
Paul Fodor

CSE260, Computer Science B: Honors

Stony Brook University

http://www.cs.stonybrook.edu/~cse260

SML

1

http://www.cs.stonybrook.edu/~cse260

(c) Paul Fodor & Pearson Inc.

Objectives
 Functional Programming

 Standard ML of New Jersey (SML)

 Dynamic Typing

 Function Definitions in SML

 Recursive Definitions

 Operators on integers and reals

 Tuples

 Polymorphic functions

 List Functions

 Definition by Patterns

 Higher-Order Functions

 Function Composition

 Currying (partial application)

 Lazy evaluation

 Mutually recursive functions

 Local declarations

 Nested recursions

 Tail recursion

 Records, Strings and char

 Beyond functional programming
2

(c) Paul Fodor (CS Stony Brook)

Functional Programming
 Function evaluation is the basic concept for a programming

paradigm that has been implemented in functional programming

languages

 The language ML (“Meta Language”) was originally introduced in

1977 as part of a theorem proving sT2tem, and was intended for

describing and implementing proof strategies in the Logic for

Computable Functions (LCF) theorem prover (whose language,

pplambda, a combination of the first-order predicate calculus and

the simply typed polymorphic lambda calculus, had ML as its

metalanguage)

 Standard ML of New Jersey (SML) is an implementation of ML

 The basic mode of computation in SML is the use of the definition

and application of functions
3

(c) Paul Fodor (CS Stony Brook)

Install Standard ML
 Download from:

 http://www.smlnj.org

 Start Standard ML:

 Type sml from the shell (run command line in Windows)

 Exit Standard ML:

 Ctrl-Z under Windows

 Ctrl-D under Unix/Mac

 OR Use SML online:

 https://sosml.org/editor

 https://www.tutorialspoint.com/execute_smlnj_online.php

4

http://www.smlnj.org/
https://sosml.org/editor
https://www.tutorialspoint.com/execute_smlnj_online.php

(c) Paul Fodor (CS Stony Brook)

Standard ML
The basic cycle of SML activity has

three parts:

Read input from the user

Evaluate it

Print the computed value (or an error

message)

This is called "Read–eval–print loop"

(REPL)
5

(c) Paul Fodor (CS Stony Brook)

First SML example
 SML prompt:

-

 Simple example:

- 3;

val it = 3 : int

 The first line contains the SML prompt, followed by

an expression typed in by the user and ended by a

semicolon

 The second line is SML’s response, indicating the value

of the input expression and its type
6

(c) Paul Fodor (CS Stony Brook)

Interacting with SML
 SML has a number of built-in operators and data types.

 it provides the standard arithmetic operators

- 3+2;

val it = 5 : int

 The boolean values true and false are available, as

are logical operators such as: not (negation),

andalso (conjunction), and orelse (disjunction)

- not(true);

val it = false : bool

- true andalso false;

val it = false : bool7

(c) Paul Fodor (CS Stony Brook)

Types in SML
 As part of the evaluation process, SML determines the

type of the output value using methods of type

inference.

 Simple types include int, real, bool, and string

 One can also associate identifiers with values

- val five = 3+2;

val five = 5 : int

and thereby establish a new value binding

- five;

val it = 5 : int

8

(c) Paul Fodor (CS Stony Brook)

Function Definitions in SML
 The general form of a function definition in SML is:

fun <identifier> (<parameters>) = <expression>;

 For example,

- fun double(x) = 2*x;

val double = fn : int -> int

declares double as a function from integers to integers, i.e., of

type int → int

 Apply a function to an argument of the wrong type results in

an error message:

- double(2.0);

Error: operator and operand don’t agree ...

9

(c) Paul Fodor (CS Stony Brook)

Function Definitions in SML
 The user may also explicitly indicate types:

- fun max(x:int,y:int,z:int):int =

if ((x>y) andalso (x>z)) then x

else (if (y>z) then y else z);

val max = fn : int * int * int -> int

- max(3,2,2);

val it = 3 : int

10

(c) Paul Fodor (CS Stony Brook)

Recursive Definitions
 The use of recursive definitions is a main characteristic of functional

programming languages, and these languages encourage the use of

recursion over iterative constructs such as while loops:

- fun factorial(x) = if x=0 then 1

else x*factorial(x-1);

val factorial = fn : int -> int

 The definition is used by SML to evaluate applications of the function to

specific arguments:

- factorial(5);

val it = 120 : int

- factorial(10);

val it = 3628800 : int
11

(c) Paul Fodor (CS Stony Brook)

Example: Greatest Common Divisor
 The greatest common divisor (gcd) of two positive integers can

defined recursively based on the following observations:

gcd(n, n) = n,

gcd(m, n) = gcd(m − n, n), if m > n,

gcd(m, n) = gcd(m, n - m), if m < n.

 These identities suggest the following recursive definition:

- fun gcd(m,n):int = if m=n then n

else if m>n then gcd(m-n,n)

else gcd(m,n-m);

val gcd = fn : int * int -> int

- gcd(12,30); - gcd(1,20); - gcd(125,56345);

val it = 6 : int val it = 1 : int val it = 5 : int

12

(c) Paul Fodor (CS Stony Brook)

Basic operators on the integers

 The infix operators associate to the left

 The operands are alwaT2 all evaluated
13

unary operator minus

is represented by ~

(c) Paul Fodor (CS Stony Brook)

Basic operators on the reals

14

(c) Paul Fodor (CS Stony Brook)

Basic operators on the reals

15

Equality for reals:

- Real.==(1.0,1.0);

val it = true : bool

- Real.==(1.0,2.0);

val it = false : bool

(c) Paul Fodor (CS Stony Brook)

Type conversions

- real(2) + 3.5 ;

val it = 5.5 : real

- ceil(23.65) ;

val it = 24 : int

- ceil(~23.65) ;

val it = ~2̃3 : int

- foor(23.65) ;

val it = 23 : int

16

(c) Paul Fodor (CS Stony Brook)

More recursive functions
- fun exp(b,n) = if n=0 then 1.0

else b * exp(b,n-1);

val exp = fn : real * int -> real

- exp(2.0,10);

val it = 1024.0 : real

17

(c) Paul Fodor (CS Stony Brook)

Tuples in SML
 In SML tuples are finite sequences of arbitrary but fixed length,

where different components need not be of the same type

- (1, "two");

val it = (1,"two") : int * string

- val t1 = (1,2,3);

val t1 = (1,2,3) : int * int * int

- val t2 = (4,(5.0,6));

val t2 = (4,(5.0,6)) : int * (real * int)

 The components of a tuple can be accessed by applying the built-in

functions #i, where i is a positive number

- #1(t1);

val it = 1 : int

- #2(t2);

val it = (5.0,6) : real * int18

If a function #i is applied to a tuple with

fewer than i components, an error results.

