incl (3) ;
val it \(=4\) : int
- sum (1) (3);
val it \(=4\) : int

\section*{Currying = partial application}
- fun \(f\) A \(B C=A+B+C\);
val \(f=\) fin : int \(->\) int \(->\) int \(->\) int val \(f=\) in : int -> (int -> (int -> int))
- val incl \(=f(1) ;\)
val incl \(=f n\) : int \(->\) int \(->\) int
val incl \(=\) fin \(:\) int \(->\) (int \(->\) int)
- val inc12 = inc1(2);
val inc12 \(=\) in \(:\) int \(->\) int
- inc12(3);
val it \(=6\) : int

\section*{Currying and Lazy evaluation}
- fun mult X Y = if X = O then 0 else X * Y;

Eager evaluation (SML): reduce as much as possible before applying the function
```

mult (1-1) (3 div 0);
-> (fn x => (fn y => if x = 0 then 0 else x * y)) (1-1) (3 div 0)
-> (fn x => (fn y => if x = 0 then O else x * y)) 0 (3 div 0)
-> (fn y => if 0 = O then O else 0 * y) (3 div 0)
-> (fn y => if 0 = 0 then 0 else 0 * y) error
-> error

```

Lazy evaluation (Haskell): delay evaluation until it is necessary.
mult (1-1) (3 div 0);
-> (fn \(\mathrm{x}=>(\mathrm{fn} \mathrm{y}=>\) if \(\mathrm{x}=0\) then 0 else \(\mathrm{x} * \mathrm{y})\)) (1-1) (3 div 0)
-> (fn y => if (1-1) = 0 then 0 else (1-1) * y) (3 div 0)
-> if (1-1) \(=0\) then 0 else (1-1) * (3 div 0)
-> if 0 = 0 then 0 else (1-1) * (3 div 0)

\section*{Currying and Lazy evaluation}
- Argument evaluation as late as possible (possibly never)
- Evaluation only when indispensable for a reduction
- Property: If the eager evaluation of expression e gives \(\mathbf{n} \mathbf{1}\) and the lazy evaluation of \(\mathbf{e}\) gives \(\mathbf{n} \mathbf{2}\) then \(\mathbf{n} \mathbf{1}=\mathbf{n} \mathbf{2}\)
- But, lazy evaluation gives a result more often than eager evaluation
- SML uses eager evaluation (like C and Java)
- Some languages, most notably Haskell, use only lazy evaluation

\section*{Mutually recursive function} definitions
- fun odd (n) \(=\) if \(n=0\) then false else even (n-1)
and
even (n) \(=\) if \(n=0\) then true else odd (n-1) ;
val odd \(=\) fn \(:\) int \(->\) bool
val even \(=\) fn : int \(->\) bool
- even (1) ;
val it \(=\) false : bool
- odd(0) ;
val it = false : bool
- odd(1);
val it \(=\) true : bool

\section*{Sorting}
- Merge-Sort:
- To sort a list L:
- first split L into two disjoint sublists (of about equal size),
- then (recursively) sort the sublists, and
- finally merge the (now sorted) sublists
- It requires suitable functions for
splitting a list into two sublists AND
\({ }^{\circ}\) merging two sorted lists into one sorted list

\section*{Splitting}
- We split a list by applying two functions, take and skip, which extract alternate elements; respectively, the elements at odd-numbered positions and the elements at evennumbered positions
- The definitions of the two functions mutually depend on each other, and hence provide an example of mutual recursion, as indicated by the SML-keyword and:
```

- fun take(L) =
if L = nil then nil
else hd(L)::skip(tl(L))
and
skip(L) =
if L=nil then nil
else take(tl(L));
val take = fn : ''a list -> 'ra list
val skip = fn : ''a list -> 'ra list
- take[1,2,3,4,5,6,7];
val it = [1,3,5,7] : int list
- skip[1,2,3,4,5,6,7];
val it = [2,4,6] : int list

