
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

Data Types

1

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook) and Elsevier

Data Types
We all have developed an intuitive notion of what

types are; what's behind the intuition?

 collection of values from a "domain" (the denotational

approach)

 internal structure of data, described down to the level of a

small set of fundamental types (the structural approach)

 equivalence class of objects (the implementer's approach)

 collection of well-defined operations that can be applied to

objects of that type (the abstraction approach)

2

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Computers are naturally untyped: binary

 Encoding by a type is necessary to store data:

 as integer: -1, -396, 2, 51, 539

 as float: -3.168, 384.0, 1.234e5

 as Strings: "SBCS" (ASCII, Unicode UTF-16, etc.)

 We associate types with:

 Expressions

 Objects (anything that can have a name)
 Type checking can also be done with user-defined types:

speed = 100 miles/hour distance + 5 miles (ok!)

time = 2 hour distance + 5 hours (bad!)

distance = speed * time (miles)

3

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

 What has a type?

 things that have values:
 constants

 variables

 fields

 parameters

 subroutines

 objects

A name (identifier) might have a type, but refer to

an object of a different (compatible type):
double a = 1;

Person p = new Student("John");
4

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

A type system consists of:

(1) a mechanism to define types and

associate them with certain language

constructs, and

(2) a set of rules for type equivalence, type

compatibility, and type inference

5

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

 What are types good for?

 implicit context for operators (“+” is concatenation

for Strings vs. integer summation for integers, etc.)

 type checking - make sure that certain meaningless

operations do not occur
 A violation of the compatibility rules is known as a type clash

 Type checking cannot prevent all meaningless operations

 It catches enough of them to be useful

 Polymorphism results when the compiler finds that it

doesn't need to know certain things

6

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

 STRONG TYPING means that the language

prevents you from applying an operation to data

on which it is not appropriate:

unlike types cause type errors

WEAK TYPING: unlike types cause conversions

7

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

 STATIC TYPING means that the compiler can do

all the checking at compile time:

types are computed and checked at compile

time

DYNAMIN TYPING: types wait until runtime

8

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Java is strongly typed, with a non-trivial mix of things that can be

checked statically and things that have to be checked dynamically

(for instance, for dynamic binding):
String a = 1; //compile-time error

int i = 10.0; //compile-time error

Student s = (Student)(new Object());// runtime

 Python is strong dynamic typed:
a = 1;

b = "2";

a + b run-time error

 Perl is weak dynamic typed:
$a = 1

$b = "2"

$a + $b no error.
9

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

There is a trade-off here:

Strong-static: verbose code (everything is

typed), errors at compile time (cheap)

Strong-dynamic: less writing, errors at

runtime

Weak-dynamic: the least code writing,

potential errors at runtime,

approximations in many cases
10

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Duck typing is concerned with establishing the

suitability of an object for some purpose

JavaScript uses duck dynamic typing
var Duck = function() {

this.quack = function()

{alert('Quaaaaaack!');};

return this;

};

var inTheForest = function(object) {

object.quack();

};

var donald = new Duck();

inTheForest(donald);

11

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

 ORTHOGONALITY:

 A collection of features is orthogonal in a programming

language if there are no restrictions on the ways in which the

features can be combined

 For example:

 Prolog is more orthogonal than ML (because it allows

arrays of elements of different types, for instance)

 It also allows input and output parameters in relations

(any combination)

 Orthogonality is nice primarily because it makes a language

easy to understand, easy to use, and easy to reason about

12

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

What do we mean by type?
 Three main schools of thought:

 Denotational: a type is a shorthand for a set of values (e.g.,

the byte domain is: {0, 1, 2, ... 255})

 Some are simple (set of integers)

 Some are complex (set of functions from variables to

values)

 Everything in the program is computing values in an

appropriate set

 Constructive: a type is built out of components:

int, real, string,

record, tuple, map.

