
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

Subroutines and Control Abstraction

1

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook) and Elsevier

Subroutines
Why use subroutines?

Give a name to a task.

We no longer care how the task is done.

The subroutine call is an expression

Subroutines take arguments (in the formal

parameters)

Values are placed into variables (actual

parameters/arguments), and

A value is (usually) returned
2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Review Of Memory Layout
 Allocation strategies:

Static
 Code

 Globals

 Explicit constants (including strings, sets, other aggregates)

 Small scalars may be stored in the instructions themselves

Stack
 parameters

 local variables

 temporaries

 bookkeeping information

Heap
 dynamic allocation3

(c) Paul Fodor (CS Stony Brook) and Elsevier
4

Review Of Stack Layout

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Contents of a stack

frame:

bookkeeping

 return Program

Counter

 saved registers

 line number

 static link

arguments and returns

 local variables

 temporaries
5

Review Of Stack Layout

(c) Paul Fodor (CS Stony Brook) and Elsevier

Calling Sequences
 Maintenance of stack is responsibility of calling sequence and subroutines

prolog and epilog

 Tasks that must be accomplished on the way into a subroutine include passing

parameters, saving the return address, changing the program counter, changing the

stack pointer to allocate space, saving registers (including the frame pointer) that

contain important values and that may be overwritten by the callee, changing the

frame pointer to refer to the new frame, and executing initialization code for any

objects in the new frame that require it.

 Tasks that must be accomplished on the way out include passing return parameters

or function values, executing finalization code for any local objects that require it,

deallocating the stack frame (restoring the stack pointer), restoring other saved

registers (including the frame pointer), and restoring the program counter.

 space is saved by putting as much in the prolog and epilog as possible

 time may be saved by putting stuff in the caller instead, where more

information may be known

6

(c) Paul Fodor (CS Stony Brook) and Elsevier

 The trickiest division-of-labor issue pertains to saving registers

 The ideal approach is to save precisely those registers that are

both in use in the caller and needed for other purposes in the

callee

 Common strategy is to divide registers into caller-saves and

callee-saves sets

 Local variables and arguments are assigned fixed OFFSETS

from the stack pointer or frame pointer at compile time

 Some storage layouts use a separate arguments pointer

7

Calling Sequences

(c) Paul Fodor (CS Stony Brook) and Elsevier

Calling Sequences (LLVM on ARM)
Caller:
saves into the “local variable and temporaries” area any

caller-saves registers whose values are still needed

puts up to 4 small arguments into registers r0-r3

puts the rest of the arguments into the argument

build area at the top of the current frame

puts return address into register lr, jumps to target

address, and (optionally) changes instruction set

coding

8

(c) Paul Fodor (CS Stony Brook) and Elsevier

Calling Sequences (LLVM on ARM)
 In prolog, Callee

 pushes necessary registers onto stack

 initializes frame pointer by adding small constant to the sp

placing result in r7

 subtracts from sp to make space for local variables,

temporaries, and arg. build area at top of stack

 In epilog, Callee

 puts return value into r0-r3 or memory (as appropriate)

 subtracts small constant from r7, puts result in sp

(effectively deallocates most of frame)

 pops saved registers from stack, pc takes place of lr from

prologue (branches to caller as side effect)

9

(c) Paul Fodor (CS Stony Brook) and Elsevier

Calling Sequences (LLVM on ARM)
 After call, Caller

 moves return value to wherever it's needed

 restores caller-saves registers lazily over time, as their values are needed

 All arguments have space in the stack, whether passed in

registers or not

 The subroutine just begins with some of the arguments already

cached in registers, and 'stale' values in memory

 Optimizing compilers keep things in registers

whenever possible, flushing to memory only when

they run out of registers, or when code may attempt

to access the data through a pointer or from an inner

scope
10

(c) Paul Fodor (CS Stony Brook) and Elsevier

Calling Sequences (LLVM on ARM)

Many parts of the calling sequence,

prologue, and/or epilogue can be

omitted in common cases
leaving things out saves time

simple leaf routines don't use the stack -

don't even use memory – and are

exceptionally fast

11

(c) Paul Fodor (CS Stony Brook) and Elsevier

Parameter Passing
Modes of passing parameters:

Call by value: make a copy of the parameter.

Call by reference (aliasing): allows the function

to change the parameter

out-parameters

Call by sharing: requires parameter to be a

reference itself.

Makes copy of reference that initially refers to the

same object.

E.g., Python, Java Objects.
12

(c) Paul Fodor (CS Stony Brook) and Elsevier

def f(a):

a += 1

x = 0

f(x)

print(x)

value: 0

reference: 1

sharing: 0

13

Parameter Passing

(c) Paul Fodor (CS Stony Brook) and Elsevier

def f(a):

a.foo = 1

x = object()

x.foo = 0

f(x)

print x.foo

value: 0

reference: 1

sharing: 1
14

Parameter Passing

(c) Paul Fodor (CS Stony Brook) and Elsevier

z = object()

z.foo = 1

def f(a):

a = z

x = object()

x.foo = 0

f(x)

print x.foo

value: 0

reference: 1

sharing: 0
15

Parameter Passing

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Call-by-value:

Can be expensive to implement (e.g., copying large

objects).

