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Introduction
At the beginning there was only machine 

language: a sequence of bits that directly 

controls a processor, causing it to add, 

compare, move data from one place to 

another
Example: GCD program in x86 machine 

language:
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Introduction
 Assembly languages were invented to allow operations to 

be expressed with mnemonic abbreviations

For example, to add two numbers, you might write an 

instruction in assembly code like this:

ADDF3 R1, R2, R3

A program called assembler is used to convert 

assembly language programs into machine code
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  … 
 ADDF3 R1, R2, R3 

  … 

Assembly Source File 

Assembler 
 

 … 
 1101101010011010 

  … 

Machine Code File 
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Introduction
 Example: GCD program in x86 

assembly:

4



(c) Paul Fodor (CS Stony Brook) and Elsevier

Introduction
 Assemblers were eventually augmented with elaborate 

“macro expansion” facilities to permit programmers to 

define parameterized abbreviations for common 

sequences of instructions

 Problem: each different kind of computer had to be 

programmed in its own assembly language

People began to wish for a machine-independent 

languages

 These wishes led in the mid-1950s to the development of 

standard higher-level languages compiled for different 

architectures by compilers
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Introduction
Today there are thousands of high-level 

programming languages, and new ones 

continue to emerge

Why are there so many?

Evolution

Special Purposes

Personal Preference
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Introduction
 What makes a language successful?

 easy to learn (BASIC, Pascal, LOGO, Scheme, python)

 easy to express things, easy use once fluent, "powerful” 

(C, Java, Common Lisp, APL, Algol-68, Perl)

 easy to implement/deploy (Javascript, BASIC, Forth)

possible to compile to very good (fast/small) code 

(Fortran, C)

backing of a powerful sponsor that makes them "free" 

(Java, Visual Basic, COBOL, PL/1, Ada)

 real wide dissemination at minimal cost (python, Java, 

Pascal, Turing, Erlang)
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Introduction
 Why do we have programming languages?  What is a 

language for?

way of thinking -- way of expressing algorithms

way of specifying what you want

ease of use - languages from the implementor's 

point of view

access special features of the hardware
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Why study programming languages?
Help you choose a language:

C vs. C++ for systems programming

Matlab vs. Python vs. R for numerical computations

Android vs. Java vs. ObjectiveC vs. Javascript for 

embedded systems

Python vs. Ruby vs. Common Lisp vs. Scheme vs. 

ML for symbolic data manipulation

Java RPC (JAX-RPC) vs. C/CORBA for networked 

PC programs
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 Make it easier to learn new languages

some languages are similar: easy to walk down family 

tree – same way of doing things:

 concepts have even more similarity: if you think in terms of 

iteration, recursion, abstraction (for example), you will find 

it easier to assimilate the syntax and semantic details of a 

new language than if you try to pick it up in a vacuum 

 Think of an analogy to human languages: good grasp of 

grammar makes it easier to pick up new languages (at 

least Indo-European)
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 Help you make better use of whatever language you use

understand obscure features:

 In C, help you understand unions, arrays & pointers, 

separate compilation, catch and throw

 In Common Lisp, help you understand first-class 

functions/closures, streams, catch and throw, symbol 

internals
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 Help you make better use of whatever language you use

understand implementation costs: choose 

between alternative ways of doing things, based on 

knowledge of what will be done underneath:

 use simple arithmetic equal (use x*x instead of x**2)

 avoid call by value with large data items in Pascal

 avoid the use of call by name in Algol 60

 choose between computation and table lookup (e.g. for 

cardinality operator in C or C++)
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 Help you make better use of whatever language you use 

figure out how to do things in languages that 

don't support them explicitly:
 lack of recursion in Fortran, CSP, etc.