 Abstraction: a type is what it does:

 OO thinking
13

(c) Paul Fodor (CS Stony Brook) and Elsevier

Type Checking
 A type system has rules for:

 type equivalence: when are the types of two values

the same?
 Structural equivalence: two types are the same if they consist of

the same components

 type compatibility: when can a value of type A be

used in a context that expects type B?
 type compatibility is the one of most concern to programmers

 type inference: what is the type of an expression,

given the types of the operands?
a : int b : int

a + b : int

14

(c) Paul Fodor (CS Stony Brook) and Elsevier

Types and Equality Testing
What should a == b do?

Are they the same object?

Bitwise-identical?

Languages can have different equality

operators:

Ex. Java's == vs equals

15

(c) Paul Fodor (CS Stony Brook) and Elsevier

Type Casts
Two casts: converting and non-converting

 Converting cast: changes the meaning of the object type in

question
 cast of double to int in Java

 Non-converting casts: means to interpret the bits as the

same type
Person p = new Student(); // implicit non-converting

Student s = (Student)p; // explicit non-converting cast

 Type coercion: May need to perform a runtime semantic check
 Example: Java references:
Object o = "...";

String s = (String) o;

// maybe after if(o instanceOf String)…
16

(c) Paul Fodor (CS Stony Brook) and Elsevier

Type Checking
 Structural equivalence: most languages agree that the

format of a declaration should not matter:
struct { int b, a; }

is the same as the type:

struct {

int a;

int b;

}

 To determine if two types are structurally equivalent, a

compiler can expand their definitions by replacing any

embedded type names with their respective definitions,

recursively, until nothing is left but a long string of type

constructors, field names, and built-in types.

17

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Name equivalence:
TYPE new_type = old_type;

new_type is said to be an alias for old_type.

 aliases to the same type

TYPE human = person;

A language in which aliased types are considered equivalent is said to

have loose name equivalence

 there are times when aliased types should probably Not be the same:

TYPE celsius_temp = REAL,

fahrenheit_temp = REAL;

VAR c : celsius_temp,

f : fahrenheit_temp;

f := c; (* this should probably be an error *)

A language in which aliased types are considered distinct is said to have

strict name equivalence18

Type Checking

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Parametrized generic data structures:
TYPE stack_element = INTEGER; (* alias *)

MODULE stack;

IMPORT stack_element;

EXPORT push, pop;

...

PROCEDURE push(elem : stack_element);

...

PROCEDURE pop() : stack_element;

...

19

Type Checking

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Types can be discrete (countable/finite in implementation):

boolean:
 in C, 0 or not 0

 integer types:
 different precisions (or even multiple precision)

 different signedness

 Why do we define required precision? Leave it up to implementer

 floating point numbers:
 only numbers with denominators that are a power of 10 can be

represented precisely

 decimal types:
 allow precise representation of decimals

 useful for money: Visual Studio .NET:

decimal myMoney = 300.5m;
20

Classification of Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

character

 often another way of designating an 8 or 16 or 32 bit integer

 Ascii, Unicode (UTF-16, UTF-8), BIG-5, Shift-JIS, latin-1

subrange numbers

 Subset of a type (for i in range(1:10))

 Constraint logic programming: X in 1..100

rational types:

 represent ratios precisely

complex numbers

21

Classification of Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Types can be composite :

records (unions)

arrays
 Strings (most languages represent Strings like arrays)

 list of characters: null-terminated

 With length + get characters

sets

pointers

 lists

files

functions, classes, etc.
22

Classification of Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

Record Types
A record consists of a number of fields:

Each has its own type:
struct MyStruct {

boolean ok;

int bar;

};

MyStruct foo;

There is a way to access the field:
foo.bar; <- C, C++, Java style.

bar of foo <- Cobol/Algol style

person.name <- F-logic path expressions

23

(c) Paul Fodor (CS Stony Brook) and Elsevier

 When a language has value semantics, it's possible to

assign the entire record in one path expression:
a.b.c.d.e = 1; // even used in query languages like XPath

 With statement: accessing a deeply nested field can take a

while. Some languages (JS) allow a with statement:
with a.b.c.d {

e = 1;

f = 2;

}

 Variant records (a and b take up the same memory, saves

memory, but usually unsafe, tagging can make safe again):
union {

int a;

float b;

