
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

Logic Languages

1

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook) and Elsevier

Languages
Paradigms of Programming Languages:
 Imperative = Turing machines

Functional Programming = lambda calculus

Logical Programming = first-order predicate calculus

Prolog and its variants make up the most

commonly used Logical programming languages.
One variant is XSB Prolog (developed here at Stony

Brook)

Other Prolog systems: SWI Prolog, Sicstus, Yap Prolog,

Ciao Prolog, GNU Prolog, etc.
 ISO Prolog standard.

2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Relations/Predicates
 Predicates are building-blocks in predicate

calculus: p(a1,a2,...,ak)

parent(X, Y): X is a parent of Y.

parent(pam, bob). parent(bob, ann).

parent(tom, bob). parent(bob, pat).

parent(tom, liz). parent(pat, jim).

male(X): X is a male.

male(tom).

male(bob).

male(jim).

3

We attach meaning to them, but

within the logical system they are

simply structural building blocks,

with no meaning beyond that

provided by explicitly-stated

interrelationships

(c) Paul Fodor (CS Stony Brook) and Elsevier

Relations
 female(X): X is a female.

female(pam).

female(pat).

female(ann).

female(liz).

4

(c) Paul Fodor (CS Stony Brook) and Elsevier

Relations
parent(pam, bob).

parent(tom, bob).

parent(tom, liz).

parent(bob, ann).

parent(bob, pat).

parent(pat, jim).

female(pam).

female(pat).

female(ann).

female(liz).

male(tom).

male(bob).

male(jim).5

(c) Paul Fodor (CS Stony Brook) and Elsevier

Relations
 Rules:

 mother(X, Y): X is the mother of Y.

-In First Order Logic (FOL or predicate calculus):

∀X,Y (parent(X,Y) ∧ female(X) => mother(X,Y))

-In Prolog:

mother(X,Y) :-

parent(X,Y),

female(X).

all variables are universally quantified outside the rule

“,” means and (conjunction), “:-” means if

(implication) and “;” means or (disjunction).6

(c) Paul Fodor (CS Stony Brook) and Elsevier

Relations
 More Relations:

grandparent(X,Y) :-

parent(X,Z),

parent(Z,Y).

7

(c) Paul Fodor (CS Stony Brook) and Elsevier

Relations
sibling(X,Y) :- parent(Z,X),

parent(Z,Y), X \= Y.

?- sibling(ann,Y).

8

(c) Paul Fodor (CS Stony Brook) and Elsevier

Relations
 More Relations:

cousin(X,Y) :- …

greatgrandparent(X,Y) :- …

greatgreatgrandparent(X,Y) :- …

9

(c) Paul Fodor (CS Stony Brook) and Elsevier

Recursion
ancestor(X,Y) :-

parent(X,Y).

ancestor(X,Y) :-

parent(X,Z),

ancestor(Z,Y).

?- ancestor(X,jim).

?- ancestor(pam,X).

?- ancestor(X,Y).

10

(c) Paul Fodor (CS Stony Brook) and Elsevier

Relations

11

How to implement “I'm My Own Grandpa”?

https://www.youtube.com/watch?v=eYlJH81dSiw

https://www.youtube.com/watch?v=eYlJH81dSiw

(c) Paul Fodor (CS Stony Brook) and Elsevier

Recursion
What about:

ancestor(X,Y) :-

ancestor(X,Z),

parent(Z,Y).

ancestor(X,Y) :-

parent(X,Y).

?- ancestor(X,Y).

INFINITE LOOP

12

(c) Paul Fodor (CS Stony Brook) and Elsevier

Computations in Prolog

13

?- mother(M, bob).

?- parent(M, bob), female(M).

?- M=pam, female(pam).

M = pam true

?- father(M, bob).

?- parent(M, bob), male(M)

(i) ?- M=pam, male(pam).

fail

(ii) ?- M=tom, male(tom).

M = tom true

mother(X,Y):-

parent(X,Y),female(X).

(c) Paul Fodor (CS Stony Brook) and Elsevier

Prolog Execution
Call: Call a predicate (invocation)

Exit: Return an answer to the caller

Fail: Return to caller with no answer

Redo: Try next path to find an

answer

14

(c) Paul Fodor (CS Stony Brook) and Elsevier

The XSB Prolog System
 http://xsb.sourceforge.net

 Developed at Stony Brook by David Warren and many

contributors

 Overview of Installation:

 Unzip/untar; this will create a subdirectory XSB

 Windows: you are done

 Linux:
cd XSB/build

./configure

./makexsb

That’s it!
 Cygwin under Windows: same as in Linux

15

http://xsb.sourceforge.net/

(c) Paul Fodor (CS Stony Brook) and Elsevier

Use of XSB
 Put your ruleset and data in a file with extension .P (or .pl)

p(X) :- q(X,_).

q(1,a).

q(2,a).

q(b,c).

 Don’t forget: all rules and facts end with a period (.)

 Comments: /*…*/ or %.... (% acts like // in Java/C++)

 Type
…/XSB/bin/xsb (Linux/Cygwin)
…\XSB\config\x86-pc-windows\bin\xsb (Windows)

where … is the path to the directory where you downloaded XSB

 You will see a prompt

| ?-
and are now ready to type queries

16

(c) Paul Fodor (CS Stony Brook) and Elsevier

Use of XSB
 Loading your program, myprog.P or myprog.pl

?- [myprog].

XSB will compile myprog.P (if necessary) and load it.

Now you can type further queries, e.g.

?- p(X).

?- p(1).

 Some Useful Built-ins:
 write(X) – write whatever X is bound to
 writeln(X) – write then put newline
 nl – output newline
 Equality: =
 Inequality: \=

http://xsb.sourceforge.net/manual1/index.html (Volume 1)
http://xsb.sourceforge.net/manual2/index.html (Volume 2)

17

http://xsb.sourceforge.net/manual1/index.html
http://xsb.sourceforge.net/manual2/index.html

(c) Paul Fodor (CS Stony Brook) and Elsevier

Use of XSB
 Some Useful Tricks:

 XSB returns only the first answer to the query

 To get the next, type ; <Return>. For instance:
| ?- q(X).
X = 2;
X = 4
yes

 Usually, typing the ;’s is tedious. To do this programmatically, use this
idiom:

| ?- (q(_X), write('X='), writeln(_X), fail ; true).

