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(c) Paul Fodor (CS Stony Brook) and Elsevier

Languages
Paradigms of Programming Languages:
 Imperative = Turing machines

Functional Programming = lambda calculus

Logical Programming = first-order predicate calculus

Prolog and its variants make up the most 

commonly used Logical programming languages.
One variant is XSB Prolog (developed here at Stony 

Brook)

Other Prolog systems: SWI Prolog, Sicstus, Yap Prolog, 

Ciao Prolog, GNU Prolog, etc.
 ISO Prolog standard.
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Relations/Predicates
 Predicates are building-blocks in predicate 

calculus:  p(a1,a2,...,ak)

parent(X, Y): X is a parent of  Y.

parent(pam, bob). parent(bob, ann).

parent(tom, bob). parent(bob, pat).

parent(tom, liz). parent(pat, jim).

male(X): X is a male.

male(tom).

male(bob).

male(jim).
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We attach meaning to them, but 

within the logical system they are 

simply structural building blocks, 

with no meaning beyond that 

provided by explicitly-stated 

interrelationships
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Relations
 female(X): X is a female.

female(pam).

female(pat).

female(ann). 

female(liz).
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Relations
parent(pam, bob).

parent(tom, bob).

parent(tom, liz).

parent(bob, ann).

parent(bob, pat).

parent(pat, jim).

female(pam).

female(pat).

female(ann).

female(liz).

male(tom).

male(bob).

male(jim).5
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Relations
 Rules:

 mother(X, Y): X is the mother of  Y.

-In First Order Logic (FOL or predicate calculus): 

∀X,Y (parent(X,Y) ∧ female(X) => mother(X,Y))

-In Prolog:  

mother(X,Y) :-

parent(X,Y), 

female(X).

all variables are universally quantified outside the rule

“,” means and (conjunction), “:-” means if

(implication) and “;” means or (disjunction).6
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Relations
 More Relations:

grandparent(X,Y) :-

parent(X,Z),

parent(Z,Y).
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Relations
sibling(X,Y) :- parent(Z,X), 

parent(Z,Y), X \= Y.

?- sibling(ann,Y).
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Relations
 More Relations:

cousin(X,Y) :- …

greatgrandparent(X,Y) :- …

greatgreatgrandparent(X,Y) :- …
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Recursion
ancestor(X,Y) :-

parent(X,Y).

ancestor(X,Y) :-

parent(X,Z),

ancestor(Z,Y).

?- ancestor(X,jim).

?- ancestor(pam,X).

?- ancestor(X,Y).
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Relations

11

How to implement “I'm My Own Grandpa”?

https://www.youtube.com/watch?v=eYlJH81dSiw

https://www.youtube.com/watch?v=eYlJH81dSiw
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Recursion
What about:

ancestor(X,Y) :-

ancestor(X,Z),

parent(Z,Y).

ancestor(X,Y) :-

parent(X,Y).

?- ancestor(X,Y).

INFINITE   LOOP
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Computations in Prolog

13

?- mother(M, bob).

?- parent(M, bob), female(M).

?- M=pam, female(pam).

M = pam true

?- father(M, bob).

?- parent(M, bob), male(M)

(i) ?- M=pam, male(pam).

fail

(ii) ?- M=tom, male(tom).

M = tom   true

mother(X,Y):-

parent(X,Y),female(X).
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Prolog Execution
Call: Call a predicate (invocation)

Exit: Return an answer to the caller

Fail: Return to caller with no answer

Redo: Try next path to find an 

answer
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The XSB Prolog System
 http://xsb.sourceforge.net

 Developed at Stony Brook by David Warren and many 

contributors

 Overview of Installation:

 Unzip/untar; this will create a subdirectory XSB

 Windows: you are done

 Linux:
cd  XSB/build

./configure

./makexsb

That’s it!
 Cygwin under Windows: same as in Linux
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Use of XSB
 Put your ruleset and data in a file with extension .P (or .pl)

p(X) :- q(X,_).

q(1,a).

q(2,a).

q(b,c).

 Don’t forget: all rules and facts end with a period (.)

 Comments: /*…*/  or  %.... (% acts like // in Java/C++)

 Type
…/XSB/bin/xsb (Linux/Cygwin)
…\XSB\config\x86-pc-windows\bin\xsb (Windows)

where … is the path to the directory where you downloaded XSB

 You will see a prompt

| ?-
and are now ready to type queries
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Use of XSB
 Loading your program, myprog.P or myprog.pl

?- [myprog].

XSB will compile myprog.P (if necessary) and load it. 

Now you can type further queries, e.g.

?- p(X).

?- p(1).

 Some Useful Built-ins:
 write(X) – write whatever X is bound to
 writeln(X) – write then put newline
 nl – output newline
 Equality: =
 Inequality:  \=

http://xsb.sourceforge.net/manual1/index.html (Volume 1)
http://xsb.sourceforge.net/manual2/index.html (Volume 2)
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Use of XSB
 Some Useful Tricks:

 XSB returns only the first answer to the query

 To get the next, type  ; <Return>. For instance:
| ?- q(X).
X = 2;
X = 4
yes

 Usually, typing the ;’s is tedious. To do this programmatically, use this 
idiom:

| ?- (q(_X), write('X='), writeln(_X), fail ; true).

_X  here tells XSB to not print its own answers, since we are printing 
them by ourselves.  (XSB won’t print answers for variables that are 
prefixed with a _.)
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 In logic, most statements can be written many ways

That's great for people but a nuisance for computers.

