
Paul Fodor

CSE260, Computer Science B: Honors

Stony Brook University

http://www.cs.stonybrook.edu/~cse260

Programming Language Syntax

1

http://www.cs.stonybrook.edu/~cse260


(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming Languages Syntax
 Computer languages must be precise:

 Both their form (syntax) and meaning (semantics) must be specified 

without ambiguity, so that both programmers and computers can tell 

what a program is supposed to do.

 Example: the syntax of Arabic numerals:

 A digit “is”: 0 |(or) 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 A non_zero_digit “is” 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 A natural_number (>0)“is”a non_zero_digit followed 

by other digits (a number that doesn’t start with 0) = the 

regular expression “non_zero_digit digit*”

 Specifying the syntax for programming languages has 2 parts: 

Regular Expressions (RE) and Context-Free Grammars

2



(c) Paul Fodor (CS Stony Brook) and Elsevier

Regular Expressions
 A regular expression is one of the following:

a character

 the empty string, denoted by ε

 two regular expressions concatenated

 E.g., letter letter

 two regular expressions separated by | (i.e., or),

 E.g., letter ( letter | digit )

a regular expression followed by the Kleene star

(concatenation of zero or more previous item)

 E.g., letter ( letter | digit )*

3



(c) Paul Fodor (CS Stony Brook) and Elsevier

Regular Expressions
 RE example: the syntax of numeric constants can be 

defined with regular expressions:

A digit “is” 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A number “is” integer | real

An integer “is” digit digit*

A real “is” integer exponent

| decimal ( exponent | ε )

A decimal “is” digit* (.digit|digit.) digit*

An exponent “is” ( e | E ) ( + | - | ε ) integer

4



(c) Paul Fodor (CS Stony Brook) and Elsevier

 Regular expressions work well for defining tokens 

 They are unable to specify nested constructs

 For example, a context free grammar in BNF 

form to define arithmetical expressions is:

expr → id | number | - expr | ( expr ) | expr op expr

op → + | - | * | /

Same number of open and closed 

parenthesis cannot be represented by RE

5

Regular Expressions



(c) Paul Fodor (CS Stony Brook) and Elsevier

Chomsky Hierarchy
 Context Free Languages are strictly more powerful than 

Regular Expressions, BUT, Regular Expressions are way faster 

to recognize, so

 Regular Expressions are used to create tokens, the leafs of the 

syntax tree, while Context Free grammars build the syntax tree

 Chomsky Hierarchy:
 Type-3: Regular Languages (Regex) – implemented by Finite Automata 

(called Lexer, Scanner, Tokenizer)

 Type-2: Context-Free Languages - Pushdown Automata (called Parsers)

 Type-1: Context-Sensitive Language

 Type-0: Unrestricted Language -Turing Machine

 Types 0 and 1 are not for practical use in defining programming languages 

 Type 2, for very restricted practical use (O(N3) in the worst case) 

 Type 3 are fast (linear time to recognize tokens), but not expressive enough 

for most languages6



(c) Paul Fodor (CS Stony Brook) and Elsevier

Context-Free Grammars (CFG)
 Backus–Naur Form (BNF) notation for CFG:

expr → id | number | - expr | ( expr ) | expr op expr

op → + | - | * | /
 Each of the rules in a CFG is known as a production

 The symbols on the left-hand sides of the productions are 

nonterminals (or variables)

 A CFG consists of:

a set of terminals/tokens T (that cannot appear on the 

left-hand side of any production)

a set of non-terminals N

a non-terminal start symbol S, and 

a set of productions7



(c) Paul Fodor (CS Stony Brook) and Elsevier

Context-Free Grammars (CFG)
 John Backus was the inventor of Fortran (won the 

ACM Turing Award in 1977)

 John Backus and Peter Naur used the BNF form for 

Algol
 Peter Naur also won the ACM Turing Award in 2005 for 

Report on the Algorithmic Language ALGOL 60

 BNF was named by Donald Knuth

8



(c) Paul Fodor (CS Stony Brook) and Elsevier

Context-Free Grammars (CFG)
 The Kleene star * and meta-level parentheses of regular 

expressions do not change the expressive power of the 

notation

id_list → id ( , id )*        

is shorthand for 

id_list → id id_list_tail

id_list_tail → , id id_list_tail

id_list_tail → ε

or the left-recursive version 

id_list → id 

id_list → id_list , id

9



(c) Paul Fodor (CS Stony Brook) and Elsevier

Context-Free Grammars (CFG)
 From RE to BNF notation: 

 Consider the RE: a*( b a* b )*

 Start with a*:

As −> a As

| ε

Same with ( b a* b )*. It is:

S −> b As b S

| ε

Now you concatenate them into a single non-terminal:

G −> As S

10



(c) Paul Fodor (CS Stony Brook) and Elsevier

Context-Free Grammars (CFG)
 Derivations and Parse Trees: A context-free grammar shows us how to 

generate a syntactically valid string of terminals

1. Begin with the start symbol

2. Choose a production with the start symbol on the left-hand side; 

replace the start symbol with the right-hand side of that production

3. Now choose a nonterminal A in the resulting string, choose a 

production P with A on its left-hand side, and replace A with the 

right-hand side of P

 Repeat this process until no non-terminals remain

 The replacement strategy named right-most derivation chooses 

at each step to replace the right-most nonterminal with the right-

hand side of some production

o There are many other possible derivations, including left-most

and options in between.
11



(c) Paul Fodor (CS Stony Brook) and Elsevier

Context-Free Grammars (CFG)
 Example: we can use our grammar for expressions to generate the 

string “slope * x + intercept”:
expr ⇒ expr op expr

⇒ expr op id

⇒ expr + id

⇒ expr op expr + id

⇒ expr op id + id

⇒ expr * id + id

⇒ id * id + id

⇒ id(slope)* id(x)+ id(intercept)
Notes: The ⇒ metasymbol is often pronounced “derives”

 A series of replacement operations that shows how to derive a string of terminals 

from the start symbol is called a derivation

 Each string of symbols along the way is called a sentential form

 The final sentential form, consisting of only terminals, is called the yield of the 

derivation12

Grammar:

expr → id | number 

| - expr | ( expr ) 

| expr op expr

op → + | - | * | /



(c) Paul Fodor (CS Stony Brook) and Elsevier

Derivations and Parse Trees
 We can represent a derivation graphically as a parse tree

The root of the parse tree is the start symbol of the 

grammar

The leaves are its yield

Each node with its 

children represent a 

production

 E.g., The parse tree for the

expression grammar for 

3 + 4 * 5 is:

13



(c) Paul Fodor (CS Stony Brook) and Elsevier

Derivations and Parse Trees
 The example grammar is ambiguous (it can generate 

multiple parse trees for 3+4*5): one corresponds to 

3+(4*5) and one corresponds to (3+4)*5

14

Grammar:

expr → id | number 

| - expr | ( expr ) 

| expr op expr

op → + | - | * | /



(c) Paul Fodor (CS Stony Brook) and Elsevier

Context free grammars
 A better version of our expression grammar should include 

precedence and associativity:

expr → term | expr add_op term

term → factor | term mult_op factor

factor → id | number | - factor | ( expr )

add_op → + | -

mult_op → * | /

15



(c) Paul Fodor (CS Stony Brook) and Elsevier

Parse tree for expression grammar for  10 - 4 - 3

has left associativity

16

Context free grammars

expr → term | expr add_op term

term → factor | term mult_op factor

factor → id | number | - factor | ( expr )

add_op → + | -

mult_op → * | /



(c) Paul Fodor (CS Stony Brook) and Elsevier

Scanning
 The scanner and parser for a programming language are 

responsible for discovering the syntactic structure of a 

program (i.e., the syntax analysis)

 The scanner/lexer is responsible for

 tokenizing source

removing comments

(often) dealing with pragmas (i.e., significant 

comments)

saving text of identifiers, numbers, strings

saving source locations (file, line, column) for error 

messages17



(c) Paul Fodor (CS Stony Brook) and Elsevier

 The Scanner turns a program into a string of tokens

 It matches regular expressions (usually written in Perl style 

regex) to a program and creates a list of tokens

 There are two syntaxes for regular expressions: Perl-style Regex and 

EBNF

 Scanners tend to be built three ways:

 Writing / Generating a finite automaton from REs

 Scanner code (usually realized as nested if/case statements)

 Table-driven DFA

 Writing / Generating a finite automaton generally yields the 

fastest, most compact code by doing lots of special-purpose things, 

although good automatically-generated scanners come very close

18

Scanning



(c) Paul Fodor (CS Stony Brook) and Elsevier

Scanning
 Construction of an NFA equivalent to a given regular 

expression: cases

19



(c) Paul Fodor (CS Stony Brook) and Elsevier

Scanning
 Construction of an NFA equivalent to a given regular 

expression: cases

20



(c) Paul Fodor (CS Stony Brook) and Elsevier

Scanning
 Construction of an NFA equivalent to the regular 

expression d* ( .d | d. ) d*

21



(c) Paul Fodor (CS Stony Brook) and Elsevier

Scanning
 Construction of an NFA equivalent to the regular 

expression d* ( .d | d. ) d*

22



(c) Paul Fodor (CS Stony Brook) and Elsevier

Scanning
 From an NFA to a DFA:
Reason: With no way to “guess” the right transition to take 

from any given state, any practical implementation of an 

NFA would need to explore all possible transitions 

concurrently or via backtracking

We can instead build a DFA from that NFA:
 The state of the DFA after reading any input will be the set 

of states that the NFA might have reached on the same input
 Our example: Initially, before it consumes any input, the NFA 

may be in State 1, or it may make epsilon transitions to 

States 2, 4, 5, or 8

o We thus create an initial State A for our DFA to represent 

this set: 1,2,4,5,8
23



(c) Paul Fodor (CS Stony Brook) and Elsevier

Scanning
 On an input of d, our NFA may move from State 2 to State 3, 

or from State 8 to State 9. 

 It has no other transitions on this input from any of the states 

in A. 

 From State 3, however, the NFA may make epsilon transitions 

to any of States 2, 4, 5, or 8. 

 We therefore create DFA State B: 2, 3, 4, 5, 8, 9

 On a .,our NFA may move from State 5 to State 6

 There are no other transitions on this input from any of the 

states in A, and there are no epsilon transitions out of State 6. 

