
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

Introduction to Programming

Languages

1

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook) and Elsevier

Introduction
At the beginning there was only machine

language: a sequence of bits that directly

controls a processor, causing it to add,

compare, move data from one place to

another
Example: GCD program in x86 machine

language:

2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Introduction
 Assembly languages were invented to allow operations to

be expressed with mnemonic abbreviations

For example, to add two numbers, you might write an

instruction in assembly code like this:

ADDF3 R1, R2, R3

A program called assembler is used to convert

assembly language programs into machine code

3

 …
 ADDF3 R1, R2, R3

 …

Assembly Source File

Assembler

 …
 1101101010011010

 …

Machine Code File

(c) Paul Fodor (CS Stony Brook) and Elsevier

Introduction
 Example: GCD program in x86

assembly:

4

(c) Paul Fodor (CS Stony Brook) and Elsevier

Introduction
 Assemblers were eventually augmented with elaborate

“macro expansion” facilities to permit programmers to

define parameterized abbreviations for common

sequences of instructions

 Problem: each different kind of computer had to be

programmed in its own assembly language

People began to wish for a machine-independent

languages

 These wishes led in the mid-1950s to the development of

standard higher-level languages compiled for different

architectures by compilers
5

(c) Paul Fodor (CS Stony Brook) and Elsevier

Introduction
Today there are thousands of high-level

programming languages, and new ones

continue to emerge

Why are there so many?

Evolution

Special Purposes

Personal Preference

6

(c) Paul Fodor (CS Stony Brook) and Elsevier

Introduction
 What makes a language successful?

 easy to learn (BASIC, Pascal, LOGO, Scheme, python)

 easy to express things, easy use once fluent, "powerful”

(C, Java, Common Lisp, APL, Algol-68, Perl)

 easy to implement/deploy (Javascript, BASIC, Forth)

possible to compile to very good (fast/small) code

(Fortran, C)

backing of a powerful sponsor that makes them "free"

(Java, Visual Basic, COBOL, PL/1, Ada)

 real wide dissemination at minimal cost (python, Java,

Pascal, Turing, Erlang)
7

(c) Paul Fodor (CS Stony Brook) and Elsevier

Introduction
 Why do we have programming languages? What is a

language for?

way of thinking -- way of expressing algorithms

way of specifying what you want

ease of use - languages from the implementor's

point of view

access special features of the hardware

8

(c) Paul Fodor (CS Stony Brook) and Elsevier

Why study programming languages?
Help you choose a language:

C vs. C++ for systems programming

Matlab vs. Python vs. R for numerical computations

Android vs. Java vs. ObjectiveC vs. Javascript for

embedded systems

Python vs. Ruby vs. Common Lisp vs. Scheme vs.

ML for symbolic data manipulation

Java RPC (JAX-RPC) vs. C/CORBA for networked

PC programs

9

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Make it easier to learn new languages

some languages are similar: easy to walk down family

tree – same way of doing things:

 concepts have even more similarity: if you think in terms of

iteration, recursion, abstraction (for example), you will find

it easier to assimilate the syntax and semantic details of a

new language than if you try to pick it up in a vacuum

 Think of an analogy to human languages: good grasp of

grammar makes it easier to pick up new languages (at

least Indo-European)

10

Why study programming languages?

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Help you make better use of whatever language you use

understand obscure features:

 In C, help you understand unions, arrays & pointers,

separate compilation, catch and throw

 In Common Lisp, help you understand first-class

functions/closures, streams, catch and throw, symbol

internals

11

Why study programming languages?

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Help you make better use of whatever language you use

understand implementation costs: choose

between alternative ways of doing things, based on

knowledge of what will be done underneath:

 use simple arithmetic equal (use x*x instead of x**2)

 avoid call by value with large data items in Pascal

 avoid the use of call by name in Algol 60

 choose between computation and table lookup (e.g. for

cardinality operator in C or C++)

12

Why study programming languages?