(c) Paul Fodor (CS Stony Brook)

Tuples in SML
 Functions using tuples should completely define the type of tuples,

otherwise SML cannot detect the type, e.g., nth argument

- fun firstThird(Tuple:'a * 'b * 'c):'a * 'c =

(#1(Tuple), #3(Tuple));

val firstThird = fn : 'a * 'b * 'c -> 'a * 'c

- firstThird((1,"two",3));

val it = (1,3) : int * int

 Without types, we would get an error:

- fun firstThird(Tuple) = (#1(Tuple), #3(Tuple));

stdIn: Error: unresolved flex record (need to know the

names of ALL the fields in this context)

19

(c) Paul Fodor (CS Stony Brook)

Polymorphic functions
- fun id x = x;

val id = fn : 'a -> 'a

- (id 1, id "two");

val it = (1,"two") : int * string

- fun fst(x,y) = x;

val fst = fn : 'a * 'b -> 'a

- fun snd(x,y) = y;

val snd = fn : 'a * 'b -> 'b

- fun switch(x,y) = (y,x);

val switch = fn : 'a * 'b -> 'b * 'a

20

(c) Paul Fodor (CS Stony Brook)

Polymorphic functions
 'a means "any type", while ''a means "any type that can be

compared for equality" (see the concat function later which

compares a polymorphic variable list with [])

 There will be a "Warning: calling polyEqual" that means that

you're comparing two values with polymorphic type for

equality

 Why does this produce a warning? Because it's less efficient

than comparing two values of known types for equality
 How do you get rid of the warning? By changing your function to

only work with a specific type instead of any type
 Should you do that or care about the warning? Probably not. In most cases

having a function that can work for any type is more important than having

the most efficient code possible, so you should just ignore the warning.

21

(c) Paul Fodor (CS Stony Brook)

Lists in SML
 A list in SML is a finite sequence of objects, all of the

same type:

- [1,2,3];

val it = [1,2,3] : int list

- [true,false,true];

val it = [true,false,true] : bool list

- [[1,2,3],[4,5],[6]];

val it = [[1,2,3],[4,5],[6]] :

int list list

The last example is a list of lists of integers

22

(c) Paul Fodor (CS Stony Brook)

 All objects in a list must be of the same type:

- [1,[2]];

Error: operator and operand don’t agree

 An empty list is denoted by one of the following expressions:

- [];

val it = [] : ’a list

- nil;

val it = [] : ’a list

 Note that the type is described in terms of a type variable ’a.

Instantiating the type variable, by types such as int, results in

(different) empty lists of corresponding types
- tl([1]);

val it = [] : int list23

Lists in SML

(c) Paul Fodor (CS Stony Brook)

 element

head

next

Node 1

 element

next

Node 2
…

 element

null

Node n

tail

Operations on Lists
 SML provides various functions for manipulating lists

 The function hd returns the first element of its argument list

- hd([1,2,3]);

val it = 1 : int

- hd[[1,2],[3]];

val it = [1,2] : int list

Applying this function to the empty list will result in an error.

 The function tl removes the first element of its argument lists, and

returns the remaining list

- tl[1,2,3];

val it = [2,3] : int list

- tl([[1,2],[3]]);

val it = [[3]] : int list list

 The application of this function to the empty list will also result in an

error
24

(c) Paul Fodor (CS Stony Brook)

 Lists can be constructed by the (binary) function :: (read

cons) that adds its first argument to the front of the second

argument.
- 5::[];

val it = [5] : int list

- 1::[2,3];

val it = [1,2,3] : int list

- [1,2]::[[3],[4,5,6,7]];

val it = [[1,2],[3],[4,5,6,7]] : int list list

 IMPORTANT: The arguments must be of the right type (such

that the result is a list of elements of the same type):
- [1]::[2,3];

Error: operator and operand don’t agree

25

Operations on Lists

(c) Paul Fodor (CS Stony Brook)

 :: is right associative:
- 1::2::[];

val it = [1,2] : int list

- 1::(2::[]);

val it = [1,2] : int list

 Once a type is inferred even empty list cannot change the

type:
- 1::tl([true]);

Error: operator and operand don't agree [overload

conflict]

operator domain: [int ty] * [int ty] list

operand: [int ty] * bool list

26

Operations on Lists

(c) Paul Fodor (CS Stony Brook)

 Lists can also be compared for equality:
- [1,2,3]=[1,2,3];

val it = true : bool

- [1,2]=[2,1];

val it = false : bool

- tl[1] = [];

val it = true : bool

27

Operations on Lists

(c) Paul Fodor (CS Stony Brook)

Defining List Functions
 Recursion is particularly useful for defining functions that

process lists

 For example, consider the problem of defining an SML

function that takes as arguments two lists of the same type and

returns the concatenated list.

- concat([1,2,3],[4,5,6]);

val it = [1,2,3,4,5,6] : int list

- concat([true,false],[true]);

[true,false,true] : bool list

28

(c) Paul Fodor (CS Stony Brook)

Defining List Functions
 In defining such list functions, it is helpful to keep

in mind that a list is either

– an empty list [] or

– of the form hd(L)::tl(L) if it

contains at least an element

29

(c) Paul Fodor (CS Stony Brook)

Concatenation
 In designing a function for concatenating two

lists L1 and L2 we thus distinguish two cases,

depending on the form of L1:

If L1 is an empty list [], then concatenating

L1=[] with L2 yields just L2.