 It turns out that if you make certain restrictions on 

the format of statements you can prove theorems 

mechanically

 Most common restriction is to have a single conclusion 

implied by a conjunction of premises (i.e., Horn clauses)

 Horn clauses are named for the logician Alfred Horn, who 

first pointed out their significance in 1951

 That's what logic programming systems do!

19
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Syntax of Prolog Programs
A Prolog program is a sequence of clauses

Each clause (sometimes called a rule or Horn rule) 

is of the form: 

Head :- Body.

Head is one term

Body is a comma-separated list of terms

A clause with an empty body is called a fact
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Logic Programming Concepts
 Operators:

conjunction, disjunction, negation, implication

 Universal and existential quantifiers 

 Statements

sometimes true, sometimes false, sometimes 

unknown

axioms - assumed true

 theorems - provably true

goals - things we'd like to prove true
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 A term can be a constant, variable, or structure (consisting of 

a functor and a parenthesized list of arguments)

 A constant is either an atom or a number

 An atom is either what looks like an identifier beginning with a 

lowercase letter, or a single quoted string

 A number looks like an integer or real from some more ordinary 

language

 A variable looks like an identifier beginning with an upper-case 

letter

 There are NO declarations (vars, terms, or predicates)

 All types are discovered implicitly

22

Logic Programming Concepts



(c) Paul Fodor (CS Stony Brook) and Elsevier
23

 The Prolog interpreter has a collection of facts and rules in its 

DATABASE
 Facts (i.e., clauses with empty bodies):     

raining(ny).      raining(seattle).

➢Facts are axioms (things the interpreter assumes to be true)
 Prolog provides an automatic way to deduce true results from facts and rules

 A rule (i.e., a clause with both sides):       

wet(X) :- raining(X).

➢The meaning of a rule is that the conjunction of the structures in 

the body implies the head.
Note: Single-assignment variables: X must have the same value on both sides.

 Query or goal (i.e., a clause with an empty head):

?- wet(X).

Logic Programming Concepts
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 So, rules are theorems that allow the interpreter to infer things

 To be interesting, rules generally contain variables

employed(X) :- employs(Y,X).

can be read as:

"for all X, X is employed if there exists a Y such that Y employs X"
 Note the direction of the implication

 Also, the example does NOT say that X is employed 

ONLY IF there is a Y that employs X
 there can be other ways for people to be employed

 like, we know that someone is employed, but we don't 

know who is the employer or maybe they are self 

employed:

employed(bill).
24
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 The scope of a variable is the clause in which it appears:

 Variables whose first appearance is on the left hand side of the 

clause (i.e., the head) have implicit universal quantifiers

 For example, we infer for all possible X that they are employed

employed(X) :- employs(Y,X).

 Variables whose first appearance is in the body of the clause 

have implicit existential quantifiers in that body

 For example, there exists some Y that employs X

 Note that these variables are also universally quantified outside the 

rule (by logical equivalences)

25

Logic Programming Concepts



(c) Paul Fodor (CS Stony Brook) and Elsevier

grandmother(A, C) :-

mother(A, B), 

mother(B, C).

can be read as:

"for all A, C [A is the grandmother of C if there exists a B 

such that A is the mother of B and B is the mother of C]"

 We probably want another rule that says:

grandmother(A, C) :-

mother(A, B), 

father(B, C).

26

Logic Programming Concepts



(c) Paul Fodor (CS Stony Brook) and Elsevier

Recursion
 Transitive closure:

Example: a graph declared with facts (true statements)

edge(1,2).

edge(2,3).

edge(2,4).

1) if there's an edge from X to Y, we can reach Y from X:

reach(X,Y) :- edge(X,Y).

2) if there's an edge from X to Z, and we can reach Y from 

Z, then we can reach Y from X:

reach(X,Y) :-

edge(X,Z), 

reach(Z, Y).
27
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?- reach(X,Y).

X = 1

Y = 2; Type a semi-colon repeatedly for  

X = 2 more answers

Y = 3;
X = 2

Y = 4;
X = 1

Y = 3;
X = 1

Y = 4;
no
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Prolog Programs
We will now explore Prolog programs in more 

detail:

Syntax of Prolog Programs

Terms can be:

Atomic data 

Variables

 Structures
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Atomic Data
Numeric constants: integers, floating point 

numbers (e.g. 1024, -42, 3.1415, 

6.023e23,…)

Atoms:

Identifiers: sequence of letters, digits, 

underscore, beginning with a lower case letter

(e.g. paul, r2d2, one_element).

Strings of characters enclosed in single quotes

(e.g. 'Stony Brook')
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Variables
 Variables are denoted by identifiers beginning with an 

Uppercase letter or underscore (e.g. X, Index, _param).

 These are Single-Assignment Logical variables: 
 Variables can be assigned only once

 Different occurrences of the same variable in a clause denote the 

same data

 Variables are implicitly declared upon first use

 Variables are not typed

 All types are discovered implicitly (no declarations in LP)

 If the variable does not start with underscore, it is assumed that it 

appears multiple times in the rule.
 If is does not appear multiple times, then a warning is produced: "Singleton variable"

 You can use variables preceded with underscore to eliminate this warning31
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Variables
 Anonymous variables (also called Don’t care variables): 

variables beginning with "_"

Underscore, by itself (i.e., _), represents a variable

 Each occurrence of _ corresponds to a different variable; even 

within a clause,_ does not stand for one and the same object.

 A variable with a name beginning with "_", but has more 

characters. E.g.: _radius, _Size

 we want to give it a descriptive name

 sometimes it is used to create relationships within a clause (and 

must therefore be used more than once): a warning is produced:

"Singleton-marked variable appears more than once"
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Variables
Warnings are used to identify bugs (most 

because of copy-paste errors)

Instead of declarations and type checking

Fix all the warnings in a program, so you know 

that you don't miss any logical error
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Variables
 Variables can be assigned only once, but that value can be further refined: 

?- X=f(Y), 

Y=g(Z), 

Z=2.

