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Subroutines
Why use subroutines?

Give a name to a task.

We no longer care how the task is done.

The subroutine call is an expression

Subroutines take arguments (in the formal 

parameters)

Values are placed into variables (actual 

parameters/arguments), and

A value is (usually) returned
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Review Of Memory  Layout
 Allocation strategies:

Static
 Code

 Globals

 Explicit constants (including strings, sets, other aggregates)

 Small scalars may be stored in the instructions themselves

Stack
 parameters

 local variables

 temporaries

 bookkeeping information

Heap
 dynamic allocation3
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 Contents of a stack 

frame:

bookkeeping

 return Program 

Counter

 saved registers

 line number

 static link

arguments and returns

 local variables

 temporaries
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Calling Sequences
 Maintenance of stack is responsibility of calling sequence and subroutines 

prolog and epilog

 Tasks that must be accomplished on the way into a subroutine include passing 

parameters, saving the return address, changing the program counter, changing the 

stack pointer to allocate space, saving registers (including the frame pointer) that 

contain important values and that may be overwritten by the callee, changing the 

frame pointer to refer to the new frame, and executing initialization code for any 

objects in the new frame that require it.

 Tasks that must be accomplished on the way out include passing return parameters 

or function values, executing finalization code for any local objects that require it, 

deallocating the stack frame (restoring the stack pointer), restoring other saved 

registers (including the frame pointer), and restoring the program counter.

 space is saved by putting as much in the prolog and epilog as possible

 time may be saved by putting stuff in the caller instead, where more 

information may be known
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 The trickiest division-of-labor issue pertains to saving registers

 The ideal approach is to save precisely those registers that are 

both in use in the caller and needed for other purposes in the 

callee

 Common strategy is to divide registers into caller-saves and 

callee-saves sets

 Local variables and arguments are assigned fixed OFFSETS 

from the stack pointer or frame pointer at compile time

 Some storage layouts use a separate arguments pointer
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Calling Sequences (LLVM on ARM)
Caller:
saves into the “local variable and temporaries” area any 

caller-saves registers whose values are still needed

puts up to 4 small arguments into registers r0-r3

puts the rest of the arguments into the argument 

build area at the top of the current frame

puts return address into register lr, jumps to target 

address, and (optionally) changes instruction set 

coding
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Calling Sequences (LLVM on ARM)
 In prolog, Callee

 pushes necessary registers onto stack

 initializes frame pointer by adding small constant to the sp

placing result in r7

 subtracts from sp to make space for local variables, 

temporaries, and arg. build area at top of stack

 In epilog, Callee

 puts return value into r0-r3 or memory (as appropriate)

 subtracts small constant from r7, puts result in sp

(effectively deallocates most of frame)

 pops saved registers from stack, pc takes place of lr from 

prologue (branches to caller as side effect)
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Calling Sequences (LLVM on ARM)
 After call, Caller

 moves return value to wherever it's needed

 restores caller-saves registers lazily over time, as their values are needed

 All arguments have space in the stack, whether passed in 

registers or not

 The subroutine just begins with some of the arguments already 

cached in registers, and 'stale' values in memory

 Optimizing compilers keep things in registers 

whenever possible, flushing to memory only when 

they run out of registers, or when code may attempt 

to access the data through a pointer or from an inner 

scope
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Calling Sequences (LLVM on ARM)

Many parts of the calling sequence, 

prologue, and/or epilogue can be 

omitted in common cases
leaving things out saves time

simple leaf routines don't use the stack -

don't even use memory – and are 

exceptionally fast
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Parameter Passing
Modes of passing parameters:

Call by value: make a copy of the parameter.

Call by reference (aliasing): allows the function 

to change the parameter

out-parameters

Call by sharing: requires parameter to be a 

reference itself.

Makes copy of reference that initially refers to the 

same object.

E.g., Python, Java Objects.
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def f(a):

a += 1

x = 0

f(x)

print(x)

value: 0 

reference: 1 

sharing: 0
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def f(a):

a.foo = 1

x = object()

x.foo = 0

f(x)

print x.foo

value: 0 

reference: 1 

sharing: 1
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z = object()

z.foo = 1

def f(a):

a = z

x = object()

x.foo = 0

f(x)

print x.foo

value: 0 

reference: 1 

sharing: 0
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 Call-by-value:

Can be expensive to implement (e.g., copying large 

objects).

