
CHAPTER 4

CLASSICAL PROPOSITIONAL SEMANTICS

1 Language

There are several propositional languages that are routinely called classical
propositional logic languages. It is due to the functional dependency of classi-
cal connectives discussed briefly in chapter 2. They all share the same logical
meaning, called semantics. They also define the same set of universally true
formulas called tautologies.

We adopt here as classical propositional language the language L with the full
set of connectives CON = {¬,∪,∩,⇒,⇔,⇔} i.e. the language

L{¬,∪,∩,⇒,⇔,⇔}.

As the choice of the set of connectives is now fixed, we will use the symbol

L

to denote the language L{¬,∪,∩,⇒,}.

In previous chapters we have already established how we read and what are the
natural language names of the connectives of L.

For example, we read the symbol ¬ as ”not”, ”not true” and its name is
negation.

We read the formula (A ⇒ B) as ” if A, then B”, ”A implies B”, or ”from
the fact that A we deduce B”, and the name of the connective ⇒ is
implication.

We refer to the established reading of propositional connectives and formulas
involving them as a natural language meaning.

Propositional logic defines and studies their a logical meaning called a se-
mantics of the language L. We define here a classical semantics, some other
semantics are defined in next chapter (Chapter 5).
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2 Classical Semantics, Satisfaction

We based the classical logic, i.e. classical semantics on the following two
assumptions.

TWO VALUES: there are only two logical values. We denote them T (for
true) and F (for false). Other common notations are 1,> for true and 0,⊥
for false.

EXTENSIONALITY: the logical value of a formula depends only on a main
connective and logical values of its sub-formulas.

We define a classical semantics for L in terms of two factors: classical truth
tables (reflexes the extensionality of connectives) and a truth assignment. In
Chapter 2 we provided a motivation for the notion of classical logical connectives
and introduced their informal definitions. We summarize here the truth tables
for propositional connectives defined in chapter 2 in the following one table.

A B ¬A (A ∩B) (A ∪B) (A⇒ B) (A⇔ B)
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

(1)

The first truth values row of the above table 2 reads:

For any formulas A, B, if the logical value of A = T and B = T , then logical
values of ¬A = T , (A ∩B) = T , (A ∪B) = T and (A⇒ B) = T .

We read and write the other rows in a similar manner.

The table 2 indicates that the logical value of of propositional formulas de-
pends on the logical values of its factors; i.e. fulfils the condition of extension-
ality. Moreover, it shows that the logical value of of propositional connectives
depends only on the logical values of its factors; i.e. it is independent of the
formulas A, B. It gives us the following important property of our proposi-
tional connectives.

EXTENSIONAL CONNECTIVES: The logical value of a given connec-
tive depend only of the logical values of its factors.

We now write the table in an even simpler form of the following equations.
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¬T = F, ¬F = T ;

(T ∩ T ) = T, (T ∩ F ) = F, (F ∩ T ) = F, (F ∩ F ) = F ;

(T ∪ T ) = T, (T ∪ F ) = T, (F ∪ T ) = T, (F ∪ F ) = F ; (2)

(T ⇒ T ) = T, (T ⇒ F ) = F, (F ⇒ T ) = T, (F ⇒ F ) = T ;

(T ⇔ T ) = T, (T ⇔ F ) = F, (F ⇔ T ) = F, (T ⇔ T ) = T.

Observe that the equations 2 describe a set of unary and binary operations
(functions) defined on a set {T, F}, or on a set {T, F} × {T, F} as follows.

Negation ¬ is a function function:

¬ : {T, F} −→ {T, F},

such that ¬T = F, ¬F = T .

Conjunction ∩ is a function:

∩ : {T, F} × {T, F} −→ {T, F},

such that (T ∩ T ) = T, (T ∩ F ) = F, (F ∩ T ) = F, (F ∩ F ) = F

Disjunction ∪ is a function:

∪ : {T, F} × {T, F} −→ {T, F},

such that (T ∪ T ) = T, (T ∪ F ) = T, (F ∪ T ) = T, (F ∪ F ) = F.

Implication ⇒ is a function

⇒: {T, F} × {T, F} −→ {T, F},

such that (T ⇒ T ) = T, (T ⇒ F ) = F, (F ⇒ T ) = T, (F ⇒ F ) = T,

Observe that if we have have a language L{¬,∪,∩,⇒,⇔} containing also the
equivalence connective ⇔ we define

Equivalence ⇔ as a function:

⇔: {T, F} × {T, F} −→ {T, F},

such that (T ⇔ T ) = T, (T ⇔ F ) = F, (F ⇔ T ) = F, (F ⇔ F ) = T.
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We write them in a form of tables, usually called the classical truth tables.