```

\section*{Merging}
- Merge pattern definition:
- fun merge([],R) = R
| merge (L, []) = L
| merge(H: :T,H2::T2) =
\[
\begin{aligned}
& \text { if }(H: i n t)<H 2 \text { then } H:: m e r g e(T, H 2:: T 2) \\
& \text { else } H 2: \text { :merge (H::T,T2); }
\end{aligned}
\]
val merge \(=\) fn : int list * int list \(->\) int list
- merge ([1,5,7,9],[2,3,6,8,10]);
val it \(=[1,2,3,5,6,7,8,9,10]\) : int list
- merge ([],[1,2]);
val it \(=[1,2]\) : int list
- merge ([1,2],[]);
val it \(=[1,2]\) : int list

\section*{Merge Sort}
- fun sort (L) =
if \(\mathrm{L}=[]\) orelse \(\mathrm{tl}(\mathrm{L})=[]\) then L
else merge (sort(take(L)), sort(skip(L))); val sort \(=\) fin : int list -> int list
- sort [5,3,6,2,1,9];
val it \(=[1,2,3,5,6,9]\) : int list

\section*{Local declarations}
- fun \(\operatorname{gcd}(N, M)=\) if \(N=M\) then \(N\) else if \(N>M\) then \(\operatorname{gcd}(M, N-M)\)
else \(\operatorname{gcd}(\mathrm{N}, \mathrm{M}-\mathrm{N})\);
- fun fraction (\(n, d\)) = let val \(k=\operatorname{gcd}(n, d)\)
in
```

        ( n div k , d div k )
    ```
end;
- The identifier \(\mathbf{k}\) is local to the expression after in
- Its binding exists only during the evaluation of this expression
- All other declarations of \(\mathbf{k}\) are hidden during the evaluation of this expression
- fraction \((10,25)\);
val it \(=(2,5)\) : int * int

\section*{Sorting with comparison}
- How to sort a list of elements of type \(\alpha\) ?
- We need the comparison function/operator for elements of type \(\alpha\) !
- fun sort order [] = []
| sort order [x] = [x]
| sort order \(T\) =
let fun merge [] M = M
| merge L [] = L
| merge (L as H::T) (M as H2::T2) = if order(H,H2) then H::merge \(T\) M else H2::merge L T2
val (T2,zs) = split T
in merge (sort order T2) (sort order zs) end;
- sort (op >) [5.1, 3.4, 7.4, 0.3, 4.0] ;
val it \(=[7.4,5.1,4.0,3.4,0.3]\) : real list

\section*{Sorting with comparison}
- fun split_helper(L: ''a list, Acc:''a list * ''a list) :''a list * ''a list =
if \(\mathrm{L}=[]\) then Acc
else split_helper(tl(L), (\#2(Acc), (hd(L)) : : \#1(Acc)));
- fun split(L) = split helper(L, ([], []));
- split([1,2,3,4,5,6]);
split([1,2,3,4,5,6])
split_helper ([1,2,3,4,5,6], ([],[]))
split_helper([2,3,4,5,6], ([],[1]))
split_helper ([3, 4,5,6], ([1],[2]))