 We therefore create the singleton DFA State C: 6

 We continue the process until we find all the states and 

transitions in the DFA (it is a finite process –Why?)
24



(c) Paul Fodor (CS Stony Brook) and Elsevier

Scanning
 The DFA equivalent to our previous NFA:

25



(c) Paul Fodor (CS Stony Brook) and Elsevier

Scanner code (usually realized as nested if/case statements)

 Suppose we are building an ad-hoc (hand-written) scanner for a 

Calculator: 
assign → :=

plus → +

minus → -

times → *

div → /

lparen → (

rparen → )

id → letter ( letter | digit )*   

number → digit digit * 

| digit * ( . digit | digit . ) digit *

comment → /* ( non-* | * non-/ )* */

| // ( non-newline )* newline

26



(c) Paul Fodor (CS Stony Brook) and Elsevier

 We read the characters one at a time with look-ahead

skip any initial white space (spaces, tabs, and newlines)

if cur_char ∈ {‘(’, ‘)’, ‘+’, ‘-’, ‘*’}

return the corresponding single-character token

if cur_char = ‘:’

read the next character

if it is ‘=’ then return assign else announce an error

if cur_char = ‘/’

peek at the next character

if it is ‘*’ or ‘/’

read additional characters until “*/” or newline 

is seen, respectively

jump back to top of code

else return div

27

Scanning



(c) Paul Fodor (CS Stony Brook) and Elsevier

if cur_char = .

read the next character

if it is a digit

read any additional digits

return number

else announce an error

if cur_char is a digit

read any additional digits and at most one decimal point

return number

if cur_char is a letter

read any additional letters and digits

check to see whether the resulting string is read or 

write

if so then return the corresponding token

else return id

else announce an error

28

Scanning



(c) Paul Fodor (CS Stony Brook) and Elsevier

Pictorial 

representation of 

a scanner for 

calculator 

tokens, in the 

form of a finite 

automaton

29

Scanning



(c) Paul Fodor (CS Stony Brook) and Elsevier

We run the machine over and over to get one 

token after another

Nearly universal rule:

always take the longest possible token from the input

thus foobar is foobar and never f or foo or 

foob

more to the point, 3.14159 is a real constant and 

never 3, ., and 14159

30

Scanning



(c) Paul Fodor (CS Stony Brook) and Elsevier

 The rule about longest-possible tokens means you return only 

when the next character can't be used to continue the current 

token

 the next character will generally need to be saved for the 

next token

 In some cases, you may need to peek at more than one 

character of look-ahead in order to know whether to 

proceed

 In Pascal, for example, when you have a 3 and you a see a dot

 do you proceed (in hopes of getting 3.14)? or 

 do you stop (in fear of getting 3..5)? (declaration of 

arrays in Pascal, e.g., “array [1..6] of 

Integer”)31

Scanning



(c) Paul Fodor (CS Stony Brook) and Elsevier

Writing a pure DFA as a set of nested case 

statements is a surprisingly useful 

programming technique 

use perl, awk, sed

Table-driven DFA is what lex and 

scangen produce

lex (flex) in the form of C code

scangen in the form of numeric tables 

and a separate driver
32

Scanning



(c) Paul Fodor (CS Stony Brook) and Elsevier

Perl-style Regexp
 Learning by examples:

abcd - concatenation 

a(b|c)d - grouping

a(b|c)*d - can apply a number of repeats to char or group

? = 0-1

* = 0-inf 

+ = 1-inf

[bc] - character class

[a-zA-Z0-9_] - ranges

. - matches any character.

\a - alpha 

\d - numeric

\w - word (alpha, num, _)

\s - whitespace

33



(c) Paul Fodor (CS Stony Brook) and Elsevier

Perl-style Regexp

Learning by examples:

How do we write a regexp that matches 

floats?

digit*(.digit|digit.)digit*

\d*(\.\d|\d \.)\d* 

34



(c) Paul Fodor (CS Stony Brook) and Elsevier

Parsing
The parser calls the scanner to get the tokens, 

assembles the tokens together into a syntax 

tree, and passes the tree (perhaps one 

subroutine at a time) to the later phases of the 

compiler (this process is called syntax-directed 

translation).

Most use a context-free grammar (CFG)

35



(c) Paul Fodor (CS Stony Brook) and Elsevier

It turns out that for any CFG we can create 

a parser that runs in O(n3) time (e.g., 

Earley’s algorithm and the Cocke-Younger-

Kasami (CYK) algorithm)

O(n3) time is clearly unacceptable for a 

parser in a compiler - too slow even for a 

program of 100 tokens (~1,000,000 

cycles)

36

Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

Fortunately, there are large classes of grammars 

for which we can build parsers that run in linear 

time

The two most important classes are called 

LL and LR
 LL stands for Left-to-right, Leftmost derivation

 Leftmost derivation - work on the left side of the parse tree

 LR stands for Left-to-right, Rightmost derivation

 Rightmost derivation - work on the right side of the tree

 LL parsers are also called 'top-down', or 'predictive' parsers 

 LR parsers are also called 'bottom-up', or 'shift-reduce' parsers
37

Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

Top-down parsing (LL)

38

Consider a grammar for a comma 

separated list of identifiers, 

terminated by a semicolon:

id_list → id id_list_tail

id_list_tail → , id id_list_tail

id_list_tail → ;

• The top-down construction of a 

parse tree for the string: “A, B, 

C;” starts from the root and 

applies rules and tried to identify 

nodes.



