
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

Functional Languages

1

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook) and Elsevier

Historical Origins
 The imperative and functional models grew out of work

undertaken Alan Turing, Alonzo Church, Stephen

Kleene, Emil Post, etc. ~1930s

different formalizations of the notion of an algorithm,

or effective procedure, based on automata, symbolic

manipulation, recursive function definitions, and

combinatorics

 These results led Church to conjecture that any

intuitively appealing model of computing would be

equally powerful as well

 this conjecture is known as Church’s thesis
2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Turing’s model of computing was the Turing

machine a sort of pushdown automaton using an

unbounded storage “tape”

the Turing machine computes in an imperative

way, by changing the values in cells of its tape –

like variables just as a high level imperative

program computes by changing the values of

variables

3

Historical Origins

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Church’s model of computing is called the lambda

calculus

based on the notion of parameterized expressions

with each parameter introduced by an occurrence of

the letter λ.

Lambda calculus was the inspiration for functional

programming.

Computation by substitution of parameters into

expressions, just as computation by passing

arguments to functions.

Constructive proof that transforms input into output
4

Historical Origins

(c) Paul Fodor (CS Stony Brook) and Elsevier

Lambda Calculus
 λ = lambda

 lambda terms consist of:

variables (a)

 lambda abstraction (λa.t)

application (t s)

 Variables can be bound by lambda abstractions or free:

Example: in λa.ab, a is bound, b is free.

5

(c) Paul Fodor (CS Stony Brook) and Elsevier

 alpha equivalence: λa.a = λb.b

 beta substitution: (λa.aa) b = bb

problem: what happens if we substitute a free

variable into a place where it would be bound?

Example: (λa.(λb.ab)) b c
 wrong: (λb.λb) c

cc

 right: use alpha equivalence to ensure this doesn't happen.

(λa.(λd.ad)) b c

(λd.bd) c

bc

6

Lambda Calculus

(c) Paul Fodor (CS Stony Brook) and Elsevier

Functional Programming Concepts
 Functional languages such as Lisp, Scheme, FP, ML,

Miranda, and Haskell are an attempt to realize Church's

lambda calculus in practical form as a programming

language

 The key idea: do everything by composing functions

no mutable state

no side effects

 So how do you get anything done in a functional language?

Recursion takes the place of iteration

First-call functions take value inputs

Higher-order functions take a function as input
7

(c) Paul Fodor (CS Stony Brook) and Elsevier

Functional Programming Concepts
• Recursion even does a nifty job of replacing

looping
x := 0; i := 1; j := 100;

while i < j do

x := x + i*j; i := i + 1;

j := j - 1

end while

return x

becomes f(0,1,100), where
f(x,i,j) == if i < j then
f (x+i*j, i+1, j-1) else x

8

(c) Paul Fodor (CS Stony Brook) and Elsevier

Necessary features, many of which are

missing in some imperative languages:

high-order functions

powerful list facilities

structured function returns

fully general aggregates

garbage collection

9

Functional Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

 LISP family of programming languages:

 Pure (original) Lisp

 Interlisp, MacLisp, Emacs Lisp

 Common Lisp

 Scheme
 All of them use s-expression syntax: (+ 1 2).

 LISP is old - dates back to 1958 - only Fortran is older.

 Anything in parentheses is a function call (unless quoted)

 (+ 1 2) evaluates to 3

((+ 1 2)) <- error, since 3 is not a function.
 by default, s-expressions are evaluated. We can use the

quote special form to stop that: (quote (1 2 3))
 short form: '(1 2 3) is a list containing +, 1, 2

10

Functional Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Pure Lisp is purely functional; all other Lisps have

imperative features

 All early Lisps: dynamically scoped

Not clear whether this was deliberate or if it

happened by accident

 Scheme and Common Lisp are statically scoped

Common Lisp provides dynamic scope as an option

for explicitly-declared special functions

Common Lisp now THE standard Lisp

 Very big; complicated

11

Functional Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

A Review/Overview of Scheme
Interpreter runs a read-eval-print loop

Things typed into the interpreter are evaluated

(recursively) once

Names: Scheme is generally a lot more liberal

with the names it allows:

 foo? bar+ baz- <--- all valid names

x$_%L&=*! <--- valid name

names by default evaluate to their value

12

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Conditional expressions:

(if a b c) = if a then b else c

Example: (if (< 2 3) 4 5) ⇒ 4

Example 2: only one of the sub-expressions

evaluates (based on if the condition is true):

(if (> a b) (- a 100) (- b 100))

 Imperative stuff

assignments

sequencing (begin)

 iteration

 I/O (read, display)
13

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Lamba expressions:

 (lambda (x) (* x x))

 We can apply one or more parameters to it:
((lambda (x) (* x x)) 3)

(* 3 3)