If L1 has at least 1 element, then concatenating

L1 with L2 is a list of the form hd(L1)::L3,

where L3 is the result of concatenating tl(L1)

with L2.

30

(c) Paul Fodor (CS Stony Brook)

Concatenation
- fun concat(L1,L2)=if L1=[] then L2

else hd(L1)::concat(tl(L1),L2);

val concat = fn : ’’a list * ’’a list -> ’’a list

 Applying the function yields the expected results:

- concat([1,2],[3,4,5]);

val it = [1,2,3,4,5] : int list

- concat([],[1,2]);

val it = [1,2] : int list

- concat([1,2],[]);

val it = [1,2] : int list

31

(c) Paul Fodor (CS Stony Brook)

Length
 The following function computes the length of its argument list:

- fun length(L) = if L=nil then 0

else 1 + length(tl(L));

val length = fn : ’’a list -> int

- length[1,2,3];

val it = 3 : int

- length[[5,4,3],[2,1]];

val it = 2 : int

- length[];

val it = 0 : int
32

(c) Paul Fodor (CS Stony Brook)

Length
How does it work?

- length([true,false,true,false]);

= 1+ length([false,true,false])

= 1+ 1+ length([true,false])

= 1+ 1+ 1+length([false])

= 1+ 1+ 1+ 1+ length([])

= 1+ 1+ 1+ 1+ 0

= 4

33

(c) Paul Fodor (CS Stony Brook)

Length
 A tail-recursive way to write length:

- fun length_helper(L,P) = if L=[] then P

else length_helper(tl(L), P+1);

- fun length(L) = length_helper(L,0);

- length([true,false,true,false]);

=length_helper([true,false,true,false],0)

=length_helper([false,true,false],1)

=length_helper([true,false],2)

=length_helper([false],3)

=length_helper([],4)

= 4

34

(c) Paul Fodor (CS Stony Brook)

 The following function doubles all the elements in its argument

list (of integers):

- fun doubleall(L) = if L=[] then []

else (2*hd(L))::doubleall(tl(L));

val doubleall = fn : int list -> int list

- doubleall([1,3,5,7]);

val it = [2,6,10,14] : int list

35

doubleall

(c) Paul Fodor (CS Stony Brook)

Reversing a List
- fun reverse(L) = if L = nil then nil

else concat(reverse(tl(L)),[hd(L)]);

val reverse = fn : ’’a list -> ’’a list

How does it work?
- reverse [1,2,3];

calls:

- concat(reverse([2,3]), [1]);

…

- concat([3,2], [1]);

val it = [3,2,1] : int list

36

(c) Paul Fodor (CS Stony Brook)

Reversing a List
Concatenation of lists (for which we gave a

recursive definition) is actually a built-in operator

in SML, denoted by the symbol @
 We can use this operator in reversing:

- fun reverse(L) =

if L = nil then nil

else reverse(tl(L)) @ [hd(L)];

val reverse = fn : ’’a list -> ’’a list

- reverse [1,2,3];

val it = [3,2,1] : int list
37

(c) Paul Fodor (CS Stony Brook)

Reversing a List
- fun reverse(L) =

if L = nil then nil

else concat(reverse(tl(L)),[hd(L)]);

Complexity analT2is:

T(N) = T(N-1) + (N-1) =

reverse(tl(L)) concat

= T(N-2) + (N-2) + (N-1) =

= 1+ 2 + 3+ … + N-1 = N * (N-1)/2

This method is not efficient: O(n2)

38

(c) Paul Fodor (CS Stony Brook)

Reversing a List
This way (using an accumulator) is better: O(n)

- fun reverse_helper(L,L2) =

if L = nil then L2

else reverse_helper(tl(L),hd(L)::L2);

- fun reverse(L) = reverse_helper(L,[]);

- reverse [1,2,3];

- reverse_helper([1,2,3],[]);

- reverse_helper([2,3],[1]);

- reverse_helper([3],[2,1]);

- reverse_helper([],[3,2,1]);

[3,2,1]
39

(c) Paul Fodor (CS Stony Brook)

Removing List Elements
 The following function removes all occurrences of its first

argument from its second argument list

- fun remove(x,L) = if L=[] then []

else if x=hd(L)then remove(x,tl(L))

else hd(L)::remove(x,tl(L));

val remove = fn : ’’a * ’’a list -> ’’a list

- remove(1,[5,3,1]);

val it = [5,3] : int list

- remove(2,[4,2,4,2,4,2,2]);

val it = [4,4,4] : int list

40

(c) Paul Fodor (CS Stony Brook)

Removing Duplicates
 The remove function can be used in the definition of another

function that removes all duplicate occurrences of elements

from its argument list:

- fun removedupl(L) =

if (L=[]) then []

else hd(L)::removedupl(remove(hd(L),tl(L)));

val removedupl = fn : ’’a list -> ’’a list

- removedupl([3,2,4,6,4,3,2,3,4,3,2,1]);

val it = [3,2,4,6,1] : int list

41

(c) Paul Fodor (CS Stony Brook)

Definition by Patterns
 In SML functions can also be defined via patterns.

 The general form of such definitions is:

fun <identifier>(<pattern1>) = <expression1>

| <identifier>(<pattern2>) = <expression2>

| ...

| <identifier>(<patternK>) = <expressionK>;

where the identifiers, which name the function, are all the same, all

patterns are of the same type, and all expressions are of the same type.

 Example:

- fun reverse(nil) = nil

| reverse(H::T) = reverse(T) @ [H];

val reverse = fn : ’a list -> ’a list

42

The patterns are inspected in order and the first match determines the value of the function.