(c) Paul Fodor (CS Stony Brook) and Elsevier

Bottom-up parsing (LR)

39

id_list → id id_list_tail

id_list_tail → , id id_list_tail

id_list_tail → ;

- The bottom-up construction of a 

parse tree for the same string: 

“A, B, C;”

- The parser finds the left-most 

leaf of the tree is an id. The next 

leaf is a comma. The parser 

continues in this fashion, 

shifting new leaves from the 

scanner into a forest of partially 

completed parse tree fragments.



(c) Paul Fodor (CS Stony Brook) and Elsevier
40

- The bottom-up construction realizes 

that some of those fragments 

constitute a complete right-hand 

side.

- In this grammar, that occur when 

the parser has seen the semicolon—

the right-hand side of id_list_tail. 

With this right-hand side in hand, 

the parser reduces the semicolon to 

an id_list_tail. 

- It then reduces ", id id_list_tail"

into another id_list_tail.

- After doing this one more time it is 

able to reduce "id id_list_tail" into 

the root of the parse tree, id_list.

Bottom-up parsing (LR)



(c) Paul Fodor (CS Stony Brook) and Elsevier

Parsing
 The number in LL(1), LL(2), …, indicates how many 

tokens of look-ahead are required in order to parse

Almost all real compilers use one token of look-

ahead

 LL grammars requirements:

no left recursion

no common prefixes

 Every LL(1) grammar is also LR(1), though right 

recursion in production tends to require very deep 

stacks and complicates semantic analysis

41



(c) Paul Fodor (CS Stony Brook) and Elsevier

An LL(1) grammar
program → stmt_list $$(end of file)

stmt_list → stmt stmt_list

| ε

stmt → id := expr

| read id 

| write expr

expr → term term_tail

term_tail → add_op term term_tail

| ε

term → factor fact_tailt

fact_tail → mult_op factor   fact_tail

| ε

factor → ( expr ) 

| id 

| number

add_op → + 

| -

mult_op → * 

| /
42



(c) Paul Fodor (CS Stony Brook) and Elsevier

 This grammar captures associativity and precedence, 

but most people don't find it as pretty

 for one thing, the operands of a given operator aren't 

in a Right Hand Side (RHS) together!  

however, the simplicity of the parsing algorithm 

makes up for this weakness

The first parsers were LL

 How do we parse a string with this grammar? 

by building the parse tree incrementally

43

LL Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

 Example (the average program):

read A

read B

sum := A + B

write sum

write sum / 2  $$

 We keep a stack of non-terminals with the start 

symbol inserted

 We start at the top and predict needed productions on 

the basis of the current "left-most" non-terminal in 

the tree and the current input token
44

LL Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

Table-driven LL parsing:  you have a big loop in 

which you repeatedly look up an action in a 

two-dimensional table based on current leftmost 

non-terminal and current input token

The actions are:

(1) match a terminal

(2) predict a production 

OR

(3) announce a syntax error
45

LL Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier
46

LL Parsing
 First, unfold the 

production rules to 

collect for each 

production the 

possible tokens that 

could start it



(c) Paul Fodor (CS Stony Brook) and Elsevier

 Construct the prediction table: 

for each possible input token and 

the left-most nonterminal, what is 

the possible production rule that 

will be used? 

 The non-terminal will be "used", 

while the RHS of the production is 

added to the stack.

47

LL Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

 LL(1) parse table for parsing for 

calculator language

read A

read B

sum := A + B

write sum

write sum / 2 $$

48

LL Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier
49



(c) Paul Fodor (CS Stony Brook) and Elsevier
50



(c) Paul Fodor (CS Stony Brook) and Elsevier

Parse tree for the average program

51



(c) Paul Fodor (CS Stony Brook) and Elsevier

Problems trying to make a grammar LL(1)

left recursion
example:
id_list → id_list , id

id_list → id 

we can get rid of all left recursion 

mechanically in any grammar
id_list → id  id_list_tail

id_list_tail → , id id_list_tail

id_list_tail → ε

52

LL Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

Problems trying to make a grammar LL(1)

common prefixes
example:

stmt → id := expr

| id ( arg_list )

we can eliminate left-factor mechanically = 

"left-factoring”

stmt → id id_stmt_tail

id_stmt_tail → := expr 

| ( arg_list)

53

LL Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

 Eliminating left recursion and common prefixes still does NOT 

make a grammar LL
 there are infinitely many non-LL LANGUAGES, and the 

mechanical transformations work on them just fine

 Problems trying to make a grammar LL(1)

 the"dangling else" problem prevents grammars from being 

LL(1) (or in fact LL(k) for any k)
 the following natural (Pascal) grammar fragment is ambiguous:

stmt → if cond then_clause else_clause

| other_stuff

then_clause → then  stmt

else_clause → else  stmt | ε

Example String: “if C1 then if C2 then S1 else S2”

Ambiguity: the else can be paired with either if then!!!
54

LL Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

 Desired effect: pair the else with the nearest then.