 write a recursive algorithm then use mechanical recursion 

elimination (even for things that aren't quite tail recursive)

 lack of suitable control structures in Fortran

 use comments and programmer discipline for control 

structures

o lack of named constants and enumerations in Fortran
• use variables that are initialized once, then never changed

 lack of modules in C and Pascal use comments and 

programmer discipline13

Why study programming languages?
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Classifications
 Many classifications group languages as:

 imperative
 von Neumann/Turing (Fortran, Pascal, Basic, C)

 object-oriented imperative (Smalltalk, Eiffel, C++?)

 scripting languages (Perl, Python, JavaScript, PHP)

declarative
 functional (Scheme, ML, pure Lisp, FP)

 logic, constraint-based (Prolog, Flora2, ASP clingo)

Many more classifications: markup languages, 

assembly languages, etc.
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Classification
 GCD Program in different languages, like C, Prolog, SML and Python:

 In C:

int main() { 

int i = getint(), j = getint(); 

while (i != j) { 

if (i > j) i = i - j; 

else j = j - i; 

} 

putint(i); 

} 

 In XSB Prolog:

gcd(A,B,G) :- A = B, G = A.

gcd(A,B,G) :- A > B, C is A-B, gcd(C,B,G).

gcd(A,B,G) :- A < B, C is B-A, gcd(C,A,G).

 In SML:

fun gcd(m,n):int = if m=n then n

= else if m>n then gcd(m-n,n)

= else gcd(m,n-m);

• In Python:

def gcd(a, b):

if a == b:

return a

else:

if a > b:

return gcd(a-b, b)

else:

return gcd(a, b-a)
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Compilation vs. Interpretation
 Compilation vs. interpretation

not opposites

not a clear-cut distinction

 Pure Compilation

The compiler translates the high-level source 

program into an equivalent target program 

(typically in machine language), and then goes away:
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Pure Interpretation

Interpreter stays around for the execution of 

the program

Interpreter is the locus of control during 

execution

17

Compilation vs. Interpretation



(c) Paul Fodor (CS Stony Brook) and Elsevier

Interpretation:

Greater flexibility

Better diagnostics (error messages)

Compilation

 Better performance!
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Most modern language implementations 

include a mixture of both compilation and 

interpretation

Compilation followed by interpretation:
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Note that compilation does NOT have to 

produce machine language for some sort of 

hardware 

Compilation is translation from one language into 

another, with full analysis of the meaning of the 

input

Compilation entails semantic understanding of 

what is being processed; pre-processing does not

 A pre-processor will often let errors through
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Many compiled languages have interpreted 

pieces, e.g., formats in Fortran or C

Most compiled languages use “virtual 

instructions”

set operations in Pascal

string manipulation in Basic
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 Implementation strategies:

Preprocessor
 Removes comments and white space

 Groups characters into tokens (keywords, identifiers, 

numbers, symbols)

 Expands abbreviations in the style of a macro assembler

 Identifies higher-level syntactic structures (loops, 

subroutines)

 Conditional compilation: if-else directives #if, #ifdef,

#ifndef, #else, #elif and #endif – example:
#ifdef __unix__ 

# include <unistd.h>

#elif defined _WIN32 

# include <windows.h>

#endif 
22
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Implementation strategies:

The C Preprocessor:

removes comments 

expands macros

conditional compilation
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 Implementation strategies:

Library of Routines and Linking

Compiler uses a linker program to merge the 

appropriate library of subroutines (e.g., math 

functions such as sin, cos, log, etc.) into the final 

program:
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 Implementation strategies:

Post-compilation Assembly
 Facilitates debugging (assembly language easier for people to read)

 Isolates the compiler from changes in the format of machine 

language files (only assembler must be changed, is shared by many 

compilers)
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 Implementation strategies:

Source-to-Source Translation

C++ implementations based on 

the early AT&T compiler 

generated an intermediate 

program in C, instead of an 

assembly language

26
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 Implementation strategies:

 Bootstrapping: many compilers are self-hosting: they are written in the 

language they compile

 How does one compile the compiler in the first place?

 Response: one starts with a simple implementation—often an interpreter 
(which could be assembly language); successive expanded versions of the compiler 

are developed using this minimal subset of the language.