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Help you make better use of whatever language you use

figure out how to do things in languages that

don't support them explicitly:
 lack of recursion in Fortran, CSP, etc.

 write a recursive algorithm then use mechanical recursion

elimination (even for things that aren't quite tail recursive)

 lack of suitable control structures in Fortran

 use comments and programmer discipline for control

structures

o lack of named constants and enumerations in Fortran
• use variables that are initialized once, then never changed

 lack of modules in C and Pascal use comments and

programmer discipline13

Why study programming languages?

(c) Paul Fodor (CS Stony Brook) and Elsevier

Classifications
 Many classifications group languages as:

 imperative
 von Neumann/Turing (Fortran, Pascal, Basic, C)

 object-oriented imperative (Smalltalk, Eiffel, C++?)

 scripting languages (Perl, Python, JavaScript, PHP)

declarative
 functional (Scheme, ML, pure Lisp, FP)

 logic, constraint-based (Prolog, Flora2, ASP clingo)

Many more classifications: markup languages,

assembly languages, etc.

14

(c) Paul Fodor (CS Stony Brook) and Elsevier

Classification
 GCD Program in different languages, like C, Prolog, SML and Python:

 In C:

int main() {

int i = getint(), j = getint();

while (i != j) {

if (i > j) i = i - j;

else j = j - i;

}

putint(i);

}

 In XSB Prolog:

gcd(A,B,G) :- A = B, G = A.

gcd(A,B,G) :- A > B, C is A-B, gcd(C,B,G).

gcd(A,B,G) :- A < B, C is B-A, gcd(C,A,G).

 In SML:

fun gcd(m,n):int = if m=n then n

= else if m>n then gcd(m-n,n)

= else gcd(m,n-m);

• In Python:

def gcd(a, b):

if a == b:

return a

else:

if a > b:

return gcd(a-b, b)

else:

return gcd(a, b-a)

15

(c) Paul Fodor (CS Stony Brook) and Elsevier

Compilation vs. Interpretation
 Compilation vs. interpretation

not opposites

not a clear-cut distinction

 Pure Compilation

The compiler translates the high-level source

program into an equivalent target program

(typically in machine language), and then goes away:

16

(c) Paul Fodor (CS Stony Brook) and Elsevier

Pure Interpretation

Interpreter stays around for the execution of

the program

Interpreter is the locus of control during

execution

17

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Interpretation:

Greater flexibility

Better diagnostics (error messages)

Compilation

 Better performance!

18

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Most modern language implementations

include a mixture of both compilation and

interpretation

Compilation followed by interpretation:

19

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Note that compilation does NOT have to

produce machine language for some sort of

hardware

Compilation is translation from one language into

another, with full analysis of the meaning of the

input

Compilation entails semantic understanding of

what is being processed; pre-processing does not

 A pre-processor will often let errors through

20

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Many compiled languages have interpreted

pieces, e.g., formats in Fortran or C

Most compiled languages use “virtual

instructions”

set operations in Pascal

string manipulation in Basic

21

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Implementation strategies:

Preprocessor
 Removes comments and white space

 Groups characters into tokens (keywords, identifiers,

numbers, symbols)

 Expands abbreviations in the style of a macro assembler

 Identifies higher-level syntactic structures (loops,

subroutines)

 Conditional compilation: if-else directives #if, #ifdef,

#ifndef, #else, #elif and #endif – example:
#ifdef __unix__

include <unistd.h>

#elif defined _WIN32

include <windows.h>

#endif
22

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Implementation strategies:

The C Preprocessor:

removes comments

expands macros

conditional compilation

23

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Implementation strategies:

Library of Routines and Linking

Compiler uses a linker program to merge the

appropriate library of subroutines (e.g., math

functions such as sin, cos, log, etc.) into the final

program:

24

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Implementation strategies:

Post-compilation Assembly
 Facilitates debugging (assembly language easier for people to read)

 Isolates the compiler from changes in the format of machine

language files (only assembler must be changed, is shared by many

compilers)

25

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Implementation strategies:

Source-to-Source Translation

C++ implementations based on

the early AT&T compiler

generated an intermediate

program in C, instead of an

assembly language

26

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Implementation strategies:

 Bootstrapping: many compilers are self-hosting: they are written in the

language they compile

 How does one compile the compiler in the first place?