Can't change a parameter, except by returning a new copy.

 Call-by-reference:

Out-parameters (i.e., the procedure returns values 

through its parameters). 

Good: More flexibility.

Bad: Can be confusing when arguments change.
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• C/C++ functions
– parameters passed by value (C)

– parameters passed by reference can be 
simulated with pointers (C) 
void proc(int* x,int y){*x = *x+y } 

…

proc(&a,b);

– or directly passed by reference (C++)
void proc(int& x, int y) {x = x + y }

proc(a,b);
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 Call-by-sharing:

No copying of large objects.

No implicit out parameters.

Can change objects, but not arguments.
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Other fun tricks with parameters:

Named parameters (pass-by-name): the 

values are passed by associating each one 

with a parameter name. E.g.,in Objective-C:
[window addNewControlWithTitle:@"Title"

xPosition:20

yPosition:50

width:100

height:50

drawingNow:YES];
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 Default parameters: default values are provided to the 

function
 C++ example:

void PrintValues(int nValue1, int nValue2=10){

using namespace std;

cout << "1st value: " << nValue1 << endl;

cout << "2nd value: " << nValue2 << endl;

}

int main(){

PrintValues(1); 

// nValue2 will use default parameter of 10

PrintValues(3, 4); 

// override default value for nValue2

}
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 Variadic functions: functions of indefinite arities
 C, Objective-C and C++:

double average(int count, ...){

va_list ap;     

int j;    

double tot = 0;

//Requires the last fixed parameter (to get the address)

va_start(ap, count); 

for(j=0; j<count; j++)

tot+=va_arg(ap, double); 

//Requires the type to cast to

// Also increments ap to the next argument.

va_end(ap);

return tot/count;

}
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 Pass-by-name in ALGOL 60: 

 the body of a function is interpreted at call time after textually 

substituting the actual parameters into the function body. 

 In this sense the evaluation method is similar to that of C 

preprocessor macros.

 By substituting the actual parameters into the function body, 

the function body can both read and write the given 

parameters. In this sense the evaluation method is similar to 

pass-by-reference.

 The difference is that since with pass-by-name the parameter 

is evaluated inside the function, a parameter such as a[i] depends on the 

current value of i inside the function, rather than referring to the value 

of a[i] before the function was called.
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 Pass-By-Name Security Problem:

procedure swap (a, b);

integer a, b, temp;

begin

temp := a;

a := b;

b:= temp

end;

Call swap(i, x[i]); // What happens?

temp := i;  i := x[i]; x[i] := temp 
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Before call: i = 2 x[2] = 5

After call: i = 5 x[5] = 5

Swap doesn't work!
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 Pass by Value-Returned (or value-result): pass a value-

returned parameter by address (just like pass by reference 

parameters), but, upon entry, the procedure makes a temporary 

copy of this parameter and uses the copy while the procedure is 

executing.

 When the procedure finishes, it copies the temporary copy back to the 

original parameter.

 In some instances, pass by value-returned is more efficient than pass by 

reference, in others it is less efficient:

 If a procedure only references the parameter a couple of times, copying 

the parameter's data is expensive.

 If the procedure uses this parameter often, the procedure amortizes the 

fixed cost of copying the data over many inexpensive accesses to the 

local copy.24
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 Pass by Result: almost identical to pass by value-returned: 

the procedure uses a local copy of the variable and then 

stores the result through the pointer when returning. 

The difference between pass by value-returned and pass by 

result is that when passing parameters by result you do 

not copy the data upon entering the procedure. 

 Pass by result parameters are for returning values, not passing 

data to the procedure. 

 Therefore, pass by result is slightly more efficient than pass by 

value-returned since you save the cost of copying the data into 

the local variable.
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Returning from a Function
Different ways of returning a value from a 

function.

Return statement

Assigning to the function name (Pascal, 

Fortran, Algol)
This interacts poorly w/ scoping and recursion

Special return location
Eiffel calls it Result

Means we don't have to allocate a variable to 

store the result in
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Generic Subroutines and Modules
 Generic modules or classes are particularly valuable for 

creating containers: data abstractions that hold a collection of 

objects

 When defining a function, we don't need to give all the types

 When we invoke the class or function we specify the type: 

parametric polymorphism

 Generic subroutines (methods) are needed in generic modules 

(classes), and may also be useful in their own right (see Java 

static generic methods)
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 Generic programming in programming languages:

 One approach is implicit parametric polymorphism:
 Dynamic typing.