_X here tells XSB to not print its own answers, since we are printing
them by ourselves. (XSB won’t print answers for variables that are
prefixed with a _.)

18

(c) Paul Fodor (CS Stony Brook) and Elsevier

 In logic, most statements can be written many ways

That's great for people but a nuisance for computers.

 It turns out that if you make certain restrictions on

the format of statements you can prove theorems

mechanically

 Most common restriction is to have a single conclusion

implied by a conjunction of premises (i.e., Horn clauses)

 Horn clauses are named for the logician Alfred Horn, who

first pointed out their significance in 1951

 That's what logic programming systems do!

19

Logic Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

Syntax of Prolog Programs
A Prolog program is a sequence of clauses

Each clause (sometimes called a rule or Horn rule)

is of the form:

Head :- Body.

Head is one term

Body is a comma-separated list of terms

A clause with an empty body is called a fact

20

(c) Paul Fodor (CS Stony Brook) and Elsevier

Logic Programming Concepts
 Operators:

conjunction, disjunction, negation, implication

 Universal and existential quantifiers

 Statements

sometimes true, sometimes false, sometimes

unknown

axioms - assumed true

 theorems - provably true

goals - things we'd like to prove true

21

(c) Paul Fodor (CS Stony Brook) and Elsevier

 A term can be a constant, variable, or structure (consisting of

a functor and a parenthesized list of arguments)

 A constant is either an atom or a number

 An atom is either what looks like an identifier beginning with a

lowercase letter, or a single quoted string

 A number looks like an integer or real from some more ordinary

language

 A variable looks like an identifier beginning with an upper-case

letter

 There are NO declarations (vars, terms, or predicates)

 All types are discovered implicitly

22

Logic Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier
23

 The Prolog interpreter has a collection of facts and rules in its

DATABASE
 Facts (i.e., clauses with empty bodies):

raining(ny). raining(seattle).

➢Facts are axioms (things the interpreter assumes to be true)
 Prolog provides an automatic way to deduce true results from facts and rules

 A rule (i.e., a clause with both sides):

wet(X) :- raining(X).

➢The meaning of a rule is that the conjunction of the structures in

the body implies the head.
Note: Single-assignment variables: X must have the same value on both sides.

 Query or goal (i.e., a clause with an empty head):

?- wet(X).

Logic Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

 So, rules are theorems that allow the interpreter to infer things

 To be interesting, rules generally contain variables

employed(X) :- employs(Y,X).

can be read as:

"for all X, X is employed if there exists a Y such that Y employs X"
 Note the direction of the implication

 Also, the example does NOT say that X is employed

ONLY IF there is a Y that employs X
 there can be other ways for people to be employed

 like, we know that someone is employed, but we don't

know who is the employer or maybe they are self

employed:

employed(bill).
24

Logic Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

 The scope of a variable is the clause in which it appears:

 Variables whose first appearance is on the left hand side of the

clause (i.e., the head) have implicit universal quantifiers

 For example, we infer for all possible X that they are employed

employed(X) :- employs(Y,X).

 Variables whose first appearance is in the body of the clause

have implicit existential quantifiers in that body

 For example, there exists some Y that employs X

 Note that these variables are also universally quantified outside the

rule (by logical equivalences)

25

Logic Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

grandmother(A, C) :-

mother(A, B),

mother(B, C).

can be read as:

"for all A, C [A is the grandmother of C if there exists a B

such that A is the mother of B and B is the mother of C]"

 We probably want another rule that says:

grandmother(A, C) :-

mother(A, B),

father(B, C).

26

Logic Programming Concepts

(c) Paul Fodor (CS Stony Brook) and Elsevier

Recursion
 Transitive closure:

Example: a graph declared with facts (true statements)

edge(1,2).

edge(2,3).

edge(2,4).

1) if there's an edge from X to Y, we can reach Y from X:

reach(X,Y) :- edge(X,Y).

2) if there's an edge from X to Z, and we can reach Y from

Z, then we can reach Y from X:

reach(X,Y) :-

edge(X,Z),

reach(Z, Y).
27

(c) Paul Fodor (CS Stony Brook) and Elsevier
28

?- reach(X,Y).

X = 1

Y = 2; Type a semi-colon repeatedly for

X = 2 more answers

Y = 3;
X = 2

Y = 4;
X = 1

Y = 3;
X = 1

Y = 4;
no

(c) Paul Fodor (CS Stony Brook) and Elsevier

Prolog Programs
We will now explore Prolog programs in more

detail:

Syntax of Prolog Programs

Terms can be:

Atomic data

Variables

 Structures

29

(c) Paul Fodor (CS Stony Brook) and Elsevier

Atomic Data
Numeric constants: integers, floating point

numbers (e.g. 1024, -42, 3.1415,

6.023e23,…)

Atoms:

Identifiers: sequence of letters, digits,

underscore, beginning with a lower case letter

(e.g. paul, r2d2, one_element).

Strings of characters enclosed in single quotes

(e.g. 'Stony Brook')

30

(c) Paul Fodor (CS Stony Brook) and Elsevier

Variables
 Variables are denoted by identifiers beginning with an

Uppercase letter or underscore (e.g. X, Index, _param).

 These are Single-Assignment Logical variables:
 Variables can be assigned only once

 Different occurrences of the same variable in a clause denote the

same data

 Variables are implicitly declared upon first use

 Variables are not typed

 All types are discovered implicitly (no declarations in LP)

 If the variable does not start with underscore, it is assumed that it

appears multiple times in the rule.
 If is does not appear multiple times, then a warning is produced: "Singleton variable"

 You can use variables preceded with underscore to eliminate this warning31

(c) Paul Fodor (CS Stony Brook) and Elsevier

Variables
 Anonymous variables (also called Don’t care variables):

variables beginning with "_"

Underscore, by itself (i.e., _), represents a variable

 Each occurrence of _ corresponds to a different variable; even

within a clause,_ does not stand for one and the same object.