Therefore, X=f(g(2)), Y=g(2), Z=2

 The order also does not matter:

?- Z=2, 

X=f(Y),

Y=g(Z).

X = f(g(2)), Y=g(2), Z=2

 Even infinite structures: 

?- X=f(X).

X=f(f(f(f(f(f(f(f(f(f(...))
34
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Logic Programming Queries
 To run a Prolog program, one asks the interpreter a question

 This is done by asking a query which the interpreter tries to prove:

 If it can, it says yes

 If it can't, it says no

 If your query contained variables, the interpreter prints the values it 

had to give them to make the query true

?- wet(ny). ?- reach(a, d). ?- reach(d, a).

Yes         Yes No 

?- wet(X).  ?- reach(X, d). ?- reach(X, Y).

X = ny; X=a             X=a, Y=d

X = seattle;?- reach(a, X).

no X=d
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Meaning of Logic Programs
Declarative Meaning: What are the logical 

consequences of a program?

Procedural Meaning: For what values of the 

variables in the query can I prove the query?

The user gives the system a goal:

The system attempts to find axioms + 

inference rules to prove that goal

If goal contains variables, then also gives the 

values for those variables for which the goal 

is proven36



(c) Paul Fodor (CS Stony Brook) and Elsevier

Declarative Meaning
brown(bear). big(bear). 

gray(elephant). big(elephant). 

black(cat). small(cat). 

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

 The logical consequences of a program L is the smallest set such that

 All facts of the program are in L,

 If H :- B1,B2, …,  Bn .    is an instance of a clause in the 

program such that B1,B2, …, Bn are all in L, then H is also in L.

 For the above program we get dark(cat) and dark(bear) and 

consequently dangerous(bear) in addition to the original 

facts.
37
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Procedural Meaning of Prolog
brown(bear). big(bear). 

gray(elephant). big(elephant). 

black(cat). small(cat). 

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

 A query is, in general, a conjunction of goals: G1,G2,…,Gn

 To prove G1,G2,…,Gn:

 Find a clause H :- B1,B2, …,  Bk such that G1 and H match.

 Under the substitution for variables, prove B1,B2,…,Bk,G2,…,Gn
If nothing is left to prove then the proof succeeds!

If there are no more clauses to match, the proof fails!
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Procedural Meaning of Prolog
brown(bear). big(bear). 

gray(elephant). big(elephant). 

black(cat). small(cat). 

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

 To prove:  ?- dangerous(Q).

1. Select dangerous(X):-dark(X),big(X) and prove 
dark(Q),big(Q).

2. To prove dark(Q) select the first clause of dark, i.e.                

dark(Z):-black(Z), and prove black(Q),big(Q).

3. Now select the fact black(cat) and prove big(cat). 

4. Go back to step 2, and select the second clause of dark, i.e. 

dark(Z):-brown(Z), and prove brown(Q),big(Q).
39

This proof fails!
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Procedural Meaning of Prolog
brown(bear). big(bear). 

gray(elephant). big(elephant). 

black(cat). small(cat). 

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

 To prove:  ?- dangerous(Q).

5. Now select brown(bear) and prove big(bear).

6. Select the fact big(bear).

40

There is nothing left to prove, so the proof succeeds
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Procedural Meaning of Prolog
brown(bear). big(bear). 

gray(elephant). big(elephant). 

black(cat). small(cat). 

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

41



(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog

42

 The Prolog interpreter works by what is called BACKWARD 

CHAINING (also called top-down, goal directed)

 It begins with the thing it is trying to prove and works backwards looking 

for things that would imply it, until it gets to facts.

 It is also possible to work forward from the facts trying to see if any 

of the things you can prove from them are what you were looking for 

 This methodology is called bottom-up resolution

 It can be very time-consuming

 Example: Answer set programming, DLV, Potassco (the Potsdam Answer 

Set Solving Collection), OntoBroker

 Fancier logic languages use both kinds of chaining, with special smarts 

or hints from the user to bound the searches
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Procedural Meaning of Prolog

43

 When it attempts resolution, the Prolog interpreter 

pushes the current goal onto a stack, makes the first 

term in the body the current goal, and goes back to the 

beginning of the database and starts looking again.

 If it gets through the first goal of a body successfully, the 

interpreter continues with the next one.

 If it gets all the way through the body, the goal is satisfied 

and it backs up a level and proceeds.
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Procedural Meaning of Prolog

44

 The Prolog interpreter starts at the beginning of your database

(this ordering is part of Prolog, NOT of logic 

programming in general) and looks for something with which 

to unify the current goal

 If it finds a fact, great; it succeeds,

 If it finds a rule, it attempts to satisfy the terms in the body 

of the rule depth first.

 This process is motivated by the RESOLUTION PRINCIPLE, 

due to Robinson, 1965: 
 It says that if C1 and C2 are Horn clauses, where C2 represents a 

true statement and the head of C2 unifies with one of the terms in 

the body of C1, then we can replace the term in C1 with the body of 

C2 to obtain another statement that is true if and only if C1 is true



(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog

45

 If it fails to satisfy the terms in the body of a rule, the 

interpreter undoes the unification of the left hand side 

(BACKTRACKING) (this includes un-instantiating any 

variables that were given values as a result of the 

unification) and keeps looking through the database for 

something else with which to unify 

 If the interpreter gets to the end of database without 

succeeding, it backs out a level (that's how it might 

fail to satisfy something in a body) and continues from 

there.
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PROLOG IS NOT PURELY DECLARATIVE:

The ordering of the database and the left-to-

right pursuit of sub-goals gives a deterministic 

imperative semantics to searching and 

backtracking

Changing the order of statements in the database 

can give you different results:

 It can lead to infinite loops

 It can result in inefficiency

46
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Transitive closure with left recursion in 

Prolog will run into an infinite loop:
reach(X,Y) :-

reach(X,Z), 

edge(Z, Y).

reach(X,Y) :-

edge(X,Y).