(c) Paul Fodor (CS Stony Brook)

Sets with lists in SML
fun member(H,L) =

if L=[] then false

else if H=hd(L) then true

else member(H,tl(L));

OR with patterns:

fun member(H,[]) = false

| member(H,H2::T2) =

if (H=H2) then true

else member(H,T2);

member(1,[1,2]); (* true *)

member(1,[2,1]); (* true *)

member(1,[2,3]); (* false *)

43

(c) Paul Fodor (CS Stony Brook)

fun union(L1,L2) =

if L1=[] then L2

else if member(hd(L1),L2)

then union(tl(L1),L2)

else hd(L1)::union(tl(L1),L2);

or

fun union([],L2) = L2

| union(H::T,L2) =

if member(H,L2) then union(T,L2)

else H::union(T,L2);

union([1,5,7,9],[2,3,5,10]);

(* [1,7,9,2,3,5,10] *)

union([],[1,2]); (* [1,2] *)

union([1,2],[]); (* [1,2] *)

44

Sets UNION

(c) Paul Fodor (CS Stony Brook)

fun intersection(L1,L2) =

if L1=[] then []

else if member(hd(L1),L2)

then hd(L1)::intersection(tl(L1),L2)

else intersection(tl(L1),L2);

intersection([1,5,7,9],[2,3,5,10]);

(* [5] *)

45

Sets Intersection (∩)

(c) Paul Fodor (CS Stony Brook)

fun intersection([],L2) = []

| intersection(L1,[]) = []

| intersection(H::T,L2) =

if member(H,L2)

then H::intersection(T,L2)

else intersection(T,L2);

46

Sets ∩ with patterns

(c) Paul Fodor (CS Stony Brook)

fun subset(L1,L2) = if L1=[] then true

else if L2=[] then false

else if member(hd(L1),L2)

then subset(tl(L1),L2)

else false;

subset([1,5,7,9],[2,3,5,10]);(* false *)

subset([5,2],[2,3,5,10]); (* true *)

47

Sets subset

(c) Paul Fodor (CS Stony Brook)

fun subset([],L2) = true

| subset(L1,[]) = false

| subset(H::T,L2) =

if member(H,L2)

then subset(T,L2)

else false;

48

Sets subset patterns

(c) Paul Fodor (CS Stony Brook)

fun setEqual(L1,L2) =

subset(L1,L2) andalso subset(L2,L1);

setEqual([1,5,7],[7,5,1,2]);(* false *)

setEqual([1,5,7],[7,5,1]); (* true *)

49

Sets equal

(c) Paul Fodor (CS Stony Brook)

fun minus(L1,L2) = if L1=[] then []

else if member(hd(L1),L2)

then minus(tl(L1),L2)

else hd(L1)::minus(tl(L1),L2);

minus([1,5,7,9],[2,3,5,10]);

(* [1,7,9] *)

50

Set difference

(c) Paul Fodor (CS Stony Brook)

fun minus([],L2) = []

| minus(H::T,L2) =

if member(H,L2)

then minus(T,L2)

else H::minus(T,L2);

minus([1,5,7,9],[2,3,5,10]);

(* [1,7,9] *)

51

Set difference patterns

(c) Paul Fodor (CS Stony Brook)

fun product_one(X,L) = if L=[] then []

else (X,hd(L))::product_one(X,tl(L));

product_one(1,[2,3]);

(* [(1,2),(1,3)] *)

fun product(L1,L2) = if L1=[] then []

else concat(product_one(hd(L1),L2),

product(tl(L1),L2));

product([1,5,7,9],[2,3,5,10]);

(* [(1,2),(1,3),(1,5),(1,10),(5,2),

(5,3),(5,5),(5,10),(7,2),(7,3),...] *)

52

Sets Cartesian product

(c) Paul Fodor (CS Stony Brook)

fun product_one(X,[]) = []

| product_one(X,H2::T2) =

(X,H2)::product_one(X,T2);

product_one(1,[2,3]); (* [(1,2),(1,3)] *)

fun product([],L2) = []

| product(L1,[]) = []

| product(H::T,L2) =

union(product_one(H,L2),

product(T,L2));

product([1,5,7,9],[2,3,5,10]);

(* [(1,2),(1,3),(1,5),(1,10),(5,2),

(5,3),(5,5),(5,10),(7,2),(7,3),...] *)

53

Sets Cartesian product

(c) Paul Fodor (CS Stony Brook)
54

 We want a function to compute the powerset of a set:
- powerSet([1,2,3]);

[[],[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3]]

- powerSet([2,3]);

[[],[2],[3],[2,3]]

 The recursive relation shows us that the powerset can be computed by

computing the powerset of a tail and UNION it with the sets where the

head is inserted in each subset in the powerset of the tail

[[],[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3]]

= [[],[2],[3],[2,3]] UNION

insert_all(1, [[],[2],[3],[2,3]])

= [[],[2],[3],[2,3]] UNION

[[1],[1,2],[1,3],[1,2,3]])

Sets Powerset

(c) Paul Fodor (CS Stony Brook)
55

fun insert_all(E,L) =

if L=[] then []

else (E::hd(L)) :: insert_all(E,tl(L));

insert_all(1,[[],[2],[3],[2,3]]);

(* [[1], [1,2], [1,3], [1,2,3]] *)

fun powerSet(L) =

if L=[] then [[]]

else powerSet(tl(L)) @ (* concat *)

insert_all(hd(L),powerSet(tl(L)));

powerSet([]); (* [[]] *)

powerSet([1,2,3]); (* [[],[1],[2],[3],[1,2],

[1,3],[2,3],[1,2,3]] *)

powerSet([2,3]);(* [[],[2],[3],[2,3]] *)

Sets Powerset

(c) Paul Fodor (CS Stony Brook)
56

fun insert_all(E,[]) = []

| insert_all(E,H2::T2) = (E::H2)::insert_all(E,T2);

insert_all(1,[[],[2],[3],[2,3]]);