}
24

Record Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

Records: multiple properties in one complex

type

usually laid out contiguously

possible holes for alignment reasons

smart compilers may rearrange fields to

minimize holes (C compilers promise not to)
See next slide for an example of memory layout

implementation problems are caused by

records containing dynamic arrays

25

Record Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Memory layout

 memory layout for packed element records

26

Record Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Rearranging record fields to minimize holes and keep
fields optimally addressable:

27

Record Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Unions (a.k.a., variant records):

overlay space

cause problems for type checking

Lack of tags means you don't know what is there
 Ability to change tag and then access fields hardly

better: can make fields "uninitialized" when tag is

changed (requires extensive run-time support) –

Memory layout for unions example:

28

Record Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
Arrays are the most common and important

composite data types

Unlike records, which group related fields of

disparate types, arrays are usually homogeneous

 Semantically, they can be thought of as a

mapping from an index type to a component or

element type

29

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
 Arrays = areas of memory of the same type.

 Stored consecutively.

 Element access (read & write) = O(1)
 Possible layouts of memory:

 Row-major and Column-major:

 storing multidimensional arrays in linear memory

 Example: int A[2][3] = { {1, 2, 3}, {4, 5, 6} };

o Row-major: A is laid out contiguously in linear memory as: 123456

offset = row * NUMCOLS + column

o Column-major: A is laid: 142536

offset = row + column*NUMROWS

 Row-major order is used in C, PL/I, Python and others.

 Column-major order is used in Fortran, MATLAB, GNU Octave, R, Rasdaman,

X10 and Scilab.

 Row pointers: Java (next)

30

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
Row-major and Column-major:

31

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
Row pointers:

32

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
Row pointers:

allows rows to be put anywhere - nice for big

arrays on machines with segmentation

problems

avoids multiplication

nice for matrices whose rows are of different

lengths

e.g. an array of strings

requires extra space for the pointers
33

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
 Allocation of arrays in memory:

 global lifetime, static shape — If the shape of an array is

known at compile time, and if the array can exist throughout

the execution of the program, then the compiler can allocate

space for the array in static global memory

 local lifetime, static shape — If the shape of the array is

known at compile time, but the array should not exist

throughout the execution of the program, then space can be

allocated in the subroutine’s stack frame at run time (stack

allocation)

 local lifetime, shape bound at elaboration time (heap

allocation)
34

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Row-major generalizes to higher dimensions, so a

2×3×4 array looks like:

int A[2][3][4] = {{{1,2,3,4}, {5,6,7,8},

{9,10,11,12}}, {{13,14,15,16}, {17,18,19,20},

{21,22,23,24}}};

is laid out in linear memory as: 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23 24

 Efficiency issues due to caching

Can effect behavior of algorithms

 Row/Column major require dimension to be

part of the type.
35

Arrays

(c) Paul Fodor (CS Stony Brook) and Elsevier

Indexing is a special operator, since it can

be used as an l-value

In languages that let you overload

operators, often need two variants:

__getindex__ and __setindex__

36

Arrays

(c) Paul Fodor (CS Stony Brook) and Elsevier

Array slices (sections) in Fortran90

37

Arrays Operations

Can you do them in python? Yes.

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Array slices in python:

 a[start:end] # items start through end-1

 The end value represents the first value that is not in the selected slice

 a[start:] # items start through the rest of the array

 a[:end] # items from the beginning through end-1

 a[:] # a copy of the whole array

 There is also the step value, which can be used with any of the above:

 a[start:end:step] # start through not past end, by step

 The start or end may be a negative number, which means it counts from

the end of the array instead of the beginning

 a[-1] # last item in the array

 a[-2:] # last two items in the array

 a[:-2] # everything except the last two items

38

Arrays Operations

(c) Paul Fodor (CS Stony Brook) and Elsevier

 In some languages, strings are really just arrays

of characters

 In others, they are often special-cased, to give

them flexibility (like polymorphism

or dynamic sizing) that is not available for arrays

in general

It's easier to provide these things for strings than

for arrays in general because strings are one-

dimensional and (more importantly) non-circular

39

Strings

(c) Paul Fodor (CS Stony Brook) and Elsevier

Sets
 Set: contains distinct elements without order.
Pascal supported sets of any discrete type, and provides

union, intersection, and difference operations:
var A, B, C : set of char;

D, E : set of weekday;

...