?- reach(A,B).

Infinite loop

47
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Structures
 If f is an identifier and t1, t2, …, tn are terms, 

then f(t1, t2, …, tn) is a term

(                                          )
 In the above, f is called a functor and tis are called 

arguments

 Structures are used to group related data items together 

(in some ways similar to struct in C and objects in Java)
 Structures are used to construct trees (and, as a special case of 

trees, lists)
48
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Trees
Example: expression trees:

plus(minus(num(3),num(1)),star(num(4),num(2)))

 Data structures may have variables AND the same 

variable may occur multiple times in a data structure

49
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Matching
 t1 = t2: finds substitutions for variables in 

t1 and t2 that make the two terms identical

(We'll later introduce unification, a related 

operation that has logical semantics)

50



(c) Paul Fodor (CS Stony Brook) and Elsevier

Matching
 Matching: given two terms, we can ask if they "match" each other 

 A constant matches with itself: 42 unifies with 42

 A variable matches with anything: 
 if it matches with something other than a variable, then it instantiates,

 if it matches with a variable, then the two variables become associated.

 A=35, A=B ➔ B becomes 35

 A=B, A=35 ➔ B becomes 35

 Two structures match if they: 
 Have the same functor,

 Have the same arity, and

 Match recursively

 foo(g(42),37)matches with foo(A,37), 

foo(g(A),B), etc.

51
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Matching
The general Rules to decide whether two 

terms S and T match are as follows:

If S and T are constants, S=T if both are 
same object

If S is a variable and T is anything, T=S

If T is variable and S is anything, S=T

If S and T are structures, S=T if

S and T have same functor, same arity, and

All their corresponding arguments 
components have to match

52
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Matching

53
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Matching

54
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 Which of these match?
 A

 100

 func(B)

 func(100)

 func(C, D)

 func(+(99, 1))

55
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 Which of these match?
 A

 100

 func(B)

 func(100)

 func(C, D)

 func(+(99, 1))

 A matches with 100, func(B), func(100), func(C,D), 

func(+(99, 1)).

 100 matches only with A.

 func(B) matches with A, func(100), func(+(99, 1))

 func(C, D) matches with A.

 func(+(99, 1)) matches with A and func(B).

56
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Accessing arguments of a structure
 Matching is the predominant means for accessing 

structures arguments

Let date('Sep', 1, 2020) be a structure used to 

represent dates, with the month, day and year as the three 

arguments (in that order!)

then   date(M,D,Y) = date('Sep',1,2020).

makes

M = 'Sep',   D = 1, Y = 2020

 If we want to get only the day, we can write 

date(_, D, _) = date('Sep', 1, 2020).

Then we only get:  D = 1
57
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Lists
 Prolog uses a special syntax to represent and manipulate lists

 [1,2,3,4]: represents a list with 1, 2, 3 and 4, respectively.

 This can also be written as [1|[2,3,4]]: a list with 1 as the 

head (first element) and [2,3,4] as its tail (the list of 

remaining elements).

 If X = 1 and Y = [2,3,4] then [X|Y] is same as [1,2,3,4].

 The empty list is represented by [] or nil

 The symbol "|" (pipe) and is used to separate the beginning elements of a 

list from its tail

 For example: [1,2,3,4] = [1|[2,3,4]] = [1|[2|[3,4]]] = 
[1,2|[3,4]] = [1,2,3|[4]] = [1|[2|[3|[4|[]]]]]
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Lists
 Lists are special cases of trees (syntactic sugar, i.e.,  

internally, they use structures)

 For instance, the list [1,2,3,4] is represented by the 

following structure:

 where the function symbol ./2 is the list constructor:

[1,2,3,4] is same as .(1,.(2,.(3,.(4,[]))))

59
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Lists
Strings: are sequences of characters surrounded 

by double quotes "abc",     "John 

Smith", "to be, or not to be".

A string is equivalent to a list of the (numeric) 

character codes: 

?- X="abc".

X = [97,98,99]

60
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Programming with Lists
 member/2 finds if a given element occurs in a list:

The program:

member(X, [X|_]).

member(X, [_|Ys]) :-

member(X,Ys).

Example queries:

?- member(2,[1,2,3]). 

?- member(X,[l,i,s,t]).

?- member(f(X),[f(1),g(2),f(3),h(4)]).

?- member(1,L).

61
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Programming with Lists
 append/3 concatenate two lists to form the third list:

The program:
 Empty list append L is L:

append([], L, L).
 Otherwise, break the first list up into the head X, and the tail L: if L append M is N, 

then [X|L] append M is [X|N]:

append([X|L], M, [X|N]) :-

append(L, M, N).

Example queries:
?- append([1,2],[3,4],X).

?- append(X, Y, [1,2,3,4]).

?- append(X, [3,4], [1,2,3,4]).

?- append([1,2], Y, [1,2,3,4]).
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Programming with Lists
 Is the predicate a function?

 No.We are not applying arguments to get a result. Instead, 

we are proving that a theorem holds. Therefore, we can leave 

any variables unbound.

?- append(L, [2, 3], [1, 2, 3]).      

L = [ 1 ]

?- append([ 1 ], L, [1, 2, 3]). 