 Assemblers were the first language tools to bootstrap themselves
 Java is a self-hosting compiler. So are: Basic, C, C++, C#, OCaml, Perl6, python, XSB.

 It is a form of dogfooding (Using your own product, Eating your own dog food)

 compiler developers and bug reporting part of the community only need to 

know the language being compiled.

 Improvements to the compiler's back-end improve not only general-purpose 

programs but also the compiler itself.

 It is a comprehensive consistency check as it should be able to reproduce its 

own object code.27
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 Bootstrapping is related to self-hosting:

 Ken Thompson started development on Unix in 1968 by 

writing the initial Unix kernel, a command interpreter, an 

editor, an assembler, and a few utilities on GE-635. 

o Then the Unix operating system became self-hosting: 

programs could be written and tested on Unix itself.

 Development of the Linux kernel was initially hosted on a 

Minix system. 

o When sufficient packages, like GCC, GNU bash and 

other utilities are ported over, developers can work on 

new versions of Linux kernel based on older versions of 

itself (like building kernel 3.21 on a machine running 

kernel 3.18). 
28
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 Implementation strategies:

 Compilation of Interpreted Languages (e.g., Prolog, Lisp, 

Smalltalk, Java, C#):

 Compilers exist for some interpreted languages, but they 

aren't pure:

 selective compilation of compilable pieces and extra-

sophisticated pre-processing of remaining source.  

 Interpretation is still necessary.

o E.g., XSB Prolog is compiled into .wam (Warren 

Abstract Machine) files and then executed by the 

interpreter

29
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 Implementation strategies:

Dynamic and Just-in-Time Compilation

 In some cases a programming system may 

deliberately delay compilation until the last 

possible moment.

Lisp or Prolog invoke the compiler on the fly, to 

translate newly created source into machine 

language, or to optimize the code for a 

particular input set (e.g., dynamic indexing 

in Prolog)

30
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Implementation strategies:

Microcode

Assembly-level instruction set is not 

implemented in hardware; it runs on an 

interpreter.

The interpreter is written in low-level 

instructions (microcode or firmware), 

which are stored in read-only memory and 

executed by the hardware.
31
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Unconventional compilers:

 text formatters: TEX and troff are actually compilers

silicon compilers: laser printers themselves 

incorporate interpreters for the Postscript page 

description language

query language processors for database systems are 

also compilers: translate languages like SQL into 

primitive operations (e.g., tuple relational calculus 

and domain relational calculus) 
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Programming Environment Tools

 Tools/IDEs:

Compilers and interpreters do not exist in isolation

Programmers are assisted by tools and IDEs
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An Overview of Compilation

Phases of Compilation
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 Scanning is recognition of a regular language, e.g., 

via DFA (Deterministic finite automaton)

divides the program into "tokens", which are the 

smallest meaningful units; this saves time, since 

character-by-character processing is slow

you can design a parser to take characters instead of 

tokens as input, but it isn't pretty

35
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Example, take the GCD Program (in C):

int main() { 

int i = getint(), j = getint(); 

while (i != j) { 

if (i > j) i = i - j; 

else j = j - i; 

} 

putint(i); 

}

36
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Lexical and Syntax Analysis
 GCD Program Tokens

 Scanning (lexical analysis) and parsing recognize the structure of the 

program, groups characters into tokens, the smallest meaningful units 

of the program

37
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int main   (   )        {

int i =   getint (   )  ,  j   =   getint (  )  ;

while    (      i !=       j   )   { 

if       (      i >        j   )   i =   i - j   ; 

else     j      =   j        - i ; 

} 

putint (      i )        ; 

} 
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Parsing is recognition of a context-free 

language, e.g., via PDA (Pushdown 

automaton)