 Response: one starts with a simple implementation—often an interpreter
(which could be assembly language); successive expanded versions of the compiler

are developed using this minimal subset of the language.

 Assemblers were the first language tools to bootstrap themselves
 Java is a self-hosting compiler. So are: Basic, C, C++, C#, OCaml, Perl6, python, XSB.

 It is a form of dogfooding (Using your own product, Eating your own dog food)

 compiler developers and bug reporting part of the community only need to

know the language being compiled.

 Improvements to the compiler's back-end improve not only general-purpose

programs but also the compiler itself.

 It is a comprehensive consistency check as it should be able to reproduce its

own object code.27

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Bootstrapping is related to self-hosting:

 Ken Thompson started development on Unix in 1968 by

writing the initial Unix kernel, a command interpreter, an

editor, an assembler, and a few utilities on GE-635.

o Then the Unix operating system became self-hosting:

programs could be written and tested on Unix itself.

 Development of the Linux kernel was initially hosted on a

Minix system.

o When sufficient packages, like GCC, GNU bash and

other utilities are ported over, developers can work on

new versions of Linux kernel based on older versions of

itself (like building kernel 3.21 on a machine running

kernel 3.18).
28

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Implementation strategies:

 Compilation of Interpreted Languages (e.g., Prolog, Lisp,

Smalltalk, Java, C#):

 Compilers exist for some interpreted languages, but they

aren't pure:

 selective compilation of compilable pieces and extra-

sophisticated pre-processing of remaining source.

 Interpretation is still necessary.

o E.g., XSB Prolog is compiled into .wam (Warren

Abstract Machine) files and then executed by the

interpreter

29

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Implementation strategies:

Dynamic and Just-in-Time Compilation

 In some cases a programming system may

deliberately delay compilation until the last

possible moment.

Lisp or Prolog invoke the compiler on the fly, to

translate newly created source into machine

language, or to optimize the code for a

particular input set (e.g., dynamic indexing

in Prolog)

30

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Implementation strategies:

Microcode

Assembly-level instruction set is not

implemented in hardware; it runs on an

interpreter.

The interpreter is written in low-level

instructions (microcode or firmware),

which are stored in read-only memory and

executed by the hardware.
31

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Unconventional compilers:

 text formatters: TEX and troff are actually compilers

silicon compilers: laser printers themselves

incorporate interpreters for the Postscript page

description language

query language processors for database systems are

also compilers: translate languages like SQL into

primitive operations (e.g., tuple relational calculus

and domain relational calculus)

32

Compilation vs. Interpretation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming Environment Tools

 Tools/IDEs:

Compilers and interpreters do not exist in isolation

Programmers are assisted by tools and IDEs

33

(c) Paul Fodor (CS Stony Brook) and Elsevier

An Overview of Compilation

Phases of Compilation

34

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Scanning is recognition of a regular language, e.g.,

via DFA (Deterministic finite automaton)

divides the program into "tokens", which are the

smallest meaningful units; this saves time, since

character-by-character processing is slow

you can design a parser to take characters instead of

tokens as input, but it isn't pretty

35

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example, take the GCD Program (in C):

int main() {

int i = getint(), j = getint();

while (i != j) {

if (i > j) i = i - j;

else j = j - i;

}

putint(i);

}

36

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Lexical and Syntax Analysis
 GCD Program Tokens

 Scanning (lexical analysis) and parsing recognize the structure of the

program, groups characters into tokens, the smallest meaningful units

of the program

37

An Overview of Compilation

int main () {

int i = getint () , j = getint () ;

while (i != j) {

if (i > j) i = i - j ;

else j = j - i ;

}

putint (i) ;

}

(c) Paul Fodor (CS Stony Brook) and Elsevier

Parsing is recognition of a context-free

language, e.g., via PDA (Pushdown

automaton)