(* [[1], [1,2], [1,3], [1,2,3]] *)

fun powerSet([]) = [[]]

| powerset(H::T) = powerSet(T) @

insert_all(H,powerSet(T));

powerSet([]); (* [[]] *)

powerSet([1,2,3]); (* [[],[1],[2],[3],[1,2],

[1,3],[2,3],[1,2,3]] *)

powerSet([2,3]);(* [[],[2],[3],[2,3]] *)

Sets Powerset patterns

(c) Paul Fodor (CS Stony Brook)

Higher-Order Functions
 In functional programming languages functions (called first-class

functions) can be used as parameters or return value in definitions of

other (called higher-order) functions

 The following function, map, applies its first argument (a function) to all elements in

its second argument (a list of suitable type):

- fun map(f,L) = if L=[] then []

else f(hd(L))::(map(f,tl(L)));
val map = fn : (’’a -> ’b) * ’’a list -> ’b list OR

- fun map(f,[]) = []

| map(f,H::T) = f(H)::map(f,T);

 We may apply map with any function as argument:

- fun square(X) = (X:int)*X;

val square = fn : int -> int

- map(square,[2,3,4]);

val it = [4,9,16] : int list57

(c) Paul Fodor (CS Stony Brook)

McCarthy's 91 function
 McCarthy's 91 function:

- fun mc91(N) = if N>100 then N-10

else mc91(mc91(N+11));

val mc91 = fn : int -> int

- map mc91 [101, 100, 99, 98, 97, 96];

val it = [91,91,91,91,91,91] : int list

58

(c) Paul Fodor (CS Stony Brook)

Higher-Order Functions
Anonymous functions:

- map(fn X=>X+1, [1,2,3,4,5]);

val it = [2,3,4,5,6] : int list

- fun incr(list) = map (fn X=>X+1, list);

val incr = fn : int list -> int list

- incr[1,2,3,4,5];

val it = [2,3,4,5,6] : int list

59

(c) Paul Fodor (CS Stony Brook)

Filter = findall
 Filter function: keep in a list only the values that

satisfy some logical condition/boolean function:

- fun filter(f,L) =

if L=[] then []

else if f(hd L)

then (hd L)::(filter (f, tl L))

else filter(f, tl L);

val filter = fn : ('a -> bool) * 'a list -> 'a list

- filter((fn X => X>0), [~1,0,1,2,3,~2,4]);

val it = [1,2,3,4] : int list

60

(c) Paul Fodor (CS Stony Brook)

Find (first)
 Pick only the first element of a list that satisfies a given predicate:

- fun myFind pred nil = raise Fail "No such element"

| myFind pred (H::T) =

if pred H then H

else myFind pred T;

val myFind = fn : ('a -> bool) -> 'a list -> 'a

- myFind (fn X => X > 0) [~1, ~3, 5, 7];

val it = 5 : int

- myFind (fn X => X > 0.0) [~1.2, ~3.4, 5.6, 7.8];

val it = 5.6 : real

61

(c) Paul Fodor (CS Stony Brook)

Reduce (aka. foldr)
 We can generalize the notion of recursion over lists as

follows: all recursions have a base case, an iterative case,

and a way of combining results:
- fun reduce f B nil = B

| reduce f B (H::T) = f(H, reduce f B T);

- fun sumList aList = reduce (op +) 0 aList;

val sumList = fn : int list -> int

- sumList [1, 2, 3];

val it = 6 : int

62

Note: This is called fold right (foldr) because the function is applied on returning.

(c) Paul Fodor (CS Stony Brook)

foldl
- fun foldl(f: ''a*'b->'b, Acc: 'b,

L: ''a list):'b =

if L=[] then Acc

else foldl(f, f(hd(L),Acc), tl(L));

- fun sum(L:int list):int =

foldl((fn (X,Acc) => Acc+X), 0, L);

- sum[1, 2, 3];

val it = 6 : int

 foldl walks the list from left to right while evaluating f

 foldr evaluates f on the way back: f(H, reduce f B T)

63

Note: This is called fold left (foldl) because the function is applied incrementally.

(c) Paul Fodor (CS Stony Brook)

foldr vs. foldl execution
- foldr:

- sumList [1, 2, 3];

- 1 + sumlist[2,3]

- 1 + 2 + sumlist[3]

- 1 + 2 + 3 + sumlist[]

- 1 + 2 + 3 + 0

- 1 + 2 + 3

- 1 + 5

- 6

- foldl:

- sum 0 [1, 2, 3];

- sum 1 [2, 3];

- sum 3 [3];

- sum 6 []

- 6
64

(c) Paul Fodor (CS Stony Brook)

Collect like in Java streams
- fun collect(Acc, combine, accept, nil) = accept(Acc)

| collect(Acc, combine, accept, H::T) =

collect(combine(Acc,H), combine, accept, T);

- fun average(aList) = collect((0,0),

(fn ((total,count),X) => (total+X,count+1)),

(fn (total,count) => real(total)/real(count)),

aList);

- average [1, 2, 4];

val it = 2.33333333333 : real

 it is like foldl, but it also applies an accept

function at the end

65

(c) Paul Fodor (CS Stony Brook)

Numerical integration
 Computation of 𝑎

𝑏
𝑓 𝑥 𝑑𝑥 by the trapezoidal rule:

n intervals

h = (b - a) / n
66

(c) Paul Fodor (CS Stony Brook)

Numerical integration
- fun integrate (f,a,b,n) =

if n <= 0 orelse b <= a then 0.0

else (((b−a) / real n)

* (f(a) + f(a+(b−a) / real n))) / 2.0 +

integrate (f,a+((b−a) / real n),b,n−1);

val integrate = fn : (real → real) ∗ real ∗ real ∗ int

→ real

- fun cube x:real = x * x * x ;

val cube = fn : real -> real

- integrate (cube , 0.0 , 2.0 , 10) ;

val it = 4.04 : real

67

(c) Paul Fodor (CS Stony Brook)