L = [2, 3]

?- append(L1, L2, [1, 2, 3]).

L1 = [],          L2 = [1, 2, 3];

L1 = [1],         L2 = [2, 3];

L1 = [1, 2],      L2 = [3] ;

L1 = [1, 2, 3],   L2 = [];

no
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append([],L,L).

append([X|L], M, [X|N]) :- append(L,M,N).

append([1,2],[3,4],X)?

Append example trace
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append([],L,L).

append([X|L],M,[X|N]) :- append(L,M,N).

append([1,2],[3,4],A)? X=1,L=[2],M=[3,4],A=[X|N]

Append example trace
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append([],L,L).

append([X|L],M,[X|N]) :- append(L,M,N).

append([1,2],[3,4],A)? X=1,L=[2],M=[3,4],A=[X|N]

append([2],[3,4],N)?

Append example trace
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append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],A)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

Append example trace
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append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],A)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)?

Append example trace
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append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],A)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)? L = [3,4], N’ = L

Append example trace
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append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],A)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)? L = [3,4], N’ = L

A = [1|N] 

N = [2|N’] 

N’= L

L = [3,4]

Answer: A = [1,2,3,4] 

Append example trace
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Programming with Lists
 len/2 to find the length of a list (the first argument):

The program:
len([], 0).

len([_|Xs], N+1) :-

len(Xs, N).

Example queries:
?- len([], X).

X = 0

?- len([l,i,s,t], 4).

false

?- len([l,i,s,t], X).

X = 0+1+1+1+1
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Arithmetic
?- 1+2 = 3.

false

In Predicate logic, the basis for Prolog, the 

only symbols that have a meaning are the 

predicates themselves

In particular, function symbols are 

uninterpreted: have no special meaning and 

can only be used to construct data structures
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Arithmetic
 Meaning for arithmetic expressions is given by the 

built-in predicate "is":

?- X is 1 + 2. 

succeeds, binding X = 3.

?- 3 is 1 + 2.

succeeds.

 General form: R is E where E is an expression to be 

evaluated and R is matched with the expression's value

 Y is X + 1, where X is a free variable, will give an 

error because X does not (yet) have a value, so, X + 1 

cannot be evaluated
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The list length example revisited
 length/2 finds the length of a list (first argument):

The program:
length([], 0).

length([_|Xs], M):-

length(Xs, N),

M is N+1.

Example queries:
?- length([], X).

?- length([l,i,s,t], 4).

?- length([l,i,s,t], X).

X = 4

?- length(List, 4).

List = [_1, _2, _3, _4]
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Conditional Evaluation
 Conditional operator: the if-then-else construct in 

Prolog: 

 if A then B else C is written as ( A -> B ; C)

 To Prolog this means: try A. If you can prove it, go on to 

prove B and ignore C. If A fails, however, go on to 

prove C ignoring B.

max(X,Y,Z) :-

( X =< Y

-> Z = Y

; Z = X

).

75

?- max(1,2,X).

X = 2.
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Conditional Evaluation
 Consider the computation of n! (i.e. the factorial of n)

% factorial(+N, -F)

factorial(N, F) :- ...

 N is the input parameter and F is the output parameter!

 The body of the rule species how the output is related to the 

input
 For factorial, there are two cases: N <= 0 and N > 0

 if N <= 0, then F = 1

 if N > 0, then F = N * factorial(N - 1)

factorial(N, F) :-

(N > 0

-> N1 is N-1, 

factorial(N1, F1), 

F is N*F1

; F = 1

).
76

?- factorial(12,X).

X = 479001600
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Imperative features
 Other imperative features: we can think of prolog rules 

as imperative programs w/ backtracking

program :-

member(X, [1, 2, 3, 4]), 

write(X), 

nl, 

fail;

true.

?- program. % prints all solutions

 fail: always fails, causes backtracking

 ! is the cut operator: prevents other rules from 

matching (we will see it later)
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Arithmetic Operators
 Integer/Floating Point operators: +, -, *, /

Automatic detection of Integer/Floating Point

 Integer operators: mod, // (integer division)

Comparison operators: <, >, =<, >=, 

Expr1 =:= Expr2 (succeeds if expression

Expr1 evaluates to a number equal to Expr2), 

Expr1 =\= Expr2 (succeeds if expression

Expr1 evaluates to a number non-equal to Expr2)
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Programming with Lists
Quicksort:

quicksort([], []).

quicksort([X0|Xs], Ys) :-

partition(X0, Xs, Ls, Gs),

quicksort(Ls, Ys1),

quicksort(Gs, Ys2),

append(Ys1, [X0|Ys2], Ys).

partition(Pivot,[],[],[]).

partition(Pivot,[X|Xs],[X|Ys],Zs) :-

X =< Pivot,

partition(Pivot,Xs,Ys,Zs).

partition(Pivot,[X|Xs],Ys,[X|Zs]) :-

X > Pivot,

partition(Pivot,Xs,Ys,Zs).
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Programming with Lists
Quicksort:

quicksort([], []).

quicksort([X0|Xs], Ys) :-

partition(X0, Xs, Ls, Gs),

quicksort(Ls, Ys1),

quicksort(Gs, Ys2),

append(Ys1, [X0|Ys2], Ys).

partition(Pivot,[],[],[]).

partition(Pivot,[X|Xs],[X|Ys],Zs) :-

X =< Pivot,

!, % cut

partition(Pivot,Xs,Ys,Zs).

partition(Pivot,[X|Xs],Ys,[X|Zs]) :-

partition(Pivot,Xs,Ys,Zs).
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Programming with Lists
 We want to define delete/3, to remove a given 

element from a list (called select/3 in XSB's basics

library):

 delete(2, [1,2,3], X) should succeed with 
X=[1,3]

 delete(X, [1,2,3], [1,3]) should succeed with 
X=2

 delete(2, X, [1,3]) should succeed with 
X=[2,1,3]; X =[1,2,3]; X=[1,3,2]; fail 

 delete(2, [2,1,2], X) should succeed with 
X=[1,2]; X =[2,1]; fail 
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Programming with Lists
Algorithm:

When X is selected from [X|Ys],  Ys

results as the rest of the list

When X is selected from the tail of 

[H|Ys], [H|Zs] results, where Zs is 

the result of taking X out of Ys
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Programming with Lists
The program:

delete(X,[],_) :- fail.% not needed

delete(X, [X|Ys], Ys).

delete(X, [Y|Ys], [Y|Zs]) :-

delete(X, Ys, Zs).