 A variable with a name beginning with "_", but has more

characters. E.g.: _radius, _Size

 we want to give it a descriptive name

 sometimes it is used to create relationships within a clause (and

must therefore be used more than once): a warning is produced:

"Singleton-marked variable appears more than once"

32

(c) Paul Fodor (CS Stony Brook) and Elsevier

Variables
Warnings are used to identify bugs (most

because of copy-paste errors)

Instead of declarations and type checking

Fix all the warnings in a program, so you know

that you don't miss any logical error

33

(c) Paul Fodor (CS Stony Brook) and Elsevier

Variables
 Variables can be assigned only once, but that value can be further refined:

?- X=f(Y),

Y=g(Z),

Z=2.

Therefore, X=f(g(2)), Y=g(2), Z=2

 The order also does not matter:

?- Z=2,

X=f(Y),

Y=g(Z).

X = f(g(2)), Y=g(2), Z=2

 Even infinite structures:

?- X=f(X).

X=f(f(f(f(f(f(f(f(f(f(...))
34

(c) Paul Fodor (CS Stony Brook) and Elsevier

Logic Programming Queries
 To run a Prolog program, one asks the interpreter a question

 This is done by asking a query which the interpreter tries to prove:

 If it can, it says yes

 If it can't, it says no

 If your query contained variables, the interpreter prints the values it

had to give them to make the query true

?- wet(ny). ?- reach(a, d). ?- reach(d, a).

Yes Yes No

?- wet(X). ?- reach(X, d). ?- reach(X, Y).

X = ny; X=a X=a, Y=d

X = seattle;?- reach(a, X).

no X=d

35

(c) Paul Fodor (CS Stony Brook) and Elsevier

Meaning of Logic Programs
Declarative Meaning: What are the logical

consequences of a program?

Procedural Meaning: For what values of the

variables in the query can I prove the query?

The user gives the system a goal:

The system attempts to find axioms +

inference rules to prove that goal

If goal contains variables, then also gives the

values for those variables for which the goal

is proven36

(c) Paul Fodor (CS Stony Brook) and Elsevier

Declarative Meaning
brown(bear). big(bear).

gray(elephant). big(elephant).

black(cat). small(cat).

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

 The logical consequences of a program L is the smallest set such that

 All facts of the program are in L,

 If H :- B1,B2, …, Bn . is an instance of a clause in the

program such that B1,B2, …, Bn are all in L, then H is also in L.

 For the above program we get dark(cat) and dark(bear) and

consequently dangerous(bear) in addition to the original

facts.
37

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog
brown(bear). big(bear).

gray(elephant). big(elephant).

black(cat). small(cat).

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

 A query is, in general, a conjunction of goals: G1,G2,…,Gn

 To prove G1,G2,…,Gn:

 Find a clause H :- B1,B2, …, Bk such that G1 and H match.

 Under the substitution for variables, prove B1,B2,…,Bk,G2,…,Gn
If nothing is left to prove then the proof succeeds!

If there are no more clauses to match, the proof fails!

38

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog
brown(bear). big(bear).

gray(elephant). big(elephant).

black(cat). small(cat).

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

 To prove: ?- dangerous(Q).

1. Select dangerous(X):-dark(X),big(X) and prove
dark(Q),big(Q).

2. To prove dark(Q) select the first clause of dark, i.e.

dark(Z):-black(Z), and prove black(Q),big(Q).

3. Now select the fact black(cat) and prove big(cat).

4. Go back to step 2, and select the second clause of dark, i.e.

dark(Z):-brown(Z), and prove brown(Q),big(Q).
39

This proof fails!

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog
brown(bear). big(bear).

gray(elephant). big(elephant).

black(cat). small(cat).

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

 To prove: ?- dangerous(Q).

5. Now select brown(bear) and prove big(bear).

6. Select the fact big(bear).

40

There is nothing left to prove, so the proof succeeds

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog
brown(bear). big(bear).

gray(elephant). big(elephant).

black(cat). small(cat).

dark(Z) :- black(Z).

dark(Z) :- brown(Z).

dangerous(X) :- dark(X), big(X).

41

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog

42

 The Prolog interpreter works by what is called BACKWARD

CHAINING (also called top-down, goal directed)

 It begins with the thing it is trying to prove and works backwards looking

for things that would imply it, until it gets to facts.

 It is also possible to work forward from the facts trying to see if any

of the things you can prove from them are what you were looking for

 This methodology is called bottom-up resolution

 It can be very time-consuming

 Example: Answer set programming, DLV, Potassco (the Potsdam Answer

Set Solving Collection), OntoBroker

 Fancier logic languages use both kinds of chaining, with special smarts

or hints from the user to bound the searches

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog

43

 When it attempts resolution, the Prolog interpreter

pushes the current goal onto a stack, makes the first

term in the body the current goal, and goes back to the

beginning of the database and starts looking again.

 If it gets through the first goal of a body successfully, the

interpreter continues with the next one.

 If it gets all the way through the body, the goal is satisfied

and it backs up a level and proceeds.

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog

44

 The Prolog interpreter starts at the beginning of your database

(this ordering is part of Prolog, NOT of logic

programming in general) and looks for something with which

to unify the current goal

 If it finds a fact, great; it succeeds,

 If it finds a rule, it attempts to satisfy the terms in the body

of the rule depth first.

 This process is motivated by the RESOLUTION PRINCIPLE,

due to Robinson, 1965:
 It says that if C1 and C2 are Horn clauses, where C2 represents a

true statement and the head of C2 unifies with one of the terms in

the body of C1, then we can replace the term in C1 with the body of

C2 to obtain another statement that is true if and only if C1 is true

(c) Paul Fodor (CS Stony Brook) and Elsevier

Procedural Meaning of Prolog

45

 If it fails to satisfy the terms in the body of a rule, the

interpreter undoes the unification of the left hand side

(BACKTRACKING) (this includes un-instantiating any

variables that were given values as a result of the

unification) and keeps looking through the database for

something else with which to unify

 If the interpreter gets to the end of database without

succeeding, it backs out a level (that's how it might

fail to satisfy something in a body) and continues from

there.