Classical Truth Tables (3)

Negation :

¬ T F
F T

Conjunction :

∩ T F
T T F
F F F

Disjunction :

∪ T F
T T T
F T F

Implication :

⇒ T F
T T F
F T T

Equivalence :

⇔ T F
T T F
F F T

Definition 2.1 A truth assignment is any function

v : V AR −→ {T, F}.

The function v defined in above definition 2.1 is called the truth assignment
because it can be thought as an assignment to each variable (which represents
a logical sentence) its logical value of T(ruth) of F(alse).

Remark 1 The domain of v is the countably infinite set V AR of all propositional
variables.

Remark 2 The truth function v of the above definition 2.1 assigns logical values
to the atomic formulas only.

We use the truth tables to extend the truth assignment v to the set of all
formulas as follows.
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Definition 2.2 (Truth Tables Semantics) For each truth assignment

v : V AR −→ {T, F}

we define its extension

v∗ : F −→ {T, F}

to the set F of all formulas of L as follows.

For any a ∈ V AR,

v∗(a) = v(a).

For any A, B ∈ F ,

v∗(¬A) = ¬v∗(A);

v∗(A ∩B) = v∗(A) ∩ v∗(B); (4)

v∗(A ∪B) = v∗(A) ∪ v∗(B);

v∗(A⇒ B) = v∗(A)⇒ v∗(B),

v∗(A⇔ B) = v∗(A)⇔ v∗(B),

where

the symbols on the left-hand side of the equations 4 represent connectives in
their natural language meaning and

the symbols on the right-hand side represent connectives in their logical
meaning given by the classical truth tables 5 or equations 2 representing
them.

Example 1

Let A be a formula ((a ∪ ¬b) ⇒ a) and v : V AR −→ {T, F} be such that
v(a) = T, v(b) = F and v(x) = T for all other variables. We evaluate v∗(A) as
follows.

v∗((a ∪ ¬b) ⇒ a) = (v∗(a ∪ ¬b) ⇒ v∗(a)) = ((v∗(a) ∪ v∗(¬b)) ⇒ v∗(a)) =
((v(a) ∪ ¬v∗(b)) ⇒ v(a)) = ((v(a) ∪ ¬v(b)) ⇒ v(a)) = ((T ∪ ¬F ) ⇒ T ) =
((T ∪ T )⇒ T ) = (T ⇒ T ) = T.

We write the computation of logical value of the formula A in a short-hand
notation using the last set of equations that involve only T, F symbols as follows.
v∗((a ∪ ¬b)⇒ a) = ((T ∪ ¬F )⇒ T ) = ((T ∪ T )⇒ T ) = (T ⇒ T ) = T.
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Definition 2.3 (Satisfaction relation) For any truth assignment v,

v satisfies a formula A ∈ F if and only if v∗(A) = T .

We denote it by
v |= A.

If v∗(A) 6= T , we say that v does not satisfy the formula A and denote it by

v 6|= A.

Observe, that by the definition of our classical semantics v∗(A) 6= T if and only
if v∗(A) = F and we say in this case that v falsifies A.

Example 2

Let A be a formula
((a⇒ b) ∪ ¬a))

and v be a truth assignment

v : V AR −→ {T, F}

such that v(a) = T, v(b) = F and v(x) = F for all x ∈ V AR− {a, b}.

By the definition, we calculate the logical value of the formula A as follows:

v∗(A) = v∗((a⇒ b) ∪ ¬a)) =
(v∗(a⇒ b) ∪ v∗(¬a)) = ((v(a)⇒ v(b)) ∪ ¬v(a)) = ((T ⇒ F ) ∪ ¬T ) =
(F ∪ F ) = F .
It proves that

v 6|= ((a⇒ b) ∪ ¬a)).

As we remarked before, in practical cases we use a short-hand notation for while
evaluating the logical value of a given formula. Here is a short procedure for v
and A defined above.

Short-hand evaluation

(1) We write a = T , b = F for v(a) = T, v(b) = F .

(2) We replace a by T and b by F in the formula ((a⇒ b) ∪ ¬a)) i.e. we write
((T ⇒ F ) ∪ ¬T ).

(3) We use equations 2 or tables 5 to evaluate the logical value v∗(A) as follows.
((T ⇒ F ) ∪ ¬T ) = (F ∪ F ) = F .
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(4) We write
v 6|= ((a⇒ b) ∪ ¬a))

and say v falsifies A¿

Example 3

Let A be a formula
((a ∩ ¬b) ∪ ¬c)

and v be a truth assignment

v : V AR −→ {T, F}

such that v(a) = T, v(b) = F, v(c) = T and v(x) = T for all x ∈ V AR−{a, b, c}.