Can't change a parameter, except by returning a new copy.

 Call-by-reference:

Out-parameters (i.e., the procedure returns values

through its parameters).

Good: More flexibility.

Bad: Can be confusing when arguments change.

16

Parameter Passing

(c) Paul Fodor (CS Stony Brook) and Elsevier

• C/C++ functions
– parameters passed by value (C)

– parameters passed by reference can be
simulated with pointers (C)
void proc(int* x,int y){*x = *x+y }

…

proc(&a,b);

– or directly passed by reference (C++)
void proc(int& x, int y) {x = x + y }

proc(a,b);

17

Parameter Passing

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Call-by-sharing:

No copying of large objects.

No implicit out parameters.

Can change objects, but not arguments.

18

Parameter Passing

(c) Paul Fodor (CS Stony Brook) and Elsevier

Other fun tricks with parameters:

Named parameters (pass-by-name): the

values are passed by associating each one

with a parameter name. E.g.,in Objective-C:
[window addNewControlWithTitle:@"Title"

xPosition:20

yPosition:50

width:100

height:50

drawingNow:YES];

19

Parameter Passing

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Default parameters: default values are provided to the

function
 C++ example:

void PrintValues(int nValue1, int nValue2=10){

using namespace std;

cout << "1st value: " << nValue1 << endl;

cout << "2nd value: " << nValue2 << endl;

}

int main(){

PrintValues(1);

// nValue2 will use default parameter of 10

PrintValues(3, 4);

// override default value for nValue2

}

20

Parameter Passing

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Variadic functions: functions of indefinite arities
 C, Objective-C and C++:

double average(int count, ...){

va_list ap;

int j;

double tot = 0;

//Requires the last fixed parameter (to get the address)

va_start(ap, count);

for(j=0; j<count; j++)

tot+=va_arg(ap, double);

//Requires the type to cast to

// Also increments ap to the next argument.

va_end(ap);

return tot/count;

}

21

Parameter Passing

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Pass-by-name in ALGOL 60:

 the body of a function is interpreted at call time after textually

substituting the actual parameters into the function body.

 In this sense the evaluation method is similar to that of C

preprocessor macros.

 By substituting the actual parameters into the function body,

the function body can both read and write the given

parameters. In this sense the evaluation method is similar to

pass-by-reference.

 The difference is that since with pass-by-name the parameter

is evaluated inside the function, a parameter such as a[i] depends on the

current value of i inside the function, rather than referring to the value

of a[i] before the function was called.
22

Parameter Passing

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Pass-By-Name Security Problem:

procedure swap (a, b);

integer a, b, temp;

begin

temp := a;

a := b;

b:= temp

end;

Call swap(i, x[i]); // What happens?

temp := i; i := x[i]; x[i] := temp

23

Before call: i = 2 x[2] = 5

After call: i = 5 x[5] = 5

Swap doesn't work!

Parameter Passing

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Pass by Value-Returned (or value-result): pass a value-

returned parameter by address (just like pass by reference

parameters), but, upon entry, the procedure makes a temporary

copy of this parameter and uses the copy while the procedure is

executing.

 When the procedure finishes, it copies the temporary copy back to the

original parameter.

 In some instances, pass by value-returned is more efficient than pass by

reference, in others it is less efficient:

 If a procedure only references the parameter a couple of times, copying

the parameter's data is expensive.

 If the procedure uses this parameter often, the procedure amortizes the

fixed cost of copying the data over many inexpensive accesses to the

local copy.24

Parameter Passing

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Pass by Result: almost identical to pass by value-returned:

the procedure uses a local copy of the variable and then

stores the result through the pointer when returning.

The difference between pass by value-returned and pass by

result is that when passing parameters by result you do

not copy the data upon entering the procedure.

 Pass by result parameters are for returning values, not passing

data to the procedure.

 Therefore, pass by result is slightly more efficient than pass by

value-returned since you save the cost of copying the data into

the local variable.

25

Parameter Passing

(c) Paul Fodor (CS Stony Brook) and Elsevier
26

Parameter Passing

(c) Paul Fodor (CS Stony Brook) and Elsevier

Returning from a Function
Different ways of returning a value from a

function.

Return statement

Assigning to the function name (Pascal,

Fortran, Algol)
This interacts poorly w/ scoping and recursion

Special return location
Eiffel calls it Result

Means we don't have to allocate a variable to

store the result in

27

(c) Paul Fodor (CS Stony Brook) and Elsevier

Generic Subroutines and Modules
 Generic modules or classes are particularly valuable for

creating containers: data abstractions that hold a collection of

objects

 When defining a function, we don't need to give all the types

 When we invoke the class or function we specify the type:

parametric polymorphism

 Generic subroutines (methods) are needed in generic modules

(classes), and may also be useful in their own right (see Java

static generic methods)

28

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Generic programming in programming languages:

 One approach is implicit parametric polymorphism:
 Dynamic typing.