(c) Paul Fodor (CS Stony Brook) and Elsevier

PROLOG IS NOT PURELY DECLARATIVE:

The ordering of the database and the left-to-

right pursuit of sub-goals gives a deterministic

imperative semantics to searching and

backtracking

Changing the order of statements in the database

can give you different results:

 It can lead to infinite loops

 It can result in inefficiency

46

Procedural Meaning of Prolog

(c) Paul Fodor (CS Stony Brook) and Elsevier

Transitive closure with left recursion in

Prolog will run into an infinite loop:
reach(X,Y) :-

reach(X,Z),

edge(Z, Y).

reach(X,Y) :-

edge(X,Y).

?- reach(A,B).

Infinite loop

47

Procedural Meaning of Prolog

(c) Paul Fodor (CS Stony Brook) and Elsevier

Structures
 If f is an identifier and t1, t2, …, tn are terms,

then f(t1, t2, …, tn) is a term

()
 In the above, f is called a functor and tis are called

arguments

 Structures are used to group related data items together

(in some ways similar to struct in C and objects in Java)
 Structures are used to construct trees (and, as a special case of

trees, lists)
48

(c) Paul Fodor (CS Stony Brook) and Elsevier

Trees
Example: expression trees:

plus(minus(num(3),num(1)),star(num(4),num(2)))

 Data structures may have variables AND the same

variable may occur multiple times in a data structure

49

(c) Paul Fodor (CS Stony Brook) and Elsevier

Matching
 t1 = t2: finds substitutions for variables in

t1 and t2 that make the two terms identical

(We'll later introduce unification, a related

operation that has logical semantics)

50

(c) Paul Fodor (CS Stony Brook) and Elsevier

Matching
 Matching: given two terms, we can ask if they "match" each other

 A constant matches with itself: 42 unifies with 42

 A variable matches with anything:
 if it matches with something other than a variable, then it instantiates,

 if it matches with a variable, then the two variables become associated.

 A=35, A=B ➔ B becomes 35

 A=B, A=35 ➔ B becomes 35

 Two structures match if they:
 Have the same functor,

 Have the same arity, and

 Match recursively

 foo(g(42),37)matches with foo(A,37),

foo(g(A),B), etc.

51

(c) Paul Fodor (CS Stony Brook) and Elsevier

Matching
The general Rules to decide whether two

terms S and T match are as follows:

If S and T are constants, S=T if both are
same object

If S is a variable and T is anything, T=S

If T is variable and S is anything, S=T

If S and T are structures, S=T if

S and T have same functor, same arity, and

All their corresponding arguments
components have to match

52

(c) Paul Fodor (CS Stony Brook) and Elsevier

Matching

53

(c) Paul Fodor (CS Stony Brook) and Elsevier

Matching

54

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Which of these match?
 A

 100

 func(B)

 func(100)

 func(C, D)

 func(+(99, 1))

55

Matching

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Which of these match?
 A

 100

 func(B)

 func(100)

 func(C, D)

 func(+(99, 1))

 A matches with 100, func(B), func(100), func(C,D),

func(+(99, 1)).

 100 matches only with A.

 func(B) matches with A, func(100), func(+(99, 1))

 func(C, D) matches with A.

 func(+(99, 1)) matches with A and func(B).

56

Matching

(c) Paul Fodor (CS Stony Brook) and Elsevier

Accessing arguments of a structure
 Matching is the predominant means for accessing

structures arguments

Let date('Sep', 1, 2020) be a structure used to

represent dates, with the month, day and year as the three

arguments (in that order!)

then date(M,D,Y) = date('Sep',1,2020).

makes

M = 'Sep', D = 1, Y = 2020

 If we want to get only the day, we can write

date(_, D, _) = date('Sep', 1, 2020).

Then we only get: D = 1
57

(c) Paul Fodor (CS Stony Brook) and Elsevier

Lists
 Prolog uses a special syntax to represent and manipulate lists

 [1,2,3,4]: represents a list with 1, 2, 3 and 4, respectively.

 This can also be written as [1|[2,3,4]]: a list with 1 as the

head (first element) and [2,3,4] as its tail (the list of

remaining elements).

 If X = 1 and Y = [2,3,4] then [X|Y] is same as [1,2,3,4].

 The empty list is represented by [] or nil

 The symbol "|" (pipe) and is used to separate the beginning elements of a

list from its tail

 For example: [1,2,3,4] = [1|[2,3,4]] = [1|[2|[3,4]]] =
[1,2|[3,4]] = [1,2,3|[4]] = [1|[2|[3|[4|[]]]]]

58

(c) Paul Fodor (CS Stony Brook) and Elsevier

Lists
 Lists are special cases of trees (syntactic sugar, i.e.,

internally, they use structures)

 For instance, the list [1,2,3,4] is represented by the

following structure:

 where the function symbol ./2 is the list constructor:

[1,2,3,4] is same as .(1,.(2,.(3,.(4,[]))))

59

(c) Paul Fodor (CS Stony Brook) and Elsevier

Lists
Strings: are sequences of characters surrounded

by double quotes "abc", "John

Smith", "to be, or not to be".

A string is equivalent to a list of the (numeric)

character codes:

?- X="abc".

X = [97,98,99]

60

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
 member/2 finds if a given element occurs in a list:

The program:

member(X, [X|_]).

member(X, [_|Ys]) :-

member(X,Ys).

Example queries:

?- member(2,[1,2,3]).

?- member(X,[l,i,s,t]).

?- member(f(X),[f(1),g(2),f(3),h(4)]).

?- member(1,L).

61

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
 append/3 concatenate two lists to form the third list:

The program:
 Empty list append L is L:

append([], L, L).
 Otherwise, break the first list up into the head X, and the tail L: if L append M is N,

then [X|L] append M is [X|N]:

append([X|L], M, [X|N]) :-

append(L, M, N).

Example queries:
?- append([1,2],[3,4],X).

?- append(X, Y, [1,2,3,4]).

?- append(X, [3,4], [1,2,3,4]).

?- append([1,2], Y, [1,2,3,4]).
62

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
 Is the predicate a function?

 No.We are not applying arguments to get a result. Instead,

we are proving that a theorem holds. Therefore, we can leave

any variables unbound.

?- append(L, [2, 3], [1, 2, 3]).

L = [1]

?- append([1], L, [1, 2, 3]).

L = [2, 3]

?- append(L1, L2, [1, 2, 3]).