Parsing discovers the "context free"

structure of the program

Informally, it finds the structure you can

describe with syntax diagrams (e.g., the

"circles and arrows" in a language manual)
38

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Context-Free Grammar and Parsing
 Grammar Example for while loops in C:

while-iteration-statement → while (expression) statement

statement, in turn, is often a list enclosed in braces:

statement → compound-statement

compound-statement → { block-item-list opt }

where

block-item-list opt → block-item-list

or

block-item-list opt → ϵ

and

block-item-list → block-item

block-item-list → block-item-list block-item

block-item → declaration

block-item → statement39

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Context-Free Grammar and Parsing
 GCD Program Parse Tree:

next slide

A

B

40

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Context-Free Grammar and Parsing (continued)

41

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Context-Free Grammar and Parsing (continued)
A B

42

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Semantic analysis is the discovery of meaning

in the program

The compiler actually does what is called

STATIC semantic analysis = that's the meaning

that can be figured out at compile time

Some things (e.g., array subscript out of

bounds) can't be figured out until run time.

Things like that are part of the program's

DYNAMIC semantics.

43

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

Symbol table: all phases rely on a symbol

table that keeps track of all the identifiers

in the program and what the compiler

knows about them

This symbol table may be retained (in some

form) for use by a debugger, even after

compilation has completed

44

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Semantic Analysis and Intermediate Code Generation

 Semantic analysis is the discovery of meaning in a program

 tracks the types of both identifiers and expressions

 builds and maintains a symbol table data structure that maps each

identifier to the information known about it

 context checking

 Every identifier is declared before it is used

 No identifier is used in an inappropriate context (e.g., adding a

string to an integer)

 Subroutine calls provide the correct number and types of

arguments.

 Labels on the arms of a switch statement are distinct constants.

 Any function with a non-void return type returns a value explicitly
45

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Semantic analysis implementation

 semantic action routines are invoked by the parser when it

realizes that it has reached a particular point within a

grammar rule.

Not all semantic rules can be checked at compile

time: only the static semantics of the language

 the dynamic semantics of the language must be checked

at run time

 Array subscript expressions lie within the bounds of the

array

 Arithmetic operations do not overflow
46

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Semantic Analysis and Intermediate Code Generation

The parse tree is very verbose: once we know

that a token sequence is valid, much of the

information in the parse tree is irrelevant to

further phases of compilation

 The semantic analyzer typically transforms the parse tree into

an abstract syntax tree (AST or simply a syntax tree) by

removing most of the “artificial” nodes in the tree’s interior

 The semantic analyzer also annotates the remaining nodes

with useful information, such as pointers from identifiers to

their symbol table entries

 The annotations attached to a particular node are known as its

attributes47

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

GCD Syntax Tree (AST)

48

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 In many compilers, the annotated syntax tree

constitutes the intermediate form that is passed

from the front end to the back end.

 In other compilers, semantic analysis ends with a

traversal of the tree that generates some other

intermediate form

One common such form consists of a control

flow graph whose nodes resemble fragments of

assembly language for a simple idealized

machine
49

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Intermediate Form (IF) is done after semantic

analysis (if the program passes all checks)

 IFs are often chosen for machine independence, ease

of optimization, or compactness (these are

somewhat contradictory)

They often resemble machine code for some

imaginary idealized machine; e.g. a stack

machine, or a machine with arbitrarily many

registers

Many compilers actually move the code through

more than one IF
50

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Target Code Generation:

The code generation phase of a compiler translates

the intermediate form into the target language

To generate assembly or machine language, the code

generator traverses the symbol table to assign

locations to variables, and then traverses the

intermediate representation of the program,

generating loads and stores for variable references,

interspersed with appropriate arithmetic operations,

tests, and branches

51

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Target Code Generation:

 Naive x86 assembly language for the GCD program

52

An Overview of Compilation

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Some improvements are machine independent

Other improvements require an understanding of

the target machine

Code improvement often appears as two phases

of compilation, one immediately after semantic

analysis and intermediate code generation, the

other immediately after target code generation

53

An Overview of Compilation