Example queries:

?- delete(s, [l,i,s,t], Z).

X = [l, i, t]

?- delete(X, [l,i,s,t], Z).

?- delete(s, Y, [l,i,t]).

?- delete(X, Y, [l,i,s,t]).
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Permutations
 Define permute/2, to find a permutation of a given list.

E.g. permute([1,2,3], X) should return 

X=[1,2,3] and upon backtracking, X=[1,3,2], 

X=[2,1,3], X=[2,3,1], X=[3,1,2], and 

X=[3,2,1].

Hint: What is the relationship between the permutations of 

[1,2,3] and the permutations of [2,3]?
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Programming with Lists
The program:

permute([], []).

permute([X|Xs], Ys) :-

permute(Xs, Zs), 

delete(X, Ys, Zs).

Example query:

?- permute([1,2,3], X).

X = [1,2,3];

X = [2,1,3];

X = [2,3,1];

X = [1,3,2] …
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The Issue of Efficiency
 Define a predicate, rev/2 that finds the reverse of a 

given list
 E.g. rev([1,2,3],X) should succeed with X=[3,2,1]
 Hint: what is the relationship between the reverse of [1,2,3] and the 

reverse of [2,3]? Answer: append([3,2],[1],[3,2,1])

rev([], []).

rev([X|Xs], Ys) :- rev(Xs, Zs), 

append(Zs, [X], Ys).

 How long does it take to evaluate rev([1,2,…,n],X)?

T(n) = T(n - 1)+ time to add 1 element to the end of 

an n - 1 element list = T(n - 1) + n – 1 = 

T(n - 2) + n – 2 + n – 1 = ...

→ T(n) = O(n2) (quadratic)
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Making rev/2 faster
Keep an accumulator: stack all elements seen so far
 i.e. a list, with elements seen so far in reverse order

The program:
rev(L1, L2) :- rev_h(L1, [], L2).

rev_h([X|Xs], AccBefore, Out):-

rev_h(Xs, [X|AccBefore], Out).

rev_h([], Acc, Acc). % Base case

 Example query:

?- rev([1,2,3], X).

will call rev_h([1,2,3], [], X)

which calls rev_h([2,3], [1], X)

which calls rev_h([3], [2,1], X)

which calls rev_h([], [3,2,1], X)

which returns X = [3,2,1]
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Tree Traversal
Assume you have a binary tree, represented by 

node/3 facts for internal nodes: node(a,b,c)

means that a has b and c as children

leaf/1 facts: for leaves: leaf(a) means that a

is a leaf

Example: 
node(5, 3, 6). 

node(3, 1, 4). 

leaf(1). 

leaf(4). 

leaf(6).
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Tree Traversal
 Write a predicate preorder/2 that traverses the tree (starting 

from a given node) and returns the list of nodes in pre-order

preorder(Root, [Root]) :-

leaf(Root).

preorder(Root, [Root|L]) :-

node(Root, Child1, Child2), 

preorder(Child1, L1),

preorder(Child2, L2),

append(L1, L2, L).

?- preorder(5, L).

L = [5, 3, 1, 4, 6]

The program takes O(n2) time to traverse a tree with n

nodes. How to append 2 lists in shorter time?
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Difference Lists
The lists in Prolog are singly-linked; hence we can 

access the first element in constant time, but

need to scan the entire list to get the last element

However, unlike functional languages like Lisp or 

SML, we can use variables in data structures:

We can exploit this to make lists “open tailed” 

(also called difference lists in Prolog): end the 

list with a variable tail and pass that variable, so 

we can add elements at the end of the list
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Difference Lists
When X=[1,2,3|Y], X is a list with 1, 2, 3 as 

its first three elements, followed by Y

Now if Y=[4|Z] then X=[1,2,3,4|Z]

We can now think of Z as “pointing to” the end of X

We can now add an element to the end of 

X in constant time!!

And continue adding more elements, e.g. 

Z=[5|W]
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Difference Lists: Conventions
A difference list is represented by two variables: 

one referring to the entire list, and another to its 

(uninstantiated) tail

e.g. X = [1,2,3|Z], Z

 Most Prolog programmers use the notation List-

Tail to denote a list List with tail Tail.

 e.g. X-Z

Note that “-” is used as a data structure infix symbol (not 

used for arithmetic here)
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Difference Lists
 Append 2 open ended lists:

dappend(X,T, Y,T2, L,T3) :-

T = Y,

T2 = T3,

L = X.
?- dappend([1,2,3|T],T, [4,5,6|T2],T2, L,T3).

L = [1,2,3,4,5,6|T3]

 Simplified version:

dappend(X,T, T,T2, X,T2).

 More simplified notation (with "-"):

dappend(X-T, T-T2, X-T2).

?- dappend([1,2,3|T]-T, [4,5,6|T2]-T2, L-T3).