By the definition, we calculate (in the short-hand notation) the logical value of
the formula A as follows:
((T ∩ ¬F ) ∪ ¬T ) = ((T ∩ T ) ∪ F ) = (T ∪ F ) = T
This proves that the truth assignment v satisfies the formula A and we write

v |= ((a ∩ ¬b) ∪ ¬c).

Example 4 Consider now the formula A = ((a ∩ ¬b) ∪ ¬c) from the previous
example. Let v1, v2, v3 be the following truth assignments.

v1 : V AR −→ {T, F}, such that v1(a) = T, v1(b) = F, v1(c) = T, v1(x) = F ,
for all x ∈ V AR− {a, b, c}, and

For v2 : V AR −→ {T, F}, such that v2(a) = T, v2(b) = F, v2(c) = T, v2(d) =
T, v2(x) = F , for all x ∈ V AR− {a, b, c, d}, and

v3 : V AR −→ {T, F} such that v3(a) = T, v3(b) = F, v3(c) = T, v3(d) =
T, v3(e) = T, v3(x) = F , for all x ∈ V AR− {a, b, c, d, e}.

We evaluate v∗i (A) and get that

vi |= ((a ∩ ¬b) ∪ ¬c), for i = 1, 2, 3.

But instead of performing evaluation let’s observe that v1, v2, v3 have the same
values on a, b, c as v, i.e.

vi(a) = v(a), vi(b) = v(b), vi(c) = v(c),

and as we have already proved that v |= ((a∩¬b)∪¬c), so we conclude that so
do all vi.
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Moreover, for any w : V AR −→ {T, F}, such that w(a) = v(a), w(b) =
v(b), w(c) = v(c), we also have that

w |= ((a ∩ ¬b) ∪ ¬c).

We are going to prove that there are as many of such w’s an real numbers. But
they don’t bring anything more then the initial v to our knowledge about A;
they are all the same as v with respect to the formula A.

When we ask a question: ”How many truth assignments satisfy/fasify a formula
A?” we mean to find all assignment that are different on the formula A, not just
different on a set V AR of all variables, as all of our w’s were. To address and to
answer this question formally we first introduce some notations and definitions.

Definition 2.4 For any A ∈ F , let V ARA be a set of all propositional variables
appearing in A. Any function

v : V ARA −→ {T, F},

is called a truth assignment restricted to A.

Example 5

Let A = ((a⇒ ¬b) ∪ ¬c). The set of variables of A is V ARA = {a, b, c}.
By definition 2.4 the truth assignment restricted to A is any function:

v : {a, b, c} −→ {T, F}.

We use the following theorem to count all possible truth assignment restricted
to A.

Theorem 2.1 (Counting Functions (1)) For any finite sets A and B,
if A has n elements and B has m elements, then there are mn possible functions
that map A into B.

So there are 23 = 8 possible truth assignment restricted to A = ((a⇒ ¬b)∪¬c).
We usually list them, and their value on the formula A in a form of an extended
truth table below.
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v a b c v∗(A) computation v∗(A)
v1 T T T (T ⇒ T ) ∪ ¬T = T ∪ F = T T
v2 T T F (T ⇒ T ) ∪ ¬F = T ∪ T = T T
v3 T F F (T ⇒ F ) ∪ ¬F = F ∪ T = T T
v4 F F T (F ⇒ F ) ∪ ¬T = T ∪ F = T T
v5 F T T (F ⇒ T ) ∪ ¬T = T ∪ F = T T
v6 F T F (F ⇒ T ) ∪ ¬F = T ∪ T = T T
v7 T F T (T ⇒ F ) ∪ ¬T = F ∪ F = F F
v8 F F F (F ⇒ F ) ∪ ¬F = T ∪ T = T T

(5)

By the same argument and theorem 2.1 we get proof of the following.

Theorem 2.2 For any A ∈ F there are

2card(V ARA)

possible truth assignments restricted to A.

Directly from the definition 2.4 we get that the following theorem hold.

Theorem 2.3 For any formula A ∈ F and any v restricted to A, i.e.

v : V ARA −→ {T, F}, (6)

the following holds.

v |= A (v 6|= A)

if and only if for any truth assignment w such that

w : V AR −→ {T, F}

and w(a) = v(a) for all a ∈ V ARA, (7)

we have that

w |= A (w 6|= A).

We put the relationship between v and w defined in the above theorem in a
form of the following definition.

Definition 2.5 The function w defined by 7 is called an extension of v to
the set V AR.
The function v defined by 6 is called an restriction of w to the set V ARA.
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A natural question arises: for given v, and a formula A (or any finite set of for-
mulas) how many are there extension of v? Observe, that v has a finite domain
and all w’s have a countably infinite domain. We write it as card(Dom(w) = ℵ0.
In order to count all possible functions w we recall a second ”counting the func-
tions” theorem for infinite sets, similar to the first theorem 2.1.