Parsing discovers the "context free" 

structure of the program 

Informally, it finds the structure you can 

describe with syntax diagrams (e.g., the 

"circles and arrows" in a language manual)
38
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Context-Free Grammar and Parsing
 Grammar Example for while loops in C:

while-iteration-statement → while ( expression ) statement 

statement, in turn, is often a list enclosed in braces: 

statement → compound-statement 

compound-statement → { block-item-list opt } 

where 

block-item-list opt → block-item-list 

or 

block-item-list opt → ϵ 

and 

block-item-list → block-item 

block-item-list → block-item-list block-item 

block-item → declaration 

block-item → statement39
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Context-Free Grammar and Parsing
 GCD Program Parse Tree:

next slide

A

B
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 Context-Free Grammar and Parsing (continued)
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 Context-Free Grammar and Parsing (continued)
A B
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Semantic analysis is the discovery of meaning 

in the program

The compiler actually does what is called 

STATIC semantic analysis = that's the meaning 

that can be figured out at compile time

Some things (e.g., array subscript out of 

bounds) can't be figured out until run time.  

Things like that are part of the program's 

DYNAMIC semantics.

43
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Symbol table: all phases rely on a symbol 

table that keeps track of all the identifiers 

in the program and what the compiler 

knows about them

This symbol table may be retained (in some 

form) for use by a debugger, even after 

compilation has completed

44
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 Semantic Analysis and Intermediate Code Generation

 Semantic analysis is the discovery of meaning in a program

 tracks the types of both identifiers and expressions

 builds and maintains a symbol table data structure that maps each 

identifier to the information known about it

 context checking

 Every identifier is declared before it is used

 No identifier is used in an inappropriate context (e.g., adding a 

string to an integer)

 Subroutine calls provide the correct number and types of 

arguments. 

 Labels on the arms of a switch statement are distinct constants. 

 Any function with a non-void return type returns a value explicitly
45
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 Semantic analysis implementation

 semantic action routines are invoked by the parser when it 

realizes that it has reached a particular point within a 

grammar rule.

Not all semantic rules can be checked at compile 

time: only the static semantics of the language

 the dynamic semantics of the language must be checked 

at run time

 Array subscript expressions lie within the bounds of the 

array

 Arithmetic operations do not overflow
46
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 Semantic Analysis and Intermediate Code Generation

The parse tree is very verbose: once we know 

that a token sequence is valid, much of the 

information in the parse tree is irrelevant to 

further phases of compilation

 The semantic analyzer typically transforms the parse tree into 

an abstract syntax tree (AST or simply a syntax tree) by 

removing most of the “artificial” nodes in the tree’s interior

 The semantic analyzer also annotates the remaining nodes 

with useful information, such as pointers from identifiers to 

their symbol table entries

 The annotations attached to a particular node are known as its 

attributes47
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GCD Syntax Tree (AST)

48
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 In many compilers, the annotated syntax tree 

constitutes the intermediate form that is passed 

from the front end to the back end. 

 In other compilers, semantic analysis ends with a 

traversal of the tree that generates some other 

intermediate form

One common such form consists of a control 

flow graph whose nodes resemble fragments of 

assembly language for a simple idealized 

machine
49
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 Intermediate Form (IF) is done after semantic 

analysis (if the program passes all checks)

 IFs are often chosen for machine independence, ease 

of optimization, or compactness (these are 

somewhat contradictory)

They often resemble machine code for some 

imaginary idealized machine; e.g. a stack 

machine, or a machine with arbitrarily many 

registers  

Many compilers actually move the code through 

more than one IF
50
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 Target Code Generation:

The code generation phase of a compiler translates 

the intermediate form into the target language

To generate assembly or machine language, the code 

generator traverses the symbol table to assign 

locations to variables, and then traverses the 

intermediate representation of the program, 

generating loads and stores for variable references, 

interspersed with appropriate arithmetic operations, 

tests, and branches

51
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 Target Code Generation:

 Naive x86 assembly language for the GCD program
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 Some improvements are machine independent

Other improvements require an understanding of 

the target machine 

Code improvement often appears as two phases 

of compilation, one immediately after semantic 

analysis and intermediate code generation, the 

other immediately after target code generation

53

An Overview of Compilation