L = [1,2,3,4,5,6|T2]
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Difference Lists
 Add an element at the end of a list:
add(L-T, X, L2-T2) :-

T = [X|T2],

L = L2.

?- add([1,2,3|T]-T, 4, L-T2).

L = [1,2,3,4|T2]

 We can simplify it as:
add(L-T, X, L-T2) :-

T = [X|T2].

 This can be simplified more like:

add(L-[X|T2], X, L-T2).

 Alternative using dappend:

add(L-T, X, L-T2) :-

dappend(L-T,[X|T2]-T2,L-T2).
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Difference Lists
 Check if a list is a palindrome:

palindrome(X) :-

palindromeHelp(X-[]).

palindromeHelp(A-A). % an empty list

palindromeHelp([_|A]-A).%1-element list

palindromeHelp([C|A]-D) :-

palindromeHelp(A-B),

B=[C|D].

?- palindrome([1,2,2,1]).

yes

?- palindrome([1,2,3,2,1]).

yes

?- palindrome([1,2,3,4,5]).

no
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Tree Traversal, Revisited
preorder1(Node, List, Tail) :-

node(Node, Child1, Child2),

List = [Node|List1],

preorder1(Child1, List1, Tail1),

preorder1(Child2, Tail1, Tail).

preorder1(Node, [Node|Tail], Tail) :-

leaf(Node).

preorder(Node, List) :-

preorder1(Node, List, []).

The program takes O(n) time to traverse a tree 

with n nodes
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Difference Lists: Conventions
The preorder traversal program may be 

rewritten as:

preorder1(Node, [Node|L]-T) :-

node(Node, Child1, Child2), 

preorder1(Child1, L-T1), 

preorder1(Child2, T1-T).

preorder1(Node, [Node|T]-T).
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Difference Lists: Conventions
The inorder traversal program:

inorder1(Node, L-T) :-

node(Node, Child1, Child2), 

inorder1(Child1, L-T1),

T1 = [Node|T2], 

inorder1(Child2, T2-T).

inorder1(Node, [Node|T]-T).

inorder(Node,L):-

inorder1(Node, L-[]).
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Difference Lists: Conventions
The postorder traversal program:

postorder1(Node, L-T) :-

node(Node, Child1, Child2), 

postorder1(Child1, L-T1),

postorder1(Child2, T1-T2),

T2 = [Node|T].

postorder1(Node, [Node|T]-T).

postorder(Node,L):-

postorder1(Node, L-[]).
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Graphs in Prolog
 There are several ways to represent graphs in Prolog:

represent each edge separately as one clause (fact):
edge(a,b).

edge(b,c).

 isolated nodes cannot be represented, unless we have also 

node/1 facts

 the whole graph as one data object: as a pair of two 

sets (nodes and edges): graph([a,b,c,d,f,g], 
[e(a,b), e(b,c),e(b,f)])

 list of arcs: [a-b, b-c, b-f]

adjacency-list: [n(a,[b]), n(b,[c,f]), n(d,[])]
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Graphs in Prolog
Path from one node to another one:
A predicate path(+G,+A,+B,-P) to find an 

acyclic path P from node A to node B in the graph G

The predicate should return all paths via 

backtracking

We will solve it using the graph as a data object, like 

in graph([a,b,c,d,f,g], [e(a,b), 

e(b,c),e(b,f)]
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Graphs in Prolog
adjacent for directed edges:

adjacent(X,Y,graph(_,Es)) :-

member(e(X,Y),Es).

adjacent for undirected edges (ie. no distinction 

between the two vertices associated with each edge):

adjacent(X,Y,graph(_,Es)) :-

member(e(X,Y),Es).

adjacent(X,Y,graph(_,Es)) :-

member(e(Y,X),Es).
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Graphs in Prolog
Path from one node to another one:
path(G,A,B,P) :-

pathHelper(G,A,[B],P).

% Base case

pathHelper(_,A,[A|P1],[A|P1]).

pathHelper(G,A,[Y|P1],P) :-

adjacent(X,Y,G), 

\+ member(X,[Y|P1]), 

pathHelper(G,A,[X,Y|P1],P).
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Graphs in Prolog
Cycle from a given node in a directed graph:

a predicate cycle(G,A,Cycle) to find a 

closed path (cycle) Cycle starting at a given 

node A in the graph G

The predicate should return all cycles via 

backtracking

cycle(G,A,Cycle) :-

adjacent(A,B,G), 

path(G,B,A,P1), 

Cycle = [A|P1].
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Complete program in XSB
:- import member/2 from basics.

adjacent(X,Y,graph(_,Es)) :-

member(e(X,Y),Es).

path(G,A,B,P) :-

pathHelper(G,A,[B],P).

pathHelper(_,A,[A|P1],[A|P1]).

pathHelper(G,A,[Y|P1],P) :-

adjacent(X,Y,G), 

\+ member(X,[Y|P1]), 

pathHelper(G,A,[X,Y|P1],P).

cycle(G,A,Cycle) :-

adjacent(A,B,G), 

path(G,B,A,P), 

Cycle = [A|P].

?- Graph = graph([a,b,c,d,f,g],

[e(a,b), e(b,c),e(c,a),e(a,e),e(e,a)]),

cycle(Graph,a,Cycle),

writeln(Cycle),

fail; true.105
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Aggregates in XSB
 setof(Template,Goal,Set): Set is the set of all 

instances of Template such that Goal is provable

 findall(Template,Goal,List) is similar to 

predicate bagof/3, except that variables in Goal that do not 

occur in Template are treated as existential, and alternative 

lists are not returned for different bindings of such variables

 bagof(Template,Goal,Bag) has the same semantics 

as setof/3 except that the third argument returns an unsorted 

list that may contain duplicates. X^Goal will not bind X

 tfindall(Template,Goal,List) is similar to 

predicate findall/3, but the Goal must be a call to a single 

tabled predicate
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Aggregates in XSB
p(1,1).

p(1,2).

p(2,1).