Theorem 2.4 (Counting Functions (2)) Let BA be the set of all functions
that map A into B, i.e.

BA = {f : f : A −→ B}.

For any sets A and B,

card(BA) = card(B)card(A) =MN .

In particular, when A is infinitely countable ie. card(A) = ℵ0 and card(B) = 2,
we get that there are

2ℵ0 = C

functions that map A into B, where C = card(R) for R being a set of real
umbers.

Of course, theorem 2.1 is a particular case of the above theorem 2.4.

For any formula A, the set V ARA is finite, and hence the set V AR− V ARA is
countably infinite, i.e. card(V AR− V ARA) = 2ℵ0 = C.

Given any truth assignment v restricted to A, all of its extensions w are defined
by the formula 7 and differ on elements from the countable infinite set V AR−
V ARA. So there as many of them as functions from By the set V AR− V ARA

into the set {T, F}. By theorem 2.4 there 2ℵ0 = C of them. This proves the
following theorem, similar to the theorem 2.2.

Theorem 2.5 For any A ∈ F , for any any truth assignment v restricted to A,
there are

2ℵ0 = C

possible truth assignments that are extensions of v to the set V AR of all propo-
sitional variables.

We generalize theorems 2.2, 2.5 and theorem 2.3 to any finite set FFIN of
formulas as follows.
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Theorem 2.6 Let FFIN ⊆ F be a finite set of formulas and V ARFIN be the
set of all variables appearing in all formulas from FFIN , i.e.

V ARFIN =
⋃

A∈FF IN

V ARA.

Let v : V ARFIN −→ {T, F} be any variable assignment restricted to FFIN .
Let and Sv be a set of all extensions of v, i.e.

Sv = {w : V AR −→ {T, F} : ∀a ∈ V ARFIN (v(a) = w(a))}. (8)

The following conditions holds.

(0) There are 2|V ARF IN | possible variable assignment restricted to the set
FFIN .

(1) For any v, there are card(Sv) = C possible extensions of v to the set V AR
of all possible propositional variables.

(2) For any v, for any A ∈ FFIN ,
v |= A, if and only if w |= A, for any w ∈ Sv.

(3) For any v, for any A ∈ FFIN ,
v 6|= A, if and only if w 6|= A, for any w ∈ Sv.

3 Model, Counter-Model, Tautology

A notion of a model is an important, if not the most important notion, of
modern logic. It is always defined in terms of the notion of satisfaction. In
classical propositional logic, it means in the classical semantics for a classical
propositional language these two notions are the same. The use of expressions
” v satisfies A” and ”v is a model for A” is interchangeable. This is also a case
for some non-classical semantics, like 3-valued semantics discussed in the next
chapter, but it is not the same in the intuitionistic semantics, modal semantics.
They are not interchangeable for predicate languages semantics. We introduce
the notion of a model for classical propositional formulas as a separate definition
to stress its importance and its non interchangeable dependence from the notion
of satisfaction in predicate logic.

Definition 3.1 (Model) Given a formula A ∈ F , a truth assignment v :
V AR −→ {T, F},

v is a model for A iff v |= A

When dom(v) = V ARA we call v a model restricted to A.
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Definition 3.2 (Counter- Model) Given a formula A ∈ F , a truth assign-
ment v : V AR −→ {T, F} such that falsifies A, i.e.

v 6|= A

is called a counter- model for a formula A.

When dom(v) = V ARA we call v a counter-model restricted to A.

We often need to find a model, or a set of all models, or a counter-model, or
the set of all possible counter-models for a given formula A. In this case we
habitually, as we did in the case of truth assignments satisfying a given formula,
find a model (counter-model) restricted to A, or list all models (counter-models)
restricted to A and we stop at this.

We can proceed like that because we know from theorems 2.3, 2.6 for any re-
stricted model v of A and any of its extensions w (definition 2.5 we have that

v |= A if and only if w |= A. (9)

The same holds for any counter-model restricted to A, and any of its extensions
w, i.e. the following holds.

v 6|= A if and only if w 6|= A. (10)

The above properties 9 and 10 justify the following.

Remark 1 We use, as it is habitually used, the words of model, counter-
model for model, counter-model restricted to.

Example 1

Consider a formula
A = ((a⇒ ¬b) ∪ ¬c).

We read all models and counter-models for A (it means, by Remark 1 all models
and counter-models restricted to A) from the table 5.