L1 = [], L2 = [1, 2, 3];

L1 = [1], L2 = [2, 3];

L1 = [1, 2], L2 = [3] ;

L1 = [1, 2, 3], L2 = [];

no
63

(c) Paul Fodor (CS Stony Brook) and Elsevier
64

append([],L,L).

append([X|L], M, [X|N]) :- append(L,M,N).

append([1,2],[3,4],X)?

Append example trace

64

(c) Paul Fodor (CS Stony Brook) and Elsevier
65

append([],L,L).

append([X|L],M,[X|N]) :- append(L,M,N).

append([1,2],[3,4],A)? X=1,L=[2],M=[3,4],A=[X|N]

Append example trace

65

(c) Paul Fodor (CS Stony Brook) and Elsevier
66

append([],L,L).

append([X|L],M,[X|N]) :- append(L,M,N).

append([1,2],[3,4],A)? X=1,L=[2],M=[3,4],A=[X|N]

append([2],[3,4],N)?

Append example trace

66

(c) Paul Fodor (CS Stony Brook) and Elsevier
67

append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],A)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

Append example trace

67

(c) Paul Fodor (CS Stony Brook) and Elsevier
68

append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],A)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)?

Append example trace

68

(c) Paul Fodor (CS Stony Brook) and Elsevier
69

append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],A)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)? L = [3,4], N’ = L

Append example trace

69

(c) Paul Fodor (CS Stony Brook) and Elsevier
70

append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],A)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)? L = [3,4], N’ = L

A = [1|N]

N = [2|N’]

N’= L

L = [3,4]

Answer: A = [1,2,3,4]

Append example trace

70

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
 len/2 to find the length of a list (the first argument):

The program:
len([], 0).

len([_|Xs], N+1) :-

len(Xs, N).

Example queries:
?- len([], X).

X = 0

?- len([l,i,s,t], 4).

false

?- len([l,i,s,t], X).

X = 0+1+1+1+1

71

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arithmetic
?- 1+2 = 3.

false

In Predicate logic, the basis for Prolog, the

only symbols that have a meaning are the

predicates themselves

In particular, function symbols are

uninterpreted: have no special meaning and

can only be used to construct data structures

72

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arithmetic
 Meaning for arithmetic expressions is given by the

built-in predicate "is":

?- X is 1 + 2.

succeeds, binding X = 3.

?- 3 is 1 + 2.

succeeds.

 General form: R is E where E is an expression to be

evaluated and R is matched with the expression's value

 Y is X + 1, where X is a free variable, will give an

error because X does not (yet) have a value, so, X + 1

cannot be evaluated
73

(c) Paul Fodor (CS Stony Brook) and Elsevier

The list length example revisited
 length/2 finds the length of a list (first argument):

The program:
length([], 0).

length([_|Xs], M):-

length(Xs, N),

M is N+1.

Example queries:
?- length([], X).

?- length([l,i,s,t], 4).

?- length([l,i,s,t], X).

X = 4

?- length(List, 4).

List = [_1, _2, _3, _4]
74

(c) Paul Fodor (CS Stony Brook) and Elsevier

Conditional Evaluation
 Conditional operator: the if-then-else construct in

Prolog:

 if A then B else C is written as (A -> B ; C)

 To Prolog this means: try A. If you can prove it, go on to

prove B and ignore C. If A fails, however, go on to

prove C ignoring B.

max(X,Y,Z) :-

(X =< Y

-> Z = Y

; Z = X

).

75

?- max(1,2,X).

X = 2.

(c) Paul Fodor (CS Stony Brook) and Elsevier

Conditional Evaluation
 Consider the computation of n! (i.e. the factorial of n)

% factorial(+N, -F)

factorial(N, F) :- ...

 N is the input parameter and F is the output parameter!

 The body of the rule species how the output is related to the

input
 For factorial, there are two cases: N <= 0 and N > 0

 if N <= 0, then F = 1

 if N > 0, then F = N * factorial(N - 1)

factorial(N, F) :-

(N > 0

-> N1 is N-1,

factorial(N1, F1),

F is N*F1

; F = 1

).
76

?- factorial(12,X).

X = 479001600

(c) Paul Fodor (CS Stony Brook) and Elsevier

Imperative features
 Other imperative features: we can think of prolog rules

as imperative programs w/ backtracking

program :-

member(X, [1, 2, 3, 4]),

write(X),

nl,

fail;

true.

?- program. % prints all solutions

 fail: always fails, causes backtracking

 ! is the cut operator: prevents other rules from

matching (we will see it later)
77

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arithmetic Operators
 Integer/Floating Point operators: +, -, *, /

Automatic detection of Integer/Floating Point

 Integer operators: mod, // (integer division)

Comparison operators: <, >, =<, >=,

Expr1 =:= Expr2 (succeeds if expression

Expr1 evaluates to a number equal to Expr2),

Expr1 =\= Expr2 (succeeds if expression

Expr1 evaluates to a number non-equal to Expr2)

78

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
Quicksort:

quicksort([], []).

quicksort([X0|Xs], Ys) :-

partition(X0, Xs, Ls, Gs),

quicksort(Ls, Ys1),

quicksort(Gs, Ys2),

append(Ys1, [X0|Ys2], Ys).

partition(Pivot,[],[],[]).

partition(Pivot,[X|Xs],[X|Ys],Zs) :-

X =< Pivot,

partition(Pivot,Xs,Ys,Zs).

partition(Pivot,[X|Xs],Ys,[X|Zs]) :-

X > Pivot,

partition(Pivot,Xs,Ys,Zs).
79

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
Quicksort:

quicksort([], []).

quicksort([X0|Xs], Ys) :-

partition(X0, Xs, Ls, Gs),

quicksort(Ls, Ys1),

quicksort(Gs, Ys2),

append(Ys1, [X0|Ys2], Ys).

partition(Pivot,[],[],[]).

partition(Pivot,[X|Xs],[X|Ys],Zs) :-

X =< Pivot,

!, % cut

partition(Pivot,Xs,Ys,Zs).

partition(Pivot,[X|Xs],Ys,[X|Zs]) :-

partition(Pivot,Xs,Ys,Zs).
80

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
 We want to define delete/3, to remove a given

element from a list (called select/3 in XSB's basics

library):

 delete(2, [1,2,3], X) should succeed with
X=[1,3]

 delete(X, [1,2,3], [1,3]) should succeed with
X=2

 delete(2, X, [1,3]) should succeed with
X=[2,1,3]; X =[1,2,3]; X=[1,3,2]; fail

 delete(2, [2,1,2], X) should succeed with
X=[1,2]; X =[2,1]; fail

81

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
Algorithm:

When X is selected from [X|Ys], Ys

results as the rest of the list

When X is selected from the tail of

[H|Ys], [H|Zs] results, where Zs is

the result of taking X out of Ys

82

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
The program:

delete(X,[],_) :- fail.% not needed

delete(X, [X|Ys], Ys).

delete(X, [Y|Ys], [Y|Zs]) :-

delete(X, Ys, Zs).