split_helper ([4,5,6], ([2],[3,1]))
split_helper ([5,6], ([3,1],[4,2]))
split_helper([6], ([4,2],[5,3,1]))
split_helper([], ([5,3,1],[6,4,2]))
\(([5,3,1],[6,4,2])\)

\title{
Sorting with comparison
}
- fun split(L) = if \(L=[]\) orelse \(t l(L)=[]\) then (\(L\), []) else let val (L1,L2) = split(tl(tl(L)))
in (hd (L): :L1, hd(tl(L))::L2) end;
split([1,2,3,4,5,6])
([5,3,1],[6,4,2])

\section*{Quicksort}
- C.A.R. Hoare, in 1962: Average-case running time: \(\Theta(\mathrm{n} \log \mathrm{n})\)
- fun sort [] = []
| sort (H::T) =
let val (S,B) = partition (\(\mathrm{H}, \mathrm{T}\)) in (sort S) @ (H : : (sort B)) end;
Double recursion and no tail-recursion
- fun partition (p,[]) = ([],[]) partition (\(\mathrm{p}, \mathrm{H}:: \mathrm{T}\)) = let val (\(\mathrm{S}, \mathrm{B}\)) = partition (\(\mathrm{p}, \mathrm{T}\)) in if \(H<p\) then (\(H:: S, B\)) else (\(\mathrm{S}, \mathrm{H}:: \mathrm{B}\)) end

\section*{Nested recursion}

For \(m, n \geq 0\) :
acker (0,m) = m+1
\(\operatorname{acker}(n, 0)=\operatorname{acker}(n-1,1)\) for \(n>0\)
\(\operatorname{acker}(n, m)=\operatorname{acker}(n-1, \operatorname{acker}(n, m-1))\) for \(n, m>0\)
- fun acker \(0 \mathrm{~m}=\mathrm{m}+1\)
| acker n \(0=\) acker (n-1) 1
| acker n m = acker (\(\mathrm{n}-1\)) (acker \(\mathrm{n}(\mathrm{m}-1)\));

It is guaranteed to end because of lexicographic order:
\(\left(n^{\prime}, m^{\prime}\right)<(n, m)\) iff \(n^{\prime}<n\) or (\(n^{\prime}=n\) and \(m^{\prime}<m\))

\title{
Nested recursion
}
- Knuth's up-arrow operator \(\uparrow^{n}\) (invented by Donald Knuth):
\(a \uparrow^{1} b=a^{b}\)
\(a \uparrow^{n} b=a \uparrow^{n-1}\left(b \uparrow^{n-1} b\right)\) for \(n>1\)
- fun opKnuth 1 a b = Math.pow (a,b)

I opKnuth \(n\) a \(b=o p K n u t h(n-1) a\) (opKnuth (n-1) b b);
- opKnuth 23.03 .0 ;
val it \(=7.62559748499 \mathrm{E} 12\) : real
- opKnuth 33.03 .0 ;
! Uncaught exception: Overflow;
- Graham's number (also called the "largest" number):
- opKnuth 633.03 .0 ;

\section*{Tail recursion}
- fun length [] = 0
| length (H::T) = 1 + length \(T\);
- The recursive call of length is nested in an expression: during the evaluation, all the terms of the sum are stored, hence the memory consumption for expressions \& bindings is proportional to the length of the list!
```