We say that the set of all models for A is

{w1, w2, w3, w4, w5, w6, w8},

and w7 is a counter-model for A.
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Definition 3.3 (Tautology) For any formula A ∈ F ,

A is a tautology if and only if all truth assignments

v : V AR −→ {T, F}

are models for A i.e.
v |= A, for all v.

A formula A is not a tautology if and only if A has a counter- model, i.e.

v 6|= A, for some v.

Tautology symbol

If a formula A is a tautology so by the definition 3.3 A satisfied by all v. This
means that it is independent of v and it justifies a notation

|= A, 6|= A (11)

for ” A is a tautology” and ” A is not a tautology”, respectively.

The theorem 2.3 and properties 9 and 10 prove the following.

Theorem 3.1 (Tautology) For any formula A ∈ F ,

|= A if and only if

v |= A for all v, such that v : V ARA −→ {T, F}.

The theorem 3.6 is a formal justification of the truth table method of tautology
verification. It says that in order to verify whether a given formula A is a
tautology it is sufficient to construct a truth table for A, following the pattern
established by the table 5, that lists all possible truth assignments restricted
to A. If all rows are evaluated to T , the formula A is a tautology, otherwise it
is not a tautology.

Example 2

Consider a formula
A = (a⇒ (a ∪ b)).

To verify whether |= A we construct a table of all v, such that v : V ARA −→
{T, F}. If all rows are evaluated to T , the formula A is a tautology, otherwise
it is not a tautology.
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v a b v∗(A) computation v∗(A)
v1 T T (T ⇒ (T ∪ T )) = (T ⇒ T ) = T T
v2 T F (T ⇒ (T ∪ F )) = (T ⇒ T ) = T T
v3 F T (F ⇒ (F ∪ T )) = (F ⇒ T ) = T T
v4 F F (F ⇒ (F ∪ F )) = (F ⇒ F ) = T T

All rows are evaluated to T , hence by theorems 3.6 and 2.6 it proves that

|= (a⇒ (a ∪ b)).

The theorem 3.6 provides, of course a method of decision whether formula is
not a tautology, as well. We list it as a separate fact as follows.

Theorem 3.2 (Not Tautology) For any formula A ∈ F ,

6|= A if and only if

v 6|= A for some v, such that v : V ARA −→ {T, F}.

Example 3

The formula A = ((a⇒ ¬b) ∪ ¬c) is not a tautology, i.e.

6|= ((a⇒ ¬b) ∪ ¬c)

because the truth assignment w7 of table 5 is a counter-model for A, i.e.

w7 6|= A.

The theorems 3.6, 3.2, and 2.6 prove also that the notion of classical proposi-
tional tautology is decidable, i.e. that the following holds.

Theorem 3.3 (Decidability) For any formula A ∈ F , one has examine at
most

2V ARA

truth assignments v : V ARA −→ {T, F} in order to decide whether

|= A, or 6|= A.

I.e. the notion of classical propositional tautology is decidable.
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3.1 Tautologies Verification Methods

There are three basic tautologies verification methods: Truth Table Method,
Proof by Contradiction Method and Substitution Method presented below, or
mixture of the above. We start we the most common one, the truth tables
method.

Truth Table Method

The verification method, called a truth-table method consists of examination,
for any formula A, all possible variable assignments restricted to A, i.e we have
to perform at most 2card(V ARA) steps. If we find an assignment which evaluates
A to F , we stop the process and give answer: 6|= A. Otherwise we continue. If
all assignments ( 2card(V ARA) of them) evaluate A to T , we give answer: |= A.

We usually list all assignments v in a form of a truth table similar to the table 5,
hence the name of the method.

The complexity of the truth table methods grows exponentially, too fast even
for modern computers to handle formulas with a great number of variables, not
to mention humans. In practice, if we need, we use often much shorter methods
of verification presented below.

Proof by Contradiction Method

In this method, in order to decide whether |= A, 6|= A we work backwards. We
try to find a truth assignment v which makes a formula A false.

If we find one, it means that A is not a tautology. If we prove that it is im-
possible by getting a contradiction, it means that the formula A is a tautology.
Hence the name of the method.

Example 1

Consider
A = (a⇒ (a ∪ b)).

Step 1 Assume that 6|= A. It means that there is v, such that v(A) = F .

Step 2 Analyze Step 1 (in short-hand notation):

(a⇒ (a ∪ b)) = F iff a = T and (a ∪ b) = F.

Step 3 Analyze Step 2: a = T and (a ∪ b) = F, means that (T ∪ b) = F .
This is a contradiction with the definition of ∪, hence the formula A is a
tautology.