Example queries:

?- delete(s, [l,i,s,t], Z).

X = [l, i, t]

?- delete(X, [l,i,s,t], Z).

?- delete(s, Y, [l,i,t]).

?- delete(X, Y, [l,i,s,t]).

83

(c) Paul Fodor (CS Stony Brook) and Elsevier

Permutations
 Define permute/2, to find a permutation of a given list.

E.g. permute([1,2,3], X) should return

X=[1,2,3] and upon backtracking, X=[1,3,2],

X=[2,1,3], X=[2,3,1], X=[3,1,2], and

X=[3,2,1].

Hint: What is the relationship between the permutations of

[1,2,3] and the permutations of [2,3]?

84

(c) Paul Fodor (CS Stony Brook) and Elsevier

Programming with Lists
The program:

permute([], []).

permute([X|Xs], Ys) :-

permute(Xs, Zs),

delete(X, Ys, Zs).

Example query:

?- permute([1,2,3], X).

X = [1,2,3];

X = [2,1,3];

X = [2,3,1];

X = [1,3,2] …
85

(c) Paul Fodor (CS Stony Brook) and Elsevier

The Issue of Efficiency
 Define a predicate, rev/2 that finds the reverse of a

given list
 E.g. rev([1,2,3],X) should succeed with X=[3,2,1]
 Hint: what is the relationship between the reverse of [1,2,3] and the

reverse of [2,3]? Answer: append([3,2],[1],[3,2,1])

rev([], []).

rev([X|Xs], Ys) :- rev(Xs, Zs),

append(Zs, [X], Ys).

 How long does it take to evaluate rev([1,2,…,n],X)?

T(n) = T(n - 1)+ time to add 1 element to the end of

an n - 1 element list = T(n - 1) + n – 1 =

T(n - 2) + n – 2 + n – 1 = ...

→ T(n) = O(n2) (quadratic)
86

(c) Paul Fodor (CS Stony Brook) and Elsevier

Making rev/2 faster
Keep an accumulator: stack all elements seen so far
 i.e. a list, with elements seen so far in reverse order

The program:
rev(L1, L2) :- rev_h(L1, [], L2).

rev_h([X|Xs], AccBefore, Out):-

rev_h(Xs, [X|AccBefore], Out).

rev_h([], Acc, Acc). % Base case

 Example query:

?- rev([1,2,3], X).

will call rev_h([1,2,3], [], X)

which calls rev_h([2,3], [1], X)

which calls rev_h([3], [2,1], X)

which calls rev_h([], [3,2,1], X)

which returns X = [3,2,1]
87

(c) Paul Fodor (CS Stony Brook) and Elsevier

Tree Traversal
Assume you have a binary tree, represented by

node/3 facts for internal nodes: node(a,b,c)

means that a has b and c as children

leaf/1 facts: for leaves: leaf(a) means that a

is a leaf

Example:
node(5, 3, 6).

node(3, 1, 4).

leaf(1).

leaf(4).

leaf(6).
88

(c) Paul Fodor (CS Stony Brook) and Elsevier

Tree Traversal
 Write a predicate preorder/2 that traverses the tree (starting

from a given node) and returns the list of nodes in pre-order

preorder(Root, [Root]) :-

leaf(Root).

preorder(Root, [Root|L]) :-

node(Root, Child1, Child2),

preorder(Child1, L1),

preorder(Child2, L2),

append(L1, L2, L).

?- preorder(5, L).

L = [5, 3, 1, 4, 6]

The program takes O(n2) time to traverse a tree with n

nodes. How to append 2 lists in shorter time?
89

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists
The lists in Prolog are singly-linked; hence we can

access the first element in constant time, but

need to scan the entire list to get the last element

However, unlike functional languages like Lisp or

SML, we can use variables in data structures:

We can exploit this to make lists “open tailed”

(also called difference lists in Prolog): end the

list with a variable tail and pass that variable, so

we can add elements at the end of the list

90

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists
When X=[1,2,3|Y], X is a list with 1, 2, 3 as

its first three elements, followed by Y

Now if Y=[4|Z] then X=[1,2,3,4|Z]

We can now think of Z as “pointing to” the end of X

We can now add an element to the end of

X in constant time!!

And continue adding more elements, e.g.

Z=[5|W]

91

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists: Conventions
A difference list is represented by two variables:

one referring to the entire list, and another to its

(uninstantiated) tail

e.g. X = [1,2,3|Z], Z

 Most Prolog programmers use the notation List-

Tail to denote a list List with tail Tail.

 e.g. X-Z

Note that “-” is used as a data structure infix symbol (not

used for arithmetic here)

92

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists
 Append 2 open ended lists:

dappend(X,T, Y,T2, L,T3) :-

T = Y,

T2 = T3,

L = X.
?- dappend([1,2,3|T],T, [4,5,6|T2],T2, L,T3).

L = [1,2,3,4,5,6|T3]

 Simplified version:

dappend(X,T, T,T2, X,T2).

 More simplified notation (with "-"):

dappend(X-T, T-T2, X-T2).

?- dappend([1,2,3|T]-T, [4,5,6|T2]-T2, L-T3).

L = [1,2,3,4,5,6|T2]
93

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists
 Add an element at the end of a list:
add(L-T, X, L2-T2) :-

T = [X|T2],

L = L2.

?- add([1,2,3|T]-T, 4, L-T2).

L = [1,2,3,4|T2]

 We can simplify it as:
add(L-T, X, L-T2) :-

T = [X|T2].