 The less natural grammar fragment:
stmt → balanced_stmt | unbalanced_stmt

balanced_stmt → if cond then balanced_stmt

else balanced_stmt

| other_stuff

unbalanced_stmt → if cond then stmt

| if cond then balanced_stmt

else unbalanced_stmt

 A balanced_stmt is one with the same number of 

thens and elses. 

 An unbalanced_stmt has more thens.

55

LL Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

The usual approach, whether top-down OR 

bottom-up, is to use the ambiguous grammar 

together with a disambiguating rule that says:

else goes with the closest then or

more generally, the first of two possible 

productions is the one to predict (or reduce)
stmt → if cond then_clause else_clause

| other_stuff

then_clause → then  stmt

else_clause → else  stmt | ε

56

LL Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

 Better yet, languages (since Pascal) generally employ 

explicit end-markers, which eliminate this 

problem.

 In Modula-2, for example, one says:

if A = B then

if C = D then E := F end

else

G := H

end

 Ada says 'end if'; other languages say 'fi'

57

LL Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

 One problem with end markers is that they tend to bunch up. 

In Pascal you say

if A = B then …

else if A = C then …

else if A = D then …

else if A = E then …

else ...;

 With end markers this becomes

if A = B then …

else if A = C then …

else if A = D then …

else if A = E then …

else ...;

end; end; end; end; end; end; …
58

LL Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

LR parsers are almost always table-driven:

like a table-driven LL parser, an LR parser uses a 

big loop in which it repeatedly inspects a two-

dimensional table to find out what action to take

unlike the LL parser, however, the LR driver has 

non-trivial state (like a DFA), and the table is 

indexed by current input token and current 

state

 also the stack contains a record of what has been 

seen SO FAR (NOT what is expected)
59

LR Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

LR keeps the roots of its partially 

completed subtrees on a stack

When it accepts a new token from the scanner, it 

shifts the token into the stack 

When it recognizes that the top few symbols on 

the stack constitute a right-hand side, it reduces

those symbols to their left-hand side by popping 

them off the stack and pushing the left-hand side 

in their place

60

LR Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

Rightmost (canonical) derivation for the 

identifiers grammar:

61

LR Parsing id_list → id id_list_tail

id_list_tail → , id id_list_tail

id_list_tail → ;



(c) Paul Fodor (CS Stony Brook) and Elsevier

LR(1) grammar for the calculator language:

62

LR Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

Example (the average program):

read A

read B

sum := A + B

write sum

write sum / 2  $$

63

LR Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

When we begin execution, the parse stack is 

empty and we are at the beginning of the 

production for program:

program → . stmt_list $$

 When augmented with a ., a production is called an LR item

 This original item (program → . stmt_list $$) 

is called the basis of the list. 

64

LR Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

 Since the . in this item is immediately in front of 

a nonterminal—namely stmt_list —we 

may be about to see the yield of that 

nonterminal coming up on the input. 

program → . stmt_list $$

stmt_list → . stmt_list stmt

stmt_list → . stmt

65

LR Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

 Since stmt is a nonterminal, we may also be at 

the beginning of any production whose left-hand 

side is stmt:  

program → . stmt_list $$

stmt_list → . stmt_list stmt

stmt_list → . stmt

stmt → . id := expr

stmt → . read id

stmt → . write expr

 The additional items to the basis are its closure.
66

LR Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

Our upcoming token is a read

Once we shift it onto the stack, we know we are 

in the following state: 

stmt → read . id

 This state has a single basis item and an empty closure—the .

precedes a terminal. 

 After shifting the A, we have: 

stmt → read id .

67

LR Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

We now know that read id is the handle, 

and we must reduce. 

The reduction pops two symbols off the parse 

stack and pushes a stmt in their place

Since one of the items in State 0 was 

stmt_list → . stmt

we now have 

stmt_list → stmt .

Again we must reduce: remove the stmt from 

the stack and push a stmt_list in its place.
68

LR Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier

Our new state: 

program → stmt_list . $$

stmt_list → stmt_list . stmt

stmt → . id := expr

stmt → . read id

stmt → . write expr

69

LR Parsing



(c) Paul Fodor (CS Stony Brook) and Elsevier
70



(c) Paul Fodor (CS Stony Brook) and Elsevier
71



(c) Paul Fodor (CS Stony Brook) and Elsevier
72



(c) Paul Fodor (CS Stony Brook) and Elsevier
73



(c) Paul Fodor (CS Stony Brook) and Elsevier
74

Table entries indicate whether to shift (s), reduce (r), or shift and 

then reduce (b). The accompanying number is the new state 

when shifting, or the production that has been recognized when 

(shifting and) reducing



(c) Paul Fodor (CS Stony Brook) and Elsevier

Driver for a table-driven LR(1) parser

75



(c) Paul Fodor (CS Stony Brook) and Elsevier
76



(c) Paul Fodor (CS Stony Brook) and Elsevier

 A scanner is a DFA

 it can be specified with a state diagram

 An LL or LR parser is a PDA (push down automata)

a PDA can be specified with a state diagram and a 

stack

 the state diagram looks just like a DFA state diagram, 

except the arcs are labeled with <input symbol, 

top-of-stack symbol> pairs, and in addition to 

moving to a new state the PDA has the option of pushing 

or popping a finite number of symbols onto/off the stack

 Early's algorithm does NOT use PDAs, but dynamic 

programming77

Parsing summary



(c) Paul Fodor (CS Stony Brook) and Elsevier

Actions
We can run actions when a rule triggers:

Often used to construct an AST for a 

compiler.