9

 Bindings: (let ((a 1) (b 2)) (+ a b))

 in let, all names are bound at once. So if we did:
(let ((a 1) (b a)) (+ a b))

 we'd get name from outer scope. It prevents recursive calls.

 letrec puts bindings into effect while being computed (allows

for recursive calls):
(letrec ((fac (lambda (x) (if (= x 0) 1 (* x (fac (- x 1))))))) (fac 10))

14

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Define binds a name in the global scope:
(define square (lambda (x) (* x x)))

 Lists:

pull apart lists:
(car '(1 2 3)) -> 1

(cdr '(1 2 3)) -> (2 3)

(cons 1 '(2 3)) -> (1 2 3)

 Equality testing:

(= a b) <- numeric equality

(eq? 1 2) <- shallow comparison

(equal? a b) <- deep comparison

15

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

Control-flow:

(begin (display "foo") (display "bar"))

Special functions:

eval = takes a list and evaluates it.

A list: '(+ 1 2) -> (+ 1 2)

Evaluation of a list: (eval '(+ 1 2)) -> 3

apply = take a lambda and list: calls the

function with the list as an argument.

16

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Evaluation order:

 applicative order:
 evaluates arguments before passing them to a function:

((lambda (x) (* x x)) (+ 1 2))

((lambda (x) (* x x) 3)

(* 3 3)

9

 normal order:
 passes in arguments before evaluating them:

((lambda (x) (* x x)) (+ 1 2))

(* (+ 1 2) (+ 1 2))

(* 3 3)

9

 Note: we might want normal order in some code.
(if-tuesday (do-tuesday)) // do-tuesday might print something and we want it only

if it’s Tuesday

17

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

 ((lambda (x y) (if x (+ y y) 0) t (* 10 10))

 Applicative order:

((lambda (x y) (if x (+ y y)) t 100)

(if t (+ 100 100) 0)

(+ 100 100)

200

 (four steps !)

 Normal Order:

(if t (+ (* 10 10) (* 10 10)) 0)

(+ (* 10 10) (* 10 10))

(+ 100 (* 10 10))

(+ 100 100)

200

 (five steps !)
18

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

 What if we passed in nil instead?

 ((lambda (x y) (if x (+ y y) 0) nil (* 10 10))

 Applicative:

((lambda (x y) (if x (+ y y)) nil 100)

(if nil (+ 100 100) 0)

0

 (three steps!)

 Normal

(if nil (+ (* 10 10) (* 10 10)) 0)

0

 (two steps)

 Both applicative and normal order can do extra work!

 Applicative is usually faster, and doesn't require us to pass around

closures all the time.

19

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Strict vs Non-Strict:

 We can have code that has an undefined result.
 (f) is undefined for

(define f (lambda () (f))) - infinite recursion

(define f (lambda () (/ 1 0)) - divide by 0.

 A pure function is:
 strict if it is undefined when any of its arguments is undefined,

 non-strict if it is defined even when one of its arguments is

undefined.

 Applicative order == strict.

 Normal order == can be non-strict.

 ML, Scheme (except for macros) == strict.

 Haskell == nonstrict.
20

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Lazy Evaluation:

 Combines non-strictness of normal-order evaluation with the

speed of applicative order.

 Idea: - Pass in closure. - Evaluate it once. - Store result in

memo. - Next time, just return memo.

 Example 1: ((lambda (a b) (if a (+ b b) nil)) t (expensivefunc))
(if t (+ (expensivefunc) (expensivefunc)) nil)

(+ (expensivefunc) (expensivefunc))

(+ 42 (expensivefunc)) <- takes a long time.

(+ 42 42) <- very fast.

84

 Example2: ((lambda (a b) (if a (+ b b) nil)) nil (expensivefunc))
(if nil (+ (expensivefunc) (expensivefunc)) nil)

nil never evaluated expensivefunc! win!
21

A Review/Overview of Scheme

(c) Paul Fodor (CS Stony Brook) and Elsevier

Currying
 Example: let a function add that take two arguments:

int add(int a, int b) { return a + b; }

 with the type signature:

(int, int) -> int , i.e., takes 2 integers, returns an int.

 We can curry this, to create a function with signature:

int -> (int -> int)

 using the curried version:

f = add(1)

print f(2)

-> prints out 3.

 Really useful in practice, even in non-fp languages.

 Some languages use currying as their main function-calling semantics

(ML): fun add a b : int = a + b; ML's calling conventions make

this easier to work with: add 1

add 1 2 (There's no need to delimit arguments.)
22

Named for Haskell Curry

(c) Paul Fodor (CS Stony Brook) and Elsevier

Pattern Matching
 It's common for FP languages to include pattern

matching operations:

 matching on value,

 matching on type,

 matching on structure (useful for lists).