We write it symbolically:
|= (a⇒ (a ∪ b)).
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Substitution Method

Observe that exactly the same reasoning as in the above example proves that
for any formulas A, B ∈ F ,

|= (A⇒ (A ∪B)),

i.e. let’s assume (A ⇒ (A ∪ B)) = F . This holds only when A = T and
(A ∪B) = F , i.e. (T ∪B) = F . Contradiction. It proves |= (A⇒ (A ∪B)).

Instead of repeating the same argument as with formula (a ⇒ (a ∪ b)) over
again, we make a simple observation that we obtain (A⇒ (A ∪B)) from (a⇒
(a ∪ b)) by a substitution (replacement) of A for a and B for b in the formula
C = (a⇒ (a ∪ b)), what we write symbolically as

C(a/A, b/B).

We are going to prove in theorem 3.4 stated below that such substitutions lead
always from a tautology to a tautology, hence we know that |= (A⇒ (A ∪B)).

In particular, making substitution in C = (a⇒ (a ∪ b)) we get new tautologies
as follows.

1. By substitution
C(a/((a⇒ b) ∩ ¬c), b/¬d)

we get that

|= ((((a⇒ b) ∩ ¬c)⇒ ((((a⇒ b) ∩ ¬c) ∪ ¬d)).

2. By substitution
C(a/((a⇒ b) ∩ ¬C), b/((a⇒ ¬e))

we get that also

|= (((a⇒ b)∩¬C)∪ d)∩¬e)⇒ (((a⇒ b)∩¬C)∪ d)∩¬e)∪ ((a⇒ ¬e))).

Example 2

Now let’s look at this substitution process backward. Assume that we are given
the formulas

((((a⇒ b) ∩ ¬c)⇒ ((((a⇒ b) ∩ ¬c) ∪ ¬d)),

(((a⇒ b) ∩ ¬C) ∪ d) ∩ ¬e)⇒ (((a⇒ b) ∩ ¬C) ∪ d) ∩ ¬e) ∪ ((a⇒ ¬e)))
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and a task of finding whether they are, or not, tautologies. We observe that
both of them are of the form

(A⇒ (A ∪B))

and hence substitutions described above of our initial tautology (a ⇒ (a ∪ b)
and this proves that they are tautologies.

This observation and theorem 3.4 saves us from examining 24 = 16 and 25 =
36 cases of combination of logical values of the propositional variables, not
mentioning further calculations.

The theorem 3.4 stated and proved below describes validity of a method of
constructing new tautologies from given tautologies. First we formally introduce
needed notations.

Let A ∈ F be a formula and V ARA = {a1, a2, ...an} be the set of all proposi-
tional variables appearing in A. We will denote it by

A(a1, a2, ...an).

Let A1, ...An be any formulas. We denote by

A(a1/A1, ..., an/An)

the result of simultaneous replacement (substitution) in A variables a1, a2, ...an

by formulas A1, ...An, respectively.

Theorem 3.4 For any formulas A, A1, ...An ∈ F ,

If
|= A(a1, a2, ...an) and B = A(a1/A1, ..., an/An),

then
|= B.

Proof. Let B = A(a1/A1, ..., an/An). Let b1, b2, ...bm be all those propositional
variables which occur in A1, ...An. Given a truth assignment v : V AR −→
{T, F}, any values v(b1), v(b2), ...v(bm) defines the logical value of A1, ...An, i.e.
v∗(A1), ...v∗(An) and, in turn, v∗(B).

Let w : V AR −→ {T, F} be a truth assignment such that w(a1) = v∗(A1), w(a2) =
v∗(A2), ...w(an) = v∗(An). Obviously, v∗(B) = w∗(A). Since A is a proposi-
tional tautology, w∗(A) = T , for all possible w, hence v∗(B) = w∗(A) = T for
all truth assignments w and B is also a tautology.

Mixed Methods
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We may, in some cases, as in example below, apply the substitution method,
and then truth tables, or proof by contradiction method.

Example 3

Show that v |= (¬((a ∩ ¬b) ⇒ ((c ⇒ (¬f ∪ d)) ∪ e)) ⇒ ((a ∩ ¬b) ∩ (¬(c ⇒
(¬f ∪ d)) ∩ ¬e))), for all v : V AR −→ {T, F}, i.e. that

|= (¬((a ∩ ¬b)⇒ ((c⇒ (¬f ∪ d)) ∪ e))⇒ ((a ∩ ¬b) ∩ (¬(c⇒ (¬f ∪ d)) ∩ ¬e))).

Observe that V ARA = {a, b, c, d, e, f}, so there are 26 = 64 truth assignments
to consider. Much too many to apply the truth table method.

The ”proof by contradiction” method may be shorter, but before we apply it
let’s look closer at the sub-formulas of A and patterns they form inside the
formula A, i.e. we apply the substitution method first.
We denote (substitute):

B = (a ∩ ¬b), C = (c⇒ (¬f ∪ d)), D = e.