Sum square sequence
- fun sum f N =

if N = 0 then 0

else f(N) + sum f (N-1);

val sum = fn : (int → int) → int → int

- sum (fn X => X ∗ X) 3 ;

val it = 14 : int

because

f(3) + f(2) + f(1) + 0 = 9 + 4 + 1 + 0 = 14

68

(c) Paul Fodor (CS Stony Brook)

Composition
 Composition is another example of a higher-order function:

- fun comp(f,g)(X) = f(g(X));

val comp = fn : ('a -> 'b) * ('c -> 'a) -> 'c -> 'b

- val h = comp(Math.sin, Math.cos);

val h = fn : real -> real

- h(0.25);

val it = 0.824270418114 : real

- Math.sin(Math.cos(0.25));

val it = 0.824270418114 : real

SAME WITH:

- val i = Math.sin o Math.cos;

(* Composition "o" is predefined symbol *)

- i(0.25);

val it = 0.824270418114 : real
69

(c) Paul Fodor (CS Stony Brook)

Permutations
 We want a function to return all permutations of a list:

- permutations([1,2,3]);

val it = [[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],

[3,2,1]] : int list list

- permutations([2,3]);

val it = [[2,3],[3,2]] : int list list

 The recursive relation is to insert the head in every possible

position in each permutation of the tail

 inserting 1 in [2,3] generates:

[1,2,3],[2,1,3],[2,3,1]

 inserting 1 in [3,2] generates:

[1,3,2],[3,1,2],[3,2,1]

70

(c) Paul Fodor (CS Stony Brook)

Permutations
- fun interleave(X,[]) = [[X]]

| interleave(X,H::T) =

(X::H::T)::(

map((fn L => H::L), interleave(X,T)));

- interleave(1,[]);

val it = [[1]] : int list list

- interleave(1,[3]);

val it = [[1,3],[3,1]] : int list list

- interleave(1,[2,3]);

val it = [[1,2,3],[2,1,3],[2,3,1]] : int list list

71

(c) Paul Fodor (CS Stony Brook)

Permutations
- fun appendAll(nil) = nil

| appendAll(H::T) = H @ (appendAll(T));

flattens one level of the list

- appendAll([[[1,2]],[[2,1]]]);

val it = [[1,2],[2,1]] : int list list

- fun permutations(nil) = [[]]

| permutations(H::T) = appendAll(

map((fn L => interleave(H,L)), permutations(T)));

- permutations([1,2,3]);

val it = [[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],

[3,2,1]] : int list list

72

(c) Paul Fodor (CS Stony Brook)

Permutations
Without higher-order functions:

fun insertAllAux(E,L,Prefix,Result) = if L=[] then Result@([Prefix @ [E]])

else insertAllAux(E,tl(L),Prefix@[hd(L)],Result@([Prefix@[E]@L]));

fun insertAll(E,L) = insertAllAux(E,L,[],[]);

insertAll(1,[2,3]);

[[1,2,3],[2,1,3],[2,3,1]]

fun insertOneThenAll(E,P) = if P=[] then []

else insertAll(E,hd(P)) @ insertOneThenAll(E,tl(P));

fun permutations(L) = if L=[] then [[]]

else insertOneThenAll(hd(L),permutations(tl(L)));

permutations([1,2]);

[[1,2],[2,1]]

permutations([1,2,3]);

[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

73

(c) Paul Fodor (CS Stony Brook)

Currying = partial application
- fun sum A B = A + B;

val f = fn : int -> int -> int

val f = fn : int -> (int -> int)

- val inc1 = sum(1);

val inc1 = fn : int -> int

- inc1(3);

val it = 4 : int

- sum(1) (3);

val it = 4 : int

74

(c) Paul Fodor (CS Stony Brook)

Currying = partial application
- fun f A B C = A+B+C;

val f = fn : int -> int -> int -> int

val f = fn : int -> (int -> (int -> int))

- val inc1 = f(1);

val inc1 = fn : int -> int -> int

val inc1 = fn : int -> (int -> int)

- val inc12 = inc1(2);

val inc12 = fn : int -> int

- inc12(3);

val it = 6 : int

75

(c) Paul Fodor (CS Stony Brook)

Currying and Lazy evaluation
- fun mult X Y = if X = 0 then 0 else X * Y;

Eager evaluation (SML): reduce as much as possible before applying the

function

mult (1−1) (3 div 0);

-> (fn x => (fn y => if x = 0 then 0 else x ∗ y)) (1−1) (3 div 0)

-> (fn x => (fn y => if x = 0 then 0 else x ∗ y)) 0 (3 div 0)

-> (fn y => if 0 = 0 then 0 else 0 ∗ y) (3 div 0)

-> (fn y => if 0 = 0 then 0 else 0 ∗ y) error

-> error

Lazy evaluation (Haskell): delay evaluation until it is necessary.

mult (1−1) (3 div 0);

-> (fn x => (fn y => if x = 0 then 0 else x ∗ y)) (1−1) (3 div 0)

-> (fn y => if (1−1) = 0 then 0 else (1−1) ∗ y) (3 div 0)

-> if (1−1) = 0 then 0 else (1−1) ∗ (3 div 0)

-> if 0 = 0 then 0 else (1−1) ∗ (3 div 0)

-> 076

(c) Paul Fodor (CS Stony Brook)

Currying and Lazy evaluation
 Argument evaluation as late as possible (possibly never)

 Evaluation only when indispensable for a reduction

 Property: If the eager evaluation of expression e gives n1

and the lazy evaluation of e gives n2 then n1 = n2

 But, lazy evaluation gives a result more often than eager evaluation

 SML uses eager evaluation (like C and Java)

 Some languages, most notably Haskell, use only lazy

evaluation

77

(c) Paul Fodor (CS Stony Brook)

- fun odd(n) = if n=0 then false

else even(n-1)

and

even(n) = if n=0 then true

else odd(n-1);

val odd = fn : int -> bool

val even = fn : int -> bool

- even(1);

val it = false : bool

- odd(0);

val it = false : bool

- odd(1);

val it = true : bool
78

Mutually recursive function

definitions

(c) Paul Fodor (CS Stony Brook)