For simple languages, can interpret code 

directly

We can use actions to fix the Top-Down 

Parsing problems

78



(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming
 A compiler-compiler (or parser generator, compiler generator) is a 

programming tool that creates a parser, interpreter, or 

compiler from some form of formal description of a language 

and machine 

 the input is a grammar (usually in BNF) of a programming 

language

 the generated output is the source code of a parser 

 Examples of parser generators:

 classical parsing tools: lex, Yacc, bison, flex, ANTLR

 PLY: python implementation of lex and yacc

 Python TPG parser 

 ANTLR for python
79



(c) Paul Fodor (CS Stony Brook) and Elsevier

Classic Parsing Tools
lex - original UNIX Lexical analysis (tokenizing) generator

 create a C function that will parse input according to a set of regular 

expressions

yacc -Yet Another Compiler Compiler (parsing) 

 generate a C program for a parser from BNF rules

bison and flex ("fast lex") - more powerful, free versions of 

yacc and lex, from GNU Software Fnd'n.

80

Lex or Flex Yacc or Bison

yylex() yyparse()

Lexical Rules Grammar Rules

Input Parsed Input



(c) Paul Fodor (CS Stony Brook) and Elsevier

 Lex and Yacc generate C code for your analyzer & parser

81

Lex or Flex Yacc or Bison

yylex() yyparse()

Lexical Rules Grammar Rules

Input
Parsed

Input

C code C code

Lexical Analyzer

(Tokenizer)

Parser

char

stream

token

stream

Classic Parsing Tools



(c) Paul Fodor (CS Stony Brook) and Elsevier

Lex and Yacc the big picture

82



(c) Paul Fodor (CS Stony Brook) and Elsevier

Lex Example

83

/* lexer.l */

%{

#include “header.h”

int lineno = 1;

%}

%%

[ \t]* ; /* Ignore whitespace */

\n { lineno++; }

[0-9]+ { yylval.val = atoi(yytext);

return NUMBER; }

[a-zA-Z_][a-zA-Z0-9_]* { yylval.name = strdup(yytext);

return ID; }

\+ { return PLUS; }

- { return MINUS; }

\* { return TIMES; }

\/ { return DIVIDE; }

= { return EQUALS; }

%%



(c) Paul Fodor (CS Stony Brook) and Elsevier

Yacc Example

84

/* parser.y */

%{

#include “header.h”

%}

%union {

char *name;

int val;

}

%token PLUS MINUS TIMES DIVIDE EQUALS

%token<name> ID;

%token<val> NUMBER;

%%

start : ID EQUALS expr;

expr : expr PLUS term

| expr MINUS term

| term

;

...



(c) Paul Fodor (CS Stony Brook) and Elsevier

Bison Overview

85

> bison myparser.y

myparser.tab.c

parser source code

myparser.y

BNF rules and actions for 

your grammar.

yylex.c

tokenizer function in C

> gcc -o myprog myparser.tab.c yylex.c

myprog

executable program

The programmer puts BNF rules and 

token rules for the parser he wants in a 
bison source file myparser.y

run bison to create a C program (*.tab.c) 

containing a parser function.

The programmer must also supply a 
tokenizer named yylex( )



(c) Paul Fodor (CS Stony Brook) and Elsevier

PLY

86

PLY: Python Lex-Yacc = an implementation of 

lex and yacc parsing tools for Python by  David 

Beazley: http://www.dabeaz.com/ply/

A bit of history: 

Yacc : ~1973. Stephen Johnson (AT&T) 

Lex : ~1974. Eric Schmidt and Mike Lesk (AT&T)

PLY: 2001

http://www.dabeaz.com/ply/


(c) Paul Fodor (CS Stony Brook) and Elsevier

PLY

87

PLY is not a code generator

 PLY consists of two Python modules 

ply.lex = A module for writing lexers

Tokens specified using regular expressions

Provides functions for reading input text

ply.yacc = A module for writing grammars

You simply import the modules to use them

 The grammar must be in a file



(c) Paul Fodor (CS Stony Brook) and Elsevier

PLY

88

 ply.lex example:
import ply.lex as lex

tokens = [ ‘NAME’,’NUMBER’,’PLUS’,’MINUS’,’TIMES’,

’DIVIDE’, EQUALS’ ]

t_ignore = ‘ \t’

t_PLUS = r’\+’

t_MINUS = r’-’

t_TIMES = r’\*’

t_DIVIDE = r’/’

t_EQUALS = r’=’

t_NAME = r’[a-zA-Z_][a-zA-Z0-9_]*’

def t_NUMBER(t):

r’\d+’

t.value = int(t.value)

return t

lex.lex() # Build the lexer



(c) Paul Fodor (CS Stony Brook) and Elsevier

 Two functions: input() and token()
lex.lex() # Build the lexer

...