 Just try running the code.

 No checking at compile time - not type safe.

 Python approach.

 An alternative is to have a function that has parameterized 

types: explicit parametric polymorphism
 Generic classes and methods

 Can be static typed checked 

 Java approach
static boolean <T> allEqual(T a, T b, T c) {

return a.equals(b) && b.equals(c);

}
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 Implementation approaches:
 C++:

 generates new code for each type:

 linker can help with that

 allows specialization

 can make the code bigger

 can use types in the function: new T();

 Templates can cause horrible error messages 

 Java 
 type erasure: replace all type parameters in generic types with their 

bounds

 Only one instance of the code at run time

 Can't do operations involving the type
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 Generics are better than macros:

E.g., take the macro:
#define min(a, b) (a < b) ? a : b

Problem:    min(a++, b++)
 Variables a++ or b++ evaluated more than once

C++ generic:
template <class T> 

T min(T a, T b) {

return (a < b ) ? a : b;     

}

 Far fewer problems: variables evaluated only once.
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Exception Types
What is an exception?

a hardware-detected run-time error or 

unusual condition detected by software

Examples

arithmetic overflow

end-of-file on input

wrong type for input data

user-defined conditions, not necessarily errors
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 What is an exception handler?

code executed when exception occurs

may need a different handler for each type of 

exception

 Why design in exception handling facilities?

allow user to explicitly handle errors in a uniform 

manner

33
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Coroutines
Coroutines are execution contexts that exist 

concurrently, but that execute one at a time, and 

that transfer control to each other explicitly, by 

name
Because they are concurrent (i.e., simultaneously 

started but not completed), coroutines cannot 

share a single stack
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Coroutines
 As a simple application, consider a “screen-saver” program, 

which paints a mostly black picture on the screen of an inactive 

workstation, and which keeps the picture moving (to avoid 

phosphor or liquid-crystal “burn-in”), and also performs “sanity 

checks” on the file system in the background, looking for 

corrupted files
 We could write a loop which does screen update and check in 

one block, but this mixes tasks

 Better: use coroutines
coroutine check file system 

for all files …

coroutine update screen

loop

update screen
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Coroutines
 Can implement threads

 Because they are concurrent (i.e., simultaneously started but 

not completed), coroutines cannot share a single stack: their 

subroutine calls and returns, taken as a whole, do not occur in 

last-in-first-out order. 
 If each coroutine is declared at the outermost level of lexical 

nesting, then their stacks are entirely disjoint
 The simplest solution is to give each coroutine a fixed amount of 

statically allocated stack space
 But they may still use static links for scoping
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Figure 8.6 A cactus stack. Each branch to the side represents the creation of a coroutine ( A, B, C, and D). The static nesting of blocks is 

shown at right. Static links are shown with arrows. Dynamic links are indicated simply by vertical arrangement: each routine has called the

one above it. (Coroutine B, for example, was created by the main program, M. B in turn called subroutine S and created coroutine D.)
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Event types
 An event is something to which a running program (a process) 

needs to respond, but which occurs outside the program, at an 

unpredictable time.
 The most common events are inputs to a graphical user interface (GUI) 

system: keystrokes, mouse motions, button clicks.
 They may also be network operations or other asynchronous I/O activity: the arrival 

of a message, the completion of a previously requested disk operation

 A handler—a special subroutine— is invoked when a given event occurs.

 Thread-Based Handlers:
 In modern programming languages and run-time systems, events are often handled by 

a separate thread of control, rather than by spontaneous subroutine calls
 With a separate handler thread, input can again be synchronous: the handler thread makes a 

system call to request the next event, and waits for it to occur. 

 Meanwhile, the main program continues to execute. 

 Many contemporary GUI systems are thread-based.

 most use anonymous inner classes for handlers
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Event types
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Summary
 Functional Abstraction:

 Functions help us abstract the code:
 by being able to give parts of the program meaningful name

 by creating scopes in which data and control flow is controlled.

 3 main calling conventions.
 Pass by value.

 Pass by reference.

 Pass by sharing.

 Generics

 Exceptions

 Coroutines

 Events
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