ML example:

fun sum_even l =

case l of

nil => 0

| b :: nil => 0

| a :: b :: t => h + sum_even t;
23

(c) Paul Fodor (CS Stony Brook) and Elsevier

Memoization
 Caching Results of Previous Computations (LISP):

(defun fib (n) (if (<= n 1) 1 (+ (fib (- n 1)) (fib (- n 2)))))

(setf memo-fib (memo #'fib))

(funcall memo-fib 3)

=> 3

(fib 5)

=> 8

(fib 6)

=> 13)

24

(c) Paul Fodor (CS Stony Brook) and Elsevier

LISP
(+ 2 2)

=> 4

(+ 1 2 3 4 5 6 7 8 9 10)

=> 55

(- (+ 9000 900 90 9) (+ 5000 500 50 5))

=> 4444)

(append '(Pat Kim) '(Robin Sandy))

=> (PAT KIM ROBIN SANDY)

'(pat Kim)

=> (PAT KIM))
25

(c) Paul Fodor (CS Stony Brook) and Elsevier

(setf p '(John Q Public))

(first p))

(rest p))

(second p))

(third p))

(fourth p))

(length p))

(setf names '((John Q Public) (Malcolm X) (Miss Scarlet))

(first (first names))

=> JOHN)

(apply #'+ '(1 2 3 4))

=> 10

26

LISP

(c) Paul Fodor (CS Stony Brook) and Elsevier

(remove 1 '(1 2 3 2 1 0 -1))

=> (2 3 2 0 -1)

 Destructive lists:

(setq x '(a b c))

(setq y '(1 2 3))

(nconc x y)

=> (a b c 1 2 3)

x

=> (a b c 1 2 3)

y

=> (1 2 3)
27

LISP

(c) Paul Fodor (CS Stony Brook) and Elsevier

• OCaml is a descendent of ML, and
cousin to Haskell, F#
– “O” stands for objective, referencing the

object orientation introduced in the 1990s
– Interpreter runs a read-eval-print loop like

in Scheme
– Things typed into the interpreter are

evaluated (recursively) once
– Parentheses are NOT function calls, but

indicate tuples

28

A Bit of OCaml

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Ocaml:

 Boolean values

 Numbers

 Chars

Strings

More complex types created by lists, arrays,

records, objects, etc.

(+ - * /) for ints, (+. -. *. /.) for floats

 let keyword for creating new names

let average = fun x y -> (x +. y)

/. 2.;;29

A Bit of OCaml

(c) Paul Fodor (CS Stony Brook) and Elsevier

• Ocaml:
–Variant Types

type 'a tree = Empty | Node of 'a * 'a tree * 'a tree;;

–Pattern matching

let atomic_number (s, n, w) = n;;

let mercury = ("Hg", 80, 200.592);;

atomic_number mercury;; ⇒ 80

30

A Bit of OCaml

(c) Paul Fodor (CS Stony Brook) and Elsevier

 OCaml:

 Different assignments for references ‘:=’ and array elements

‘<-’

let insertion_sort a =

for i = 1 to Array.length a - 1 do

let t = a.(i) in

let j = ref i in

while !j > 0 && t < a.(!j - 1) do

a.(!j) <- a.(!j - 1);

j := !j - 1

done;

a.(!j) <- t

done;;

31

A Bit of OCaml

(c) Paul Fodor (CS Stony Brook) and Elsevier

 OCaml:

 Different assignments for references ‘:=’ and array elements

‘<-’

let insertion_sort a =

for i = 1 to Array.length a - 1 do

let t = a.(i) in

let j = ref i in

while !j > 0 && t < a.(!j - 1) do

a.(!j) <- a.(!j - 1);

j := !j - 1

done;

a.(!j) <- t

done;;

32

A Bit of OCaml

(c) Paul Fodor (CS Stony Brook) and Elsevier

Functional Programming in Perspective

 Advantages of functional languages

 lack of side effects makes programs easier to

understand

 lack of explicit evaluation order (in some languages)

offers possibility of parallel evaluation (e.g.

MultiLisp)

 lack of side effects and explicit evaluation order

simplifies some things for a compiler

programs are often surprisingly short

 language can be extremely small and yet powerful

33

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Problems

difficult (but not impossible!) to implement

efficiently on von Neumann machines

 lots of copying of data through parameters

 frequent procedure calls

 heavy space use for recursion

 requires garbage collection

 requires a different mode of thinking by the programmer

 difficult to integrate I/O into purely functional model

34

Functional Programming in Perspective

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Other languages are embracing and integrating the concepts of

Functional Programming:

 Java 8 - Higher Order Functions:

 Methods: Math#add(int, int) – static

Math#add(int)(int) – dynamic method

 If an interface contains one method, then a method with the

right signature can be an instance that implements that

interface:

button.addActionListener(this#onButton(ActionEvent))

 Also adds inner methods, anonymous inner methods.

35

Functional Programming in Perspective