We re-write A as

(¬(B ⇒ (C ∪D))⇒ (B ∩ (¬C ∩ ¬D))).

Now we apply ”proof by contradiction” method.

Step 1: Assume (¬(B ⇒ (C ∪ D)) ⇒ (B ∩ (¬C ∩ ¬D))) = F . It is possible
only when (B ⇒ (C ∪D)) = F and (B ∩ (¬C ∩ ¬D)) = F .
Step 2: (B ⇒ (C ∪D)) = F only when

B = T, C = F,D = F.

Step 3: From Step 1 we have that

(B ∩ (¬C ∩ ¬D)) = F.

We now evaluate its logical value for B = T, C = F,D = F obtained in Step
2, i.e. compute:

(T ∩ (¬F ∩ ¬F )) = F,

(T ∩ (T ∩ T )) = F,

T = F.

Contradiction. This proves that

|= (¬(B ⇒ (C ∪D))⇒ (B ∩ (¬C ∩ ¬D))),
and hence

|= (¬((a ∪ b)⇒ ((c⇒ d) ∪ e))⇒ ((a ∪ b) ∩ (¬(c⇒ d) ∩ ¬e))).

All truth assignments are models for A, i.e. A does not have a counter-model.
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3.2 Sets of Tautologies and Contradictions

Definition 3.4 We define the sets T ⊆ F of all tautologies, and the set C
⊆ F of all contradictions as follows:

T= {A ∈ F : |= A},

C= {A ∈ F : ∀v (v 6|= A)}.

Example 1

The following formulas are contradictions i.e. are elements of the set C.

(a ∩ ¬a), (a ∩ ¬(a ∪ b)), (a⇒ ¬a).

Following the proof of theorem 3.4 we get similar theorem for contradictions,
and hence a method of constructing new contradictions from already known
ones.

Theorem 3.5 For any formulas A, A1, ...An ∈ F ,

If A(a1, a2, ...an) ∈ C and B = A(a1/A1, ..., an/An), then B ∈ C.

Observe, that are formulas which neither in T nor in C, for example (a ∪ b).
The valuation v(a) = F, v(b) = F falsifies our formula, what proves that it is not
a tautology, a valuation v(a) = T, v(b) = T satisfies the formula, what proves
that it is not a contradiction.

We put now the facts we have discussed here and we know and about the sets
T and C in two theorems.

Theorem 3.6 (Tautology) For any formula A ∈ F the following conditions
are equivalent.

(1) A ∈ T

(2) ¬A ∈C

(3) For any v, v∗(A) = T

(4) For any v, v |= A

(7) Every v, is a model for A
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Theorem 3.7 (Contradiction) For any formula A ∈ F the following condi-
tions are equivalent.

(1) A ∈ C

(2) ¬A ∈ T

(3) For any v, v∗(A) = F

(4) For any v, v 6|= A

(5) A does not have a model

Here is one more general fact about classical tautologies.

Theorem 3.8 For any formula A, B ∈ F , if A ∈ T and (A ⇒ B) ∈ T, then
B ∈ T.

Proof. We know that for all v, v(A) = T and v∗((A ⇒ B)) = T, hence
(T ⇒ v∗(B) = T for all v. This is is true only when v∗(B) = T for all v, i.e.
only when B is a tautology.

Consider L = LCON and let S be a set S ⊆ F of formulas of L. We adopt the
following definition.

Definition 3.5 A truth truth assignment

v : V AR −→ {T, F}

is a model for the set S of formulas if and only if

v |= A for all A ∈ S.

We write
v |= S

to denote the v is a model for the set S of formulas.

Definition 3.6 The restriction of the model v to the domain

V ARS =
⋃

A∈S
V ARA ⊆ V AR

is called a restricted model for S.
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Definition 3.7 A truth assignment

v : V AR −→ {T, F}

is a counter-model for the set S of formulas if and only if

v |= A for some formula A ∈ S.

We write
v 6|= S

to denote the v is a counter- model for the set S of formulas.

Definition 3.8 The restriction of the counter-model v to the domain V ARS is
called a restricted counter-model for S.

Example
Let L = L{¬,∩} and S = {a, (a ∩ ¬b), c,¬b}. V ARS = {a, b, c}. v : V ARS →
{T, F} such that v(a) = T, v(c) = T, v(b) = F} is a restricted model for S and
v : V ARS → {T, F} such that v(a) = F is a restricted counter-model for S.