 This can be simplified more like:

add(L-[X|T2], X, L-T2).

 Alternative using dappend:

add(L-T, X, L-T2) :-

dappend(L-T,[X|T2]-T2,L-T2).
94

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists
 Check if a list is a palindrome:

palindrome(X) :-

palindromeHelp(X-[]).

palindromeHelp(A-A). % an empty list

palindromeHelp([_|A]-A).%1-element list

palindromeHelp([C|A]-D) :-

palindromeHelp(A-B),

B=[C|D].

?- palindrome([1,2,2,1]).

yes

?- palindrome([1,2,3,2,1]).

yes

?- palindrome([1,2,3,4,5]).

no
95

(c) Paul Fodor (CS Stony Brook) and Elsevier

Tree Traversal, Revisited
preorder1(Node, List, Tail) :-

node(Node, Child1, Child2),

List = [Node|List1],

preorder1(Child1, List1, Tail1),

preorder1(Child2, Tail1, Tail).

preorder1(Node, [Node|Tail], Tail) :-

leaf(Node).

preorder(Node, List) :-

preorder1(Node, List, []).

The program takes O(n) time to traverse a tree

with n nodes
96

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists: Conventions
The preorder traversal program may be

rewritten as:

preorder1(Node, [Node|L]-T) :-

node(Node, Child1, Child2),

preorder1(Child1, L-T1),

preorder1(Child2, T1-T).

preorder1(Node, [Node|T]-T).

97

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists: Conventions
The inorder traversal program:

inorder1(Node, L-T) :-

node(Node, Child1, Child2),

inorder1(Child1, L-T1),

T1 = [Node|T2],

inorder1(Child2, T2-T).

inorder1(Node, [Node|T]-T).

inorder(Node,L):-

inorder1(Node, L-[]).
98

(c) Paul Fodor (CS Stony Brook) and Elsevier

Difference Lists: Conventions
The postorder traversal program:

postorder1(Node, L-T) :-

node(Node, Child1, Child2),

postorder1(Child1, L-T1),

postorder1(Child2, T1-T2),

T2 = [Node|T].

postorder1(Node, [Node|T]-T).

postorder(Node,L):-

postorder1(Node, L-[]).
99

(c) Paul Fodor (CS Stony Brook) and Elsevier

Graphs in Prolog
 There are several ways to represent graphs in Prolog:

represent each edge separately as one clause (fact):
edge(a,b).

edge(b,c).

 isolated nodes cannot be represented, unless we have also

node/1 facts

 the whole graph as one data object: as a pair of two

sets (nodes and edges): graph([a,b,c,d,f,g],
[e(a,b), e(b,c),e(b,f)])

 list of arcs: [a-b, b-c, b-f]

adjacency-list: [n(a,[b]), n(b,[c,f]), n(d,[])]

100

(c) Paul Fodor (CS Stony Brook) and Elsevier

Graphs in Prolog
Path from one node to another one:
A predicate path(+G,+A,+B,-P) to find an

acyclic path P from node A to node B in the graph G

The predicate should return all paths via

backtracking

We will solve it using the graph as a data object, like

in graph([a,b,c,d,f,g], [e(a,b),

e(b,c),e(b,f)]

101

(c) Paul Fodor (CS Stony Brook) and Elsevier

Graphs in Prolog
adjacent for directed edges:

adjacent(X,Y,graph(_,Es)) :-

member(e(X,Y),Es).

adjacent for undirected edges (ie. no distinction

between the two vertices associated with each edge):

adjacent(X,Y,graph(_,Es)) :-

member(e(X,Y),Es).

adjacent(X,Y,graph(_,Es)) :-

member(e(Y,X),Es).

102

(c) Paul Fodor (CS Stony Brook) and Elsevier

Graphs in Prolog
Path from one node to another one:
path(G,A,B,P) :-

pathHelper(G,A,[B],P).

% Base case

pathHelper(_,A,[A|P1],[A|P1]).

pathHelper(G,A,[Y|P1],P) :-

adjacent(X,Y,G),

\+ member(X,[Y|P1]),

pathHelper(G,A,[X,Y|P1],P).
103

(c) Paul Fodor (CS Stony Brook) and Elsevier

Graphs in Prolog
Cycle from a given node in a directed graph:

a predicate cycle(G,A,Cycle) to find a

closed path (cycle) Cycle starting at a given

node A in the graph G

The predicate should return all cycles via

backtracking

cycle(G,A,Cycle) :-

adjacent(A,B,G),

path(G,B,A,P1),

Cycle = [A|P1].
104

(c) Paul Fodor (CS Stony Brook) and Elsevier

Complete program in XSB
:- import member/2 from basics.

adjacent(X,Y,graph(_,Es)) :-

member(e(X,Y),Es).

path(G,A,B,P) :-

pathHelper(G,A,[B],P).

pathHelper(_,A,[A|P1],[A|P1]).

pathHelper(G,A,[Y|P1],P) :-

adjacent(X,Y,G),

\+ member(X,[Y|P1]),

pathHelper(G,A,[X,Y|P1],P).

cycle(G,A,Cycle) :-

adjacent(A,B,G),

path(G,B,A,P),

Cycle = [A|P].

?- Graph = graph([a,b,c,d,f,g],

[e(a,b), e(b,c),e(c,a),e(a,e),e(e,a)]),

cycle(Graph,a,Cycle),

writeln(Cycle),

fail; true.105

(c) Paul Fodor (CS Stony Brook) and Elsevier

Aggregates in XSB
 setof(Template,Goal,Set): Set is the set of all

instances of Template such that Goal is provable

 findall(Template,Goal,List) is similar to

predicate bagof/3, except that variables in Goal that do not

occur in Template are treated as existential, and alternative

lists are not returned for different bindings of such variables

 bagof(Template,Goal,Bag) has the same semantics

as setof/3 except that the third argument returns an unsorted

list that may contain duplicates. X^Goal will not bind X

 tfindall(Template,Goal,List) is similar to

predicate findall/3, but the Goal must be a call to a single

tabled predicate

106

(c) Paul Fodor (CS Stony Brook) and Elsevier

Aggregates in XSB
p(1,1).

p(1,2).

p(2,1).

?- setof(Y,p(X,Y),L).