lex.input("x = 3 * 4 + 5 * 6")

while True:

tok = lex.token()

if not tok: break

# Use token

PLY

89



(c) Paul Fodor (CS Stony Brook) and Elsevier

PLY

90

import ply.yacc as yacc

import mylexer # Import lexer information

tokens = mylexer.tokens # Need token list

def p_assign(p):

'''assign : NAME EQUALS expr'''

def p_expr(p):

'''expr : expr PLUS term

| expr MINUS term

| term'''

def p_term(p):

'''term : term TIMES factor

| term DIVIDE factor

| factor'''

def p_factor(p):

'''factor : NUMBER'''

yacc.yacc() # Build the parser

data = "x = 3*4+5*6"

yacc.parse(data) # Parse some text



(c) Paul Fodor (CS Stony Brook) and Elsevier

PLY

91

 Parameter p contains grammar symbol values

def p_factor(p):

‘factor : NUMBER’

p[0]   =   p[1]

 PLY does Bottom-up parsing

 Rule functions process values on right hand side of grammar rule

 Result is then stored in left hand side

 Results propagate up through the grammar



(c) Paul Fodor (CS Stony Brook) and Elsevier

PLY Calculator Example

92



(c) Paul Fodor (CS Stony Brook) and Elsevier

Build a parse tree using tuples

93



(c) Paul Fodor (CS Stony Brook) and Elsevier
94



(c) Paul Fodor (CS Stony Brook) and Elsevier

PLY Precedence Specifiers

95

 Precedence Specifiers (most precedence at bottom):

precedence = (

('left','PLUS','MINUS'),

('left','TIMES','DIVIDE'),

('nonassoc','UMINUS'),

)

def p_expr_uminus(p):

'expr : MINUS expr %prec UMINUS'

p[0] = -p[1]

...



(c) Paul Fodor (CS Stony Brook) and Elsevier

PLY Best Documentation 

96

Google Mailing list/group:

http://groups.google.com/group/ply-hack

http://groups.google.com/group/ply-hack


(c) Paul Fodor (CS Stony Brook) and Elsevier

TPG
TGP is a lexical and syntactic parser generator 

for Python

YACC is too complex to use in simple cases 

(calculators, configuration files, small 

programming languages, …)

You can also add Python code directly into 

grammar rules and build abstract syntax trees 

while parsing

97



(c) Paul Fodor (CS Stony Brook) and Elsevier

Python TPG Lexer
 Toy Parser Generator (TPG): http://cdsoft.fr/tpg

Syntax:

token <name> <regex> <function> ;

separator <name> <regex>;

Example: 

token integer '\d+' int;

token float '\d+\.\d*|\.\d+' float;

token rbrace '{';

separator space '\s+';

98

http://cdsoft.fr/tpg


(c) Paul Fodor (CS Stony Brook) and Elsevier

Python TPG Lexer
 Embed TPG in Python:

import tpg

class Calc:

r"""

separator spaces: '\s+' ;

token number: '\d+' ;

token add: '[+-]' ;

token mul: '[*/]' ;

"""

Try it in Python: download TGP from 

http://cdsoft.fr/tpg99

http://cdsoft.fr/tpg


(c) Paul Fodor (CS Stony Brook) and Elsevier

Defining the grammar:

 Non-terminal productions:

START -> Expr ;

Expr -> Term ( add Term )* ;

Term -> Fact ( mul Fact )* ;

Fact -> number | '\(' Expr '\)' ;

100

TPG example



(c) Paul Fodor (CS Stony Brook) and Elsevier

import tpg

class Calc:

r"""

separator spaces: '\s+' ;

token number: '\d+' ;

token add: '[+-]' ;

token mul: '[*/]' ;

START -> Expr ;

Expr -> Term ( add Term )* ;

Term -> Fact ( mul Fact )* ;

Fact -> number | '\(' Expr '\)' ;

"""101

TPG example



(c) Paul Fodor (CS Stony Brook) and Elsevier

 Reading the input and returning values:

separator spaces: '\s+' ;

token number: '\d+' int ;

token add: '[+-]' make_op;

token mul: '[*/]' make_op;

 Transform tokens into defined operations:

def make_op(s):

return {

'+': lambda x,y: x+y,

'-': lambda x,y: x-y,

'*': lambda x,y: x*y,

'/': lambda x,y: x/y,

}[s]
102

TPG example



(c) Paul Fodor (CS Stony Brook) and Elsevier

After a terminal symbol is recognized we will store it 

in a Python variable: for example to save a number in 

a variable n: number/n.