?- setof(Y,p(X,Y),L).

L=[1,2]

?- findall(Y,p(X,Y),L).

L=[1,2,1]

?- bagof(Y,p(X,Y),L).

X=1, L=[1,2] ;

X=2, L=[1] ;

fail
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XSB Prolog
Negation:  \+ is negation-as-failure

Another negation called tnot (TABLING = 
memoization)
Use:   … :- …, tnot(foobar(X)).

All variables under the scope of tnot must also occur 
to the left of that scope in the body of the rule in other 
positive relations:

Ok:       …:-p(X,Y),tnot(foobar(X,Y)),…
Not ok: …:-p(X,Z),tnot(foobar(X,Y)), …

XSB also supports Datalog:
:- auto_table.

at the top of the program file
108



(c) Paul Fodor (CS Stony Brook) and Elsevier

XSB Prolog
Read/write from and to files:
Edinburgh style:

?- tell('a.txt'), 

write('Hello, World!'), told.

?- see('a.txt'), read(X), seen.
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XSB Prolog
Read/write from and to files:
ISO style:

?- open('a.txt', write, X),

write(X,'Hello, World!'),

close(X).
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Cut (logic programming)
 Cut (! in Prolog) is a goal which always succeeds, but cannot 

be backtracked past:

max(X,Y,Y) :- X =< Y, !.

max(X,_,X).

 cut says “stop looking for alternatives”

 no check is needed in the second rule anymore because if we 

got there, then X =< Ymust have failed, so X > Ymust be 

true.

 Red cut: if someone deletes !, then the rule is incorrect - above

 Green cut: if someone deletes !, then the rule is correct
max(X,Y,Y) :- X =< Y, !. 

max(X,Y,X) :- X > Y.

 by explicitly writing X > Y, it guarantees that the second rule will 

always work even if the first one is removed by accident or changed 

(cut is deleted)
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Cut (logic programming)
No backtracking pass the guard, but ok after:

p(a). p(b).

q(a). q(b). q(c). 

?- p(X),!.

X=a ;

no

?- p(X),!,q(Y).

X=a, Y=a ;

X=a, Y=b ;

X=a, Y=c ;

no
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Testing types
 atom(X)

Tests whether X is bound to a symbolic atom

?- atom(a).

yes

?- atom(3).

no

 integer(X)

Tests whether X is bound to an integer

 real(X)

Tests whether X is bound to a real number
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Testing for variables
 is_list(L)

Tests whether L is bound to a list

 ground(G)

Tests whether G has unbound logical variables

 var(X)

Tests whether X is bound to a Prolog variable
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Control / Meta-predicates
 call(P)

Force P to be a goal; succeed if P does, else fail

 clause(H,B)

Retrieves clauses from memory whose head matches H

and body matches B. H must be sufficiently instantiated 

to determine the main predicate of the head

 copy_term(P,NewP)

Creates a new copy of the first parameter (with new 

variables)

 It is used in iteration through non-ground clauses, so that 

the original calls are not bound to values
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Control / Meta-predicates
Write a Prolog relation 
map(BinaryRelation,InputList, OutputList)

which applies a binary relation on each of the elements of the list 

InputList as the first argument and collects the second 

argument in the result list. 

Example: 

?- map(inc1(X,Y),[5,6],R). returns R=[6,7]

where inc1(X,Y) was defined as:

inc1(X,Y) :-

Y is X+1.
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Control / Meta-predicates
map(_BinaryCall,[],[]).

map(BinaryCall,[X|T],[Y|T2]) :-

copy_term(BinaryCall, BinaryCall2),

BinaryCall2 =.. [_F,X,Y],

call(BinaryCall2),

map(BinaryCall, T, T2).

inc1(X,Y) :-

Y is X+1.

?- map(inc1(X,Y), [5,6], R).

R = [6,7]
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Control / Meta-predicates
square(X,Y) :-

Y is X*X.

?- map(square(E, E2), [2,3,1], R).

R = [4,9,1];

no
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Control / Meta-predicates
 Use the relation map to implement a relation 

pairAll(E,L,L2) which pairs the element E

with each element of the list L to obtain L2. 

Examples:

?- pairAll(1,[2,3,1], L2). 

returns L2=[[1,2],[1,3],[1,1]]

?- pairAll(1,[], L2).

returns L2=[].
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Control / Meta-predicates
pair(E2, (_E1,E2)).

pairAll(E,L,L2):-

map(pair(E2, (E,E2)), L, L2).

?- pairAll(1, [2,3,1], R).

R = [(1,2),(1,3),(1,1)]
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Assert and retract
 asserta(C)

Assert clause C into database above other clauses with 

the same predicate. 

 assertz(C), assert(C)

Assert clause C into database below other clauses with 

the same predicate.

 retract(C)

Retract C from the database. C must be sufficiently 

instantiated to determine the predicate.
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Prolog terms
 functor(E,F,N)

E must be bound to a functor expression of the form 

'f(...)'. F will be bound to 'f', and N will be 

bound to the number of arguments that f has.

 arg(N,E,A)

E must be bound to a functor expression, N is a whole 

number, and A will be bound to the Nth argument of E
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Prolog terms and clauses
 =..

converts between term and list. For example,

?- parent(a,X) =.. L.

L = [parent, a, _X001]

?- [1] =.. X.

X = [.,1,[]]
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