L=[1,2]

?- findall(Y,p(X,Y),L).

L=[1,2,1]

?- bagof(Y,p(X,Y),L).

X=1, L=[1,2] ;

X=2, L=[1] ;

fail
107

(c) Paul Fodor (CS Stony Brook) and Elsevier

XSB Prolog
Negation: \+ is negation-as-failure

Another negation called tnot (TABLING =
memoization)
Use: … :- …, tnot(foobar(X)).

All variables under the scope of tnot must also occur
to the left of that scope in the body of the rule in other
positive relations:

Ok: …:-p(X,Y),tnot(foobar(X,Y)),…
Not ok: …:-p(X,Z),tnot(foobar(X,Y)), …

XSB also supports Datalog:
:- auto_table.

at the top of the program file
108

(c) Paul Fodor (CS Stony Brook) and Elsevier

XSB Prolog
Read/write from and to files:
Edinburgh style:

?- tell('a.txt'),

write('Hello, World!'), told.

?- see('a.txt'), read(X), seen.

109

(c) Paul Fodor (CS Stony Brook) and Elsevier

XSB Prolog
Read/write from and to files:
ISO style:

?- open('a.txt', write, X),

write(X,'Hello, World!'),

close(X).

110

(c) Paul Fodor (CS Stony Brook) and Elsevier

Cut (logic programming)
 Cut (! in Prolog) is a goal which always succeeds, but cannot

be backtracked past:

max(X,Y,Y) :- X =< Y, !.

max(X,_,X).

 cut says “stop looking for alternatives”

 no check is needed in the second rule anymore because if we

got there, then X =< Ymust have failed, so X > Ymust be

true.

 Red cut: if someone deletes !, then the rule is incorrect - above

 Green cut: if someone deletes !, then the rule is correct
max(X,Y,Y) :- X =< Y, !.

max(X,Y,X) :- X > Y.

 by explicitly writing X > Y, it guarantees that the second rule will

always work even if the first one is removed by accident or changed

(cut is deleted)
111

(c) Paul Fodor (CS Stony Brook) and Elsevier

Cut (logic programming)
No backtracking pass the guard, but ok after:

p(a). p(b).

q(a). q(b). q(c).

?- p(X),!.

X=a ;

no

?- p(X),!,q(Y).

X=a, Y=a ;

X=a, Y=b ;

X=a, Y=c ;

no
112

(c) Paul Fodor (CS Stony Brook) and Elsevier

Testing types
 atom(X)

Tests whether X is bound to a symbolic atom

?- atom(a).

yes

?- atom(3).

no

 integer(X)

Tests whether X is bound to an integer

 real(X)

Tests whether X is bound to a real number

113

(c) Paul Fodor (CS Stony Brook) and Elsevier

Testing for variables
 is_list(L)

Tests whether L is bound to a list

 ground(G)

Tests whether G has unbound logical variables

 var(X)

Tests whether X is bound to a Prolog variable

114

(c) Paul Fodor (CS Stony Brook) and Elsevier

Control / Meta-predicates
 call(P)

Force P to be a goal; succeed if P does, else fail

 clause(H,B)

Retrieves clauses from memory whose head matches H

and body matches B. H must be sufficiently instantiated

to determine the main predicate of the head

 copy_term(P,NewP)

Creates a new copy of the first parameter (with new

variables)

 It is used in iteration through non-ground clauses, so that

the original calls are not bound to values
115

(c) Paul Fodor (CS Stony Brook) and Elsevier

Control / Meta-predicates
Write a Prolog relation
map(BinaryRelation,InputList, OutputList)

which applies a binary relation on each of the elements of the list

InputList as the first argument and collects the second

argument in the result list.

Example:

?- map(inc1(X,Y),[5,6],R). returns R=[6,7]

where inc1(X,Y) was defined as:

inc1(X,Y) :-

Y is X+1.

116

(c) Paul Fodor (CS Stony Brook) and Elsevier

Control / Meta-predicates
map(_BinaryCall,[],[]).

map(BinaryCall,[X|T],[Y|T2]) :-

copy_term(BinaryCall, BinaryCall2),

BinaryCall2 =.. [_F,X,Y],

call(BinaryCall2),

map(BinaryCall, T, T2).

inc1(X,Y) :-

Y is X+1.

?- map(inc1(X,Y), [5,6], R).

R = [6,7]

117

(c) Paul Fodor (CS Stony Brook) and Elsevier

Control / Meta-predicates
square(X,Y) :-

Y is X*X.

?- map(square(E, E2), [2,3,1], R).

R = [4,9,1];

no

118

(c) Paul Fodor (CS Stony Brook) and Elsevier

Control / Meta-predicates
 Use the relation map to implement a relation

pairAll(E,L,L2) which pairs the element E

with each element of the list L to obtain L2.

Examples:

?- pairAll(1,[2,3,1], L2).

returns L2=[[1,2],[1,3],[1,1]]

?- pairAll(1,[], L2).

returns L2=[].

119

(c) Paul Fodor (CS Stony Brook) and Elsevier

Control / Meta-predicates
pair(E2, (_E1,E2)).

pairAll(E,L,L2):-

map(pair(E2, (E,E2)), L, L2).

?- pairAll(1, [2,3,1], R).

R = [(1,2),(1,3),(1,1)]

120

(c) Paul Fodor (CS Stony Brook) and Elsevier

Assert and retract
 asserta(C)

Assert clause C into database above other clauses with

the same predicate.

 assertz(C), assert(C)

Assert clause C into database below other clauses with

the same predicate.

 retract(C)

Retract C from the database. C must be sufficiently

instantiated to determine the predicate.

121

(c) Paul Fodor (CS Stony Brook) and Elsevier

Prolog terms
 functor(E,F,N)

E must be bound to a functor expression of the form

'f(...)'. F will be bound to 'f', and N will be

bound to the number of arguments that f has.

 arg(N,E,A)

E must be bound to a functor expression, N is a whole

number, and A will be bound to the Nth argument of E

122

(c) Paul Fodor (CS Stony Brook) and Elsevier

Prolog terms and clauses
 =..

converts between term and list. For example,

?- parent(a,X) =.. L.

L = [parent, a, _X001]

?- [1] =.. X.

X = [.,1,[]]

123