 Include Python code example:
Expr/t -> Term/t ( add/op Term/f $t=op(t,f)$ )* ;

Term/f -> Fact/f ( mul/op Fact/a $f=op(f,a)$ )* ;

Fact/a -> number/a | '\(' Expr/a '\)' ;

103

TPG example



(c) Paul Fodor (CS Stony Brook) and Elsevier

import math                     # Simple calculator calc.py

import operator

import string

import tpg

def make_op(s):

return {

'+': lambda x,y: x+y,

'-': lambda x,y: x-y,

'*': lambda x,y: x*y,

'/': lambda x,y: x/y,

}[s]

class Calc(tpg.Parser):

r"""

separator spaces: '\s+' ;

token number: '\d+' int ;

token add: '[+-]' make_op ;

token mul: '[*/]' make_op ;

START/e -> Term/e ;104



(c) Paul Fodor (CS Stony Brook) and Elsevier

Term/t -> Fact/t ( add/op Fact/f $ t = op(t,f) $ )* ;

Fact/f -> Atom/f ( mul/op Atom/a $ f = op(f,a) $ )* ;

Atom/a -> number/a | '\(' Term/a '\)' ;

"""

calc = Calc()

if tpg.__python__ == 3:

operator.div = operator.truediv

raw_input = input

expr = raw_input('Enter an expression: ')

print(expr, '=', calc(expr))

105



(c) Paul Fodor (CS Stony Brook) and Elsevier

#!/usr/bin/env python

# Larger example: scientific_calc.py

import math

import operator

import string

import tpg

if tpg.__python__ == 3:

operator.div = operator.truediv

raw_input = input

def make_op(op):

return {

'+'   : operator.add,

'-'   : operator.sub,

'*'   : operator.mul,

'/'   : operator.div,

'%'   : operator.mod,

'^'   : lambda x,y:x**y,

'**'  : lambda x,y:x**y,

'cos' : math.cos,

'sin' : math.sin,

'tan' : math.tan,

'acos': math.acos,106



(c) Paul Fodor (CS Stony Brook) and Elsevier

'asin': math.asin,

'atan': math.atan,

'sqr' : lambda x:x*x,

'sqrt': math.sqrt,

'abs' : abs,

'norm': lambda x,y:math.sqrt(x*x+y*y),

}[op]

class Calc(tpg.Parser, dict):

r"""

separator space '\s+' ;

token pow_op    '\^|\*\*' $ make_op

token add_op    '[+-]'    $ make_op

token mul_op    '[*/%]'   $ make_op

token funct1    '(cos|sin|tan|acos|asin|atan|sqr|sqrt|abs)\b' $ make_op

token funct2    '(norm)\b' $ make_op

token real      '(\d+\.\d*|\d*\.\d+)([eE][-+]?\d+)?|\d+[eE][-+]?\d+' 

$ float

token integer   '\d+' $ int

token VarId     '[a-zA-Z_]\w*'                                          

;

107



(c) Paul Fodor (CS Stony Brook) and Elsevier

START/e ->

'vars'                  $ e=self.mem()

|   VarId/v '=' Expr/e      $ self[v]=e

|   Expr/e

;

Var/$self.get(v,0)$ -> VarId/v ;

Expr/e -> Term/e ( add_op/op Term/t     $ e=op(e,t)

)*

;

Term/t -> Fact/t ( mul_op/op Fact/f     $ t=op(t,f)

)*

;

Fact/f ->

add_op/op Fact/f                $ f=op(0,f)

|   Pow/f

;

Pow/f -> Atom/f ( pow_op/op Fact/e      $ f=op(f,e)

)?

;

108



(c) Paul Fodor (CS Stony Brook) and Elsevier

Atom/a ->

real/a

|   integer/a

|   Function/a

|   Var/a

|   '\(' Expr/a '\)'

;

Function/y ->

funct1/f '\(' Expr/x '\)'               $ y = f(x)

|   funct2/f '\(' Expr/x1 ',' Expr/x2 '\)'  $ y = f(x1,x2)

;

"""

def mem(self):

vars = sorted(self.items())

memory = [ "%s = %s"%(var, val) for (var, val) in vars ]

return "\n\t" + "\n\t".join(memory)

109



(c) Paul Fodor (CS Stony Brook) and Elsevier

print("Calc (TPG example)")

calc = Calc()

while 1:

l = raw_input("\n:")

if l:

try:

print(calc(l))

except Exception:

print(tpg.exc())

else:

break

110



(c) Paul Fodor (CS Stony Brook) and Elsevier

AntLR
ANother Tool for Language Recognition is an LL(k) 

parser and translator generator tool
which can create 
 lexers
 parsers
 abstract syntax trees (AST’s)

in which you describe the language grammatically
and in return receive a program that can recognize and 

translate that language

111



(c) Paul Fodor (CS Stony Brook) and Elsevier

Tasks Divided
Lexical Analysis (scanning) 

 Semantic Analysis (parsing) 

Tree Generation

 Abstract Syntax Tree (AST) is a structure 

which keeps information in an easily 

traversable form (such as operator at a 

node, operands at children of the node)

ignores form-dependent superficial details

Code Generation 
112



(c) Paul Fodor (CS Stony Brook) and Elsevier

The Java Code

 The code to invoke the parser:
import java.io.*;

class Main {

public static void main(String[] args) {

try {

// use DataInputStream to grab bytes

MyLexer lexer = new MyLexer(

new DataInputStream(System.in));

MyParser parser = new MyParser(lexer);

int x = parser.expr(); 

System.out.println(x); 

} catch(Exception e) {

System.err.println("exception: "+e);

}

}

}

113



(c) Paul Fodor (CS Stony Brook) and Elsevier

Abstract Syntax Trees

 Abstract Syntax Tree: Like a parse tree, without 
unnecessary information

 Two-dimensional trees that can encode the structure of 
the input as well as the input symbols

 An AST for (3+4) might be represented as

 No parentheses are included in the tree!

114