Sorting
Merge-Sort:

To sort a list L:

 first split L into two disjoint sublists (of about equal size),

 then (recursively) sort the sublists, and

 finally merge the (now sorted) sublists

 It requires suitable functions for

 splitting a list into two sublists AND

 merging two sorted lists into one sorted list

79

(c) Paul Fodor (CS Stony Brook)

Splitting
 We split a list by applying two functions, take and skip, which extract alternate

elements; respectively, the elements at odd-numbered positions and the elements at even-

numbered positions

 The definitions of the two functions mutually depend on each other, and hence provide an

example of mutual recursion, as indicated by the SML-keyword and:

- fun take(L) =

if L = nil then nil

else hd(L)::skip(tl(L))

and

skip(L) =

if L=nil then nil

else take(tl(L));

val take = fn : ’’a list -> ’’a list

val skip = fn : ’’a list -> ’’a list

- take[1,2,3,4,5,6,7];

val it = [1,3,5,7] : int list

- skip[1,2,3,4,5,6,7];

val it = [2,4,6] : int list
80

(c) Paul Fodor (CS Stony Brook)

Merging
 Merge pattern definition:

- fun merge([],R) = R

| merge(L,[]) = L

| merge(H::T,H2::T2) =

if (H:int)<H2 then H::merge(T,H2::T2)

else H2::merge(H::T,T2);

val merge = fn : int list * int list -> int list

- merge([1,5,7,9],[2,3,6,8,10]);

val it = [1,2,3,5,6,7,8,9,10] : int list

- merge([],[1,2]);

val it = [1,2] : int list

- merge([1,2],[]);

val it = [1,2] : int list

81

(c) Paul Fodor (CS Stony Brook)

Merge Sort
- fun sort(L) =

if L=[] orelse tl(L)=[] then L

else merge(sort(take(L)),sort(skip(L)));

val sort = fn : int list -> int list

- sort[5,3,6,2,1,9];

val it = [1,2,3,5,6,9] : int list

82

(c) Paul Fodor (CS Stony Brook)

Local declarations
- fun gcd(N,M) = if N=M then N

else if N>M then gcd(M,N-M)

else gcd(N,M-N);

- fun fraction (n,d) =

let val k = gcd (n,d)
in

(n div k , d div k)

end;

 The identifier k is local to the expression after in
 Its binding exists only during the evaluation of this

expression

 All other declarations of k are hidden during the evaluation

of this expression
- fraction(10,25);

val it = (2,5) : int * int

83

(c) Paul Fodor (CS Stony Brook)

Sorting with comparison
 How to sort a list of elements of type α?

 We need the comparison function/operator for elements of type α!
- fun sort order [] = []

| sort order [x] = [x]

| sort order T =

let fun merge [] M = M

| merge L [] = L

| merge (L as H::T) (M as H2::T2) =

if order(H,H2) then H::merge T M

else H2::merge L T2

val (T2,zs) = split T

in merge (sort order T2) (sort order zs) end;

- sort (op >) [5.1, 3.4, 7.4, 0.3, 4.0] ;

val it = [7.4,5.1,4.0,3.4,0.3] : real list

84

(c) Paul Fodor (CS Stony Brook)

Sorting with comparison
- fun split_helper(L: ''a list, Acc:''a list * ''a list)

:''a list * ''a list =

if L=[] then Acc

else split_helper(tl(L), (#2(Acc), (hd(L)) :: #1(Acc)));

- fun split(L) = split_helper(L, ([], []));

- split([1,2,3,4,5,6]);

split([1,2,3,4,5,6])

split_helper([1,2,3,4,5,6], ([],[]))

split_helper([2,3,4,5,6], ([],[1]))

split_helper([3,4,5,6], ([1],[2]))

split_helper([4,5,6], ([2],[3,1]))

split_helper([5,6], ([3,1],[4,2]))

split_helper([6], ([4,2],[5,3,1]))

split_helper([], ([5,3,1],[6,4,2]))

([5,3,1],[6,4,2])

85

(c) Paul Fodor (CS Stony Brook)

Sorting with comparison
- fun split(L) = if L=[] orelse tl(L)=[] then (L,[])

else let val (L1,L2) = split(tl(tl(L)))

in (hd(L)::L1, hd(tl(L))::L2) end;

split([1,2,3,4,5,6])

([5,3,1],[6,4,2])

86

(c) Paul Fodor (CS Stony Brook)

Quicksort
 C.A.R. Hoare, in 1962: Average-case running time: Θ(n log n)

- fun sort [] = []

| sort (H::T) =

let val (S,B) = partition (H,T)

in (sort S) @ (H :: (sort B))

end;

Double recursion and no tail-recursion

- fun partition (p,[]) = ([],[])

| partition (p,H::T) =

let val (S,B) = partition (p,T)

in if H < p then (H::S,B) else (S,H::B)

end

87

(c) Paul Fodor (CS Stony Brook)

Nested recursion
For m, n ≥ 0:

acker(0,m) = m+1

acker(n,0) = acker(n−1, 1) for n > 0

acker(n,m) = acker(n−1, acker(n,m−1)) for n,m>0

- fun acker 0 m = m+1

| acker n 0 = acker (n−1) 1

| acker n m = acker (n−1) (acker n (m−1));

It is guaranteed to end because of lexicographic order:

(n',m') < (n,m) iff n' < n or (n'=n and m'< m)

88

(c) Paul Fodor (CS Stony Brook)

Nested recursion
 Knuth's up-arrow operator ↑n (invented by Donald Knuth):

a ↑1 b = ab

a ↑n b = a ↑n−1 (b ↑n−1 b) for n > 1

- fun opKnuth 1 a b = Math.pow (a,b)

| opKnuth n a b = opKnuth (n−1) a

(opKnuth (n−1) b b);