 Just try running the code.

 No checking at compile time - not type safe.

 Python approach.

 An alternative is to have a function that has parameterized

types: explicit parametric polymorphism
 Generic classes and methods

 Can be static typed checked

 Java approach
static boolean <T> allEqual(T a, T b, T c) {

return a.equals(b) && b.equals(c);

}

29

Generic Subroutines and Modules

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Implementation approaches:
 C++:

 generates new code for each type:

 linker can help with that

 allows specialization

 can make the code bigger

 can use types in the function: new T();

 Templates can cause horrible error messages

 Java
 type erasure: replace all type parameters in generic types with their

bounds

 Only one instance of the code at run time

 Can't do operations involving the type

30

Generic Subroutines and Modules

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Generics are better than macros:

E.g., take the macro:
#define min(a, b) (a < b) ? a : b

Problem: min(a++, b++)
 Variables a++ or b++ evaluated more than once

C++ generic:
template <class T>

T min(T a, T b) {

return (a < b) ? a : b;

}

 Far fewer problems: variables evaluated only once.

31

Generic Subroutines and Modules

(c) Paul Fodor (CS Stony Brook) and Elsevier

Exception Types
What is an exception?

a hardware-detected run-time error or

unusual condition detected by software

Examples

arithmetic overflow

end-of-file on input

wrong type for input data

user-defined conditions, not necessarily errors

32

(c) Paul Fodor (CS Stony Brook) and Elsevier

 What is an exception handler?

code executed when exception occurs

may need a different handler for each type of

exception

 Why design in exception handling facilities?

allow user to explicitly handle errors in a uniform

manner

33

Exception Handling

(c) Paul Fodor (CS Stony Brook) and Elsevier

Coroutines
Coroutines are execution contexts that exist

concurrently, but that execute one at a time, and

that transfer control to each other explicitly, by

name
Because they are concurrent (i.e., simultaneously

started but not completed), coroutines cannot

share a single stack

34

(c) Paul Fodor (CS Stony Brook) and Elsevier

Coroutines
 As a simple application, consider a “screen-saver” program,

which paints a mostly black picture on the screen of an inactive

workstation, and which keeps the picture moving (to avoid

phosphor or liquid-crystal “burn-in”), and also performs “sanity

checks” on the file system in the background, looking for

corrupted files
 We could write a loop which does screen update and check in

one block, but this mixes tasks

 Better: use coroutines
coroutine check file system

for all files …

coroutine update screen

loop

update screen
35

(c) Paul Fodor (CS Stony Brook) and Elsevier

Coroutines
 Can implement threads

 Because they are concurrent (i.e., simultaneously started but

not completed), coroutines cannot share a single stack: their

subroutine calls and returns, taken as a whole, do not occur in

last-in-first-out order.
 If each coroutine is declared at the outermost level of lexical

nesting, then their stacks are entirely disjoint
 The simplest solution is to give each coroutine a fixed amount of

statically allocated stack space
 But they may still use static links for scoping

36

(c) Paul Fodor (CS Stony Brook) and Elsevier

Figure 8.6 A cactus stack. Each branch to the side represents the creation of a coroutine (A, B, C, and D). The static nesting of blocks is

shown at right. Static links are shown with arrows. Dynamic links are indicated simply by vertical arrangement: each routine has called the

one above it. (Coroutine B, for example, was created by the main program, M. B in turn called subroutine S and created coroutine D.)

37

Coroutines

(c) Paul Fodor (CS Stony Brook) and Elsevier

Event types
 An event is something to which a running program (a process)

needs to respond, but which occurs outside the program, at an

unpredictable time.
 The most common events are inputs to a graphical user interface (GUI)

system: keystrokes, mouse motions, button clicks.
 They may also be network operations or other asynchronous I/O activity: the arrival

of a message, the completion of a previously requested disk operation

 A handler—a special subroutine— is invoked when a given event occurs.

 Thread-Based Handlers:
 In modern programming languages and run-time systems, events are often handled by

a separate thread of control, rather than by spontaneous subroutine calls
 With a separate handler thread, input can again be synchronous: the handler thread makes a

system call to request the next event, and waits for it to occur.

 Meanwhile, the main program continues to execute.

 Many contemporary GUI systems are thread-based.

 most use anonymous inner classes for handlers

38

(c) Paul Fodor (CS Stony Brook) and Elsevier

Event types

39

(c) Paul Fodor (CS Stony Brook) and Elsevier

Summary
 Functional Abstraction:

 Functions help us abstract the code:
 by being able to give parts of the program meaningful name

 by creating scopes in which data and control flow is controlled.

 3 main calling conventions.
 Pass by value.

 Pass by reference.

 Pass by sharing.

 Generics

 Exceptions

 Coroutines

 Events

40