length $[5,8,4,3]$
$->1+$ length [8,4,3]
$->1+(1+$ length $[4,3])$
$->1+(1+(1+$ length [3]) $)$
$\frac{->1+(1+(1+(1+1 \text { ength [ }])))}{->1+(1+(1+(1+0)))}$
$->1+(1+(1+1))$
$->1+(1+2)$
$->1+3$
-> 4

```

\section*{Tail recursion}
- fun lengthAux [] acc = acc
| lengthAux (H::T) acc = lengthAux \(T(a c c+1)\);
- fun length \(L=\) lengthAux \(L\);
- length \([5,8,4,3]\);
-> lengthAux \([5,8,4,3] 0\)
\(->\) lengthAux \([8,4,3](0+1)\)
\(->\) lengthAux \([8,4,3] 1\)
\(->\) lengthAux \([4,3](1+1)\)
-> lengthAux \([4,3] 2\)
\(->\) lengthAux [3] (2+1)
-> lengthAux [3] 3
\(->\) lengthAux [] (3+1)
-> lengthAux [] 4
-> 4
- Tail recursion: recursion is the outermost operation
- Space complexity: constant memory consumption for expressions \& bindings (SML can use the same stack frame/activation record)
- Time complexity: (still) one traversal of the list

\section*{Optional: SML Extras: Records}
- Records
- Strings and char

\section*{Records}
- Records are structured data types of heterogeneous elements that are labeled
- \(\{x=2, y=3\}\);
- The order does not matter:
- \{make="Toyota", model="Corolla", year=2017, color="silver"\}
= \{model="Corolla", make="Toyota", color="silver", year=2017\};
val it \(=\) true : bool
- fun full_name\{first:string,last:string, age:int,balance:real\}:string =
first ^ " " ^ last;
(* ^ is the string concatenation operator *)
val full_name=fn:\{age:int, balance:real, first:string, last:string\} -> string

\section*{string and char \\ - "a";}
val it = "a" : string
- \#"a";
val it = \#"a" : char
- explode("ab") ;
val it = [\#"a",\#"b"] : char list
- implode ([\#"a",\#"b"]) ;
val it = "ab" : string
- "abc" ^ "def" = "abcdef";
val it = true : bool
- size ("abed");
val it = 4 : int

\section*{string and char}
- String.sub("abcde",2);
val it = \#"c" : char
- substring("abcdefghij", 3,4);
val it = "defg" : string
- concat ["AB"," ","CD"];
val it = "AB CD" : string
- str(\#"x");
val it = "x" : string

\section*{Functional programming in SML}
- Covered fundamental elements:
- Evaluation by reduction of expressions
- Recursion
- Polymorphism via type variables
- Strong typing
- Type inference
- Pattern matching
- Higher-order functions
- Tail recursion

\section*{Beyond functional programming}
- Relational programming (aka logic programming)
- For which triples does the append relation hold?
append ([],L,L).
append([H|T],L,[H|T2]) :append (\(\mathrm{T}, \mathrm{L}, \mathrm{T} 2\)).
?- append ([1,2], [3], X).
Yes
\(\mathrm{x}=[1,2,3]\)
?- append ([1,2], X, [1,2,3]).
X = [3]
?- append (X, Y, [1,2,3]).
\(\mathrm{X}=[], \mathrm{Y}=[1,2,3]\);
X = [1], Y = [2,3];
\(\mathrm{X}=[1,2,3], \mathrm{Y}=[] ;\)
- No differentiation between arguments and results!

\section*{Logic programming}
- Backtracking mechanism to enumerate all the possibilities
- Unification mechanism, as a generalization of pattern matching

\section*{Beyond functional programming}
- Constraint Processing:
- Constraint Satisfaction Problems (CSPs)
- Variables: X1, X2, . . . , Xn
- Domains of the variables: D1, D2, . . , Dn
- Constraints on the variables: examples: 3•X1 \(+4 \cdot \mathrm{X} 2 \leq \mathrm{X} 4\)
- What is a solution?
- An assignment to each variable of a value from its domain, such that all the constraints are satisfied
- Objectives:
- Find a solution
- Find all the solutions
- Find an optimal solution, according to some cost expression on the variables

\section*{Beyond functional programming}
- Example:The n-Queens Problem:
- How to place \(n\) queens on an \(n \times n\) chessboard such that no queen is threatened?
- Variables: X1, X2, . . , Xn (one variable for each column)
- Domains of the variables: \(\mathrm{Di}=\{1,2, \ldots, \mathrm{n}\}\) (the rows)
- Constraints on the variables:
- No two queens are in the same column: this is impossible by the choice of the variables!
- No two queens are in the same row: \(\mathrm{Xi}!=\mathrm{Xj}\), for each \(\mathrm{i}!=\mathrm{j}\)
- No two queens are in the same diagonal: \(|\mathrm{Xi}-\mathrm{Xj}|!=|\mathrm{i}-\mathrm{j}|\), for each \(\mathrm{i}!=\mathrm{j}\)
- Number of candidate solutions: \(\mathrm{n}^{\mathrm{n}}\)
- Exhaustive Enumeration
- Generation of possible values of the variables.
- Test of the constraints.
- Optimization:
- Where to place a queen in column k such that it is compatible with \(\mathrm{rk}+1, \ldots\), rn ?
- Eliminate possible locations as we place queens

\section*{Beyond functional programming}
- Applications:
- Scheduling
- Planning
- Transport
- Logistics
- Games
- Puzzles
- Complexity
- Generally these problems are NP-complete with exponential complexity

\section*{Conclusion}
- Conclusion for this course
- That is all!
- I hope that this course has sparked a lot of ideas and encourages you to exercise programming
- Thank you!```