A := B + C;

(* union; A := {x | x is in B or x is in C} *)

A := B * C;

(* intersection; A := {x | x is in B and x is in C} *)

A := B - C;

(* difference; A := {x | x is in B and x is not in C}*)

40

(c) Paul Fodor (CS Stony Brook) and Elsevier

Sets
Ways to implement sets:

Hash Maps (keys without values or the value is

the same with the key)

When we know # of values, can assign each

value a bit in a bit vector
Things like intersection, union, membership, etc.

can be implemented efficiently with bitwise logical

instructions

Bags: allows the same element to be contained

inside it multiple times.
41

(c) Paul Fodor (CS Stony Brook) and Elsevier

Maps/Dictionaries

Maps keys to values

Multimap: Maps keys to set of values

Can be implemented in the same way

as sets.

42

(c) Paul Fodor (CS Stony Brook) and Elsevier

Lists
Prolog-style linked lists (same with SML)

vs. Python-style Array lists:

Prolog: matching against lists
Head

Tail

Can match more complex patterns than SML:

[a,1,X|T].

43

(c) Paul Fodor (CS Stony Brook) and Elsevier

Representation of Lists in Prolog
List is handled as binary tree in Prolog

[Head | Tail] = .(Head,Tail)

Where Head is any number of atoms and
Tail is a list

Example:

[a,b,c] = .(a,.(b,.(c,[])))

= [a|[b,c]] = [a|[b|[c]]] =

= [a|[b|[c|[]]]] =

= [a,b|[c|nil]]] =

= [a|.(b,.(c,[]))]
44

(c) Paul Fodor (CS Stony Brook) and Elsevier

Pointers/Reference Types
 Pointers serve two purposes:

 dynamic creation of linked data structures, in conjunction with a heap

storage manager

 efficient (and sometimes intuitive) access to elaborated objects (as in C)

 Recursive types – like trees:

 Several languages (e.g. Pascal, Ada 83) restrict pointers to accessing

things in the heap
45

class BinTree {

int value;

BinTree left;

BinTree right;

}

(c) Paul Fodor (CS Stony Brook) and Elsevier

Pointers/Reference Types
 Pointers tend to allow pointer arithmetic: foo += 1

Only useful when in an array

 Leave the bounds of your array, and you can have security

holes

Problem: Can point to something that isn't a

BinTree, or even out of memory.

 In Java, references are assigned an object, and don't

allow pointer arithmetic.

Can be NULL.

46

(c) Paul Fodor (CS Stony Brook) and Elsevier

Pointers/Reference Types
Problems with garbage collection

many languages leave it up to the programmer to

design without garbage creation - this is VERY hard

others arrange for automatic garbage collection

 reference counting

 does not work for circular structures

 works great for strings

47

(c) Paul Fodor (CS Stony Brook) and Elsevier

Pointers/Reference Types
 Garbage collection with reference counts

 The list shown here cannot be found via any program variable,

but because it is circular, every cell contains a nonzero count.
48

(c) Paul Fodor (CS Stony Brook) and Elsevier

Pointers/Reference Types
 Mark-and-sweep:

The collector walks through the heap, tentatively

marking every block as “useless”

Beginning with all pointers outside the heap, the

collector recursively explores all linked data structures

in the program, marking each newly discovered block as

“useful”

 When it encounters a block that is already marked as “useful,”

the collector knows it has reached the block over some

previous path, and returns without recursing.

The collector again walks through the heap, moving

every block that is still marked “useless” to the free list.
49

(c) Paul Fodor (CS Stony Brook) and Elsevier

Files and Input/Output
 Input/output (I/O) facilities allow a program to

communicate with the outside world

 interactive I/O and I/O with files

 Interactive I/O generally implies communication

with human users or physical devices

 Files generally refer to off-line storage implemented by

the operating system

Files may be further categorized into
 temporary files exist for the duration of a single program

run

 persistent files exist before and after a program runs

50