- opKnuth 2 3.0 3.0 ;

val it = 7.62559748499E12 : real

- opKnuth 3 3.0 3.0 ;

! Uncaught exception: Overflow;

 Graham’s number (also called the “largest” number):

- opKnuth 63 3.0 3.0 ;

89

(c) Paul Fodor (CS Stony Brook)

Tail recursion
- fun length [] = 0

| length (H::T) = 1 + length T;

 The recursive call of length is nested in an expression: during the

evaluation, all the terms of the sum are stored, hence the memory

consumption for expressions & bindings is proportional to the length

of the list!
length [5,8,4,3]

-> 1 + length [8,4,3]

-> 1 + (1 + length [4,3])

-> 1 + (1 + (1 + length [3]))

-> 1 + (1 + (1 + (1 + length [])))

-> 1 + (1 + (1 + (1 + 0)))

-> 1 + (1 + (1 + 1))

-> 1 + (1 + 2)

-> 1 + 3

-> 4
90

(c) Paul Fodor (CS Stony Brook)

Tail recursion
- fun lengthAux [] acc = acc

| lengthAux (H::T) acc = lengthAux T (acc+1);

- fun length L = lengthAux L 0;

- length [5,8,4,3];

-> lengthAux [5,8,4,3] 0

-> lengthAux [8,4,3] (0+1)

-> lengthAux [8,4,3] 1

-> lengthAux [4,3] (1+1)

-> lengthAux [4,3] 2

-> lengthAux [3] (2+1)

-> lengthAux [3] 3

-> lengthAux [] (3+1)

-> lengthAux [] 4

-> 4

 Tail recursion: recursion is the outermost operation
 Space complexity: constant memory consumption for expressions & bindings

(SML can use the same stack frame/activation record)

 Time complexity: (still) one traversal of the list

91

(c) Paul Fodor (CS Stony Brook)

Optional: SML Extras: Records

92

 Records

 Strings and char

(c) Paul Fodor (CS Stony Brook)

Records
 Records are structured data types of heterogeneous elements that are labeled

- {x=2, y=3};

 The order does not matter:

- {make="Toyota", model="Corolla", year=2017,

color="silver"}

= {model="Corolla", make="Toyota", color="silver",

year=2017};

val it = true : bool

- fun full_name{first:string,last:string,

age:int,balance:real}:string =

first ^ " " ^ last;

(* ^ is the string concatenation operator *)

val full_name=fn:{age:int, balance:real, first:string,

last:string} -> string

93

(c) Paul Fodor (CS Stony Brook)

string and char
- "a";

val it = "a" : string

- #"a";

val it = #"a" : char

- explode("ab");

val it = [#"a",#"b"] : char list

- implode([#"a",#"b"]);

val it = "ab" : string

- "abc" ^ "def" = "abcdef";

val it = true : bool

- size ("abcd");

val it = 4 : int

94

(c) Paul Fodor (CS Stony Brook)

string and char
- String.sub("abcde",2);

val it = #"c" : char

- substring("abcdefghij",3,4);

val it = "defg" : string

- concat ["AB"," ","CD"];

val it = "AB CD" : string

- str(#"x");

val it = "x" : string

95

(c) Paul Fodor (CS Stony Brook)

Functional programming in SML

Covered fundamental elements:
Evaluation by reduction of expressions

Recursion

Polymorphism via type variables

Strong typing

Type inference

Pattern matching

Higher-order functions

Tail recursion

96

(c) Paul Fodor (CS Stony Brook)

Beyond functional programming
 Relational programming (aka logic programming)

 For which triples does the append relation hold?
append([],L,L).

append([H|T],L,[H|T2]) :-

append(T,L,T2).

?- append ([1,2], [3], X).

Yes

X = [1,2,3]

?- append ([1,2], X, [1,2,3]).

X = [3]

?- append (X, Y, [1,2,3]).

X = [], Y = [1,2,3];

X = [1], Y = [2,3];

...

X = [1,2,3], Y = [];

 No differentiation between arguments and results!

97

(c) Paul Fodor (CS Stony Brook)

Logic programming
 Backtracking mechanism to enumerate all the possibilities

 Unification mechanism, as a generalization of pattern

matching

98

(c) Paul Fodor (CS Stony Brook)

Beyond functional programming
 Constraint Processing:

 Constraint Satisfaction Problems (CSPs)
 Variables: X1, X2, . . . , Xn

 Domains of the variables: D1, D2, . . . , Dn

 Constraints on the variables: examples: 3 · X1 + 4 · X2 ≤ X4

 What is a solution?

 An assignment to each variable of a value from its domain, such

that all the constraints are satisfied

 Objectives:

 Find a solution

 Find all the solutions

 Find an optimal solution, according to some cost expression on the

variables

99

(c) Paul Fodor (CS Stony Brook)

Beyond functional programming
 Example: The n-Queens Problem:

 How to place n queens on an n × n chessboard such that no queen is threatened?

 Variables: X1, X2, . . . , Xn (one variable for each column)

 Domains of the variables: Di = {1, 2, . . . , n} (the rows)

 Constraints on the variables:

 No two queens are in the same column: this is impossible by the choice of the

variables!

 No two queens are in the same row: Xi != Xj, for each i != j

 No two queens are in the same diagonal:| Xi − Xj| != | i − j |, for each i != j

 Number of candidate solutions: nn

 Exhaustive Enumeration
 Generation of possible values of the variables.

 Test of the constraints.

 Optimization:
 Where to place a queen in column k such that it is compatible with rk+1, . . . , rn?

 Eliminate possible locations as we place queens

100

(c) Paul Fodor (CS Stony Brook)

Beyond functional programming
 Applications:

 Scheduling

 Planning

 Transport

 Logistics

 Games

 Puzzles

 Complexity
 Generally these problems are NP-complete with exponential

complexity

101

(c) Paul Fodor (CS Stony Brook)

Conclusion
 Conclusion for this course

 That is all!

 I hope that this course has sparked a lot of ideas and

encourages you to exercise programming

 Thank you!

102