3.3 Exercises and Homework Problems

Exercise 1

(1) Write the following natural language statement

From the fact that it is possible that 2 + 2 6= 4 we deduce that it is not
possible that 2 + 2 6= 4 or, if it is possible that 2 + 2 6= 4, then it is not
necessary that you go to school.

as a formula
1. A1 ∈ F1 of a language L1 = L{¬,C,I,∩,∪,⇒},
2. A2 ∈ F2 of a language L2 = L{¬,∩,∪,⇒}.

(2) Can you find a model, or a counter-model for A1 ∈ F1 of L1?

(3) Find a model v restricted to the formula A2 ∈ F2 of L2.

(4) Find 3 models w of A2 of L2, such that v∗(A2) = w∗(A2), for v from (3).
How many of such models exist?

(5) Find a counter-model restricted to formula A2 ∈ F2 (if exists).

(6) Find 3 counter-models for A2.

(7) Find all models, counter-models (restricted) for A2 of L2.
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(8) Is A2 ∈C?, is A2 ∈T?

Solution

(1) We translate our statement into a formula
1. A1 ∈ F1 of a language L{¬,C,I,∩,∪,⇒} as follows.

Propositional Variables: a denotes statement 2 + 2 = 4, b denotes a
statement you go to school.
Propositional Modal Connectives: C denotes statement it is possible
that, I denotes statement it is necessary that.
Translation:

A1 = (C¬a⇒ (¬C¬a ∪ (C¬a⇒ ¬Ib))).

Now we translate our statement into a formula
2. A2 ∈ F2 of a language L{¬,∩,∪,⇒} as follows.

Propositional Variables: a denotes statement it is possible that 2+2 6=
4, b denotes a statement it is necessary that you go to school.

Translation:

A2 = (a⇒ (¬a ∪ (a⇒ ¬b))).

(2) Can you find a model, or a counter-model for A1?
Maybe, but at this stage we don’t know yet any modal connectives se-
mantics. Moreover, as we will see later, there are over hundred different
semantics for the language L{¬,C,I,∩,∪,⇒}. In some of them the formula
A1 can have a model, or a counter-model, in some not.

(3) v is a restricted model for A2 if and only if

v : V ARA2 = {a, b} −→ {T, F}

such that v∗(a⇒ (¬a ∪ (a⇒ ¬b))) = T
Observe that if we put v(a) = F then v∗A2 = T for any value of b. We
need one model, so we can choose for example v such that v(b) = T . We
write is using short-hand notation as follows.

We want to evaluate A2 = T , it means (a⇒ (¬a ∪ (a⇒ ¬b))) = T . Let’s
put a = F . Then by definition of implication, A2 = T for any logical value
b. We choose b = T and the model is any v such that v(a) = F, v(b) = T ,
in short-hand a = F, b = F .

(4) A model for A2 by definition, is any function

w : V AR −→ {T, F},

22



so to make a restricted model v defined in (3) a model, we have to extend
it to the set of all propositional variables V AR. Here are three of such
extensions.

Model 1:

w(a) = v(a) = F, w(b) = v(b) = T and w(x) = T, for all x ∈ V AR−{a, b}.

Model 2:

w(a) = v(a) = F, w(b) = v(b) = T, w(c) = F and w(x) = T,

for all x ∈ V AR− {a, b, c}.

Model 3:

w(a) = v(a) = F, w(b) = v(b) = T, w(c) = T and w(x) = F,

for all x ∈ V AR− {a, b, c}.

There is an many of such models, being extensions of v to the set V AR,
as real numbers.

(5) To find a restricted counter- model for A2 we must evaluate it to F . We
write it in a short hand notation

(a⇒ (¬a ∪ (a⇒ ¬b))) = F.

This is possible only when a = T and (¬a ∪ (a ⇒ ¬b)) = F , i.e.
(F ∪ (T ⇒ ¬b)) = F . This happens only when (T ⇒ ¬b)) = F , i.e. only
when b = F . The mapping

v : {a, b} −→ {T, F}

such that v(a) = T and v(b) = F is a truth assignment restricted to A2

and v∗(A2) = F , i.e. v is a restricted counter- model for A2.

(6) Observe, that v defined in (5) is the only restricted counter-model for A2.
All other counter -models must be extensions of it. For example we list
three of them below.

Counter- model 1 :

w(a) = v(a) = T, w(b) = v(b) = F and w(x) = T, for all x ∈ V AR−{a, b}.

Counter- model 2 :

w(a) = v(a) = T, w(b) = v(b) = F, w(c) = F

and w(x) = T, for all x ∈ V AR− {a, b, c}.
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Counter- model 3 :

w(a) = v(a) = T, w(b) = v(b) = F, w(c) = T

and w(x) = F, for all x ∈ V AR− {a, b, c}.

There is as many of counter-models as there are extensions of v to the set
V AR, i.e. as many as real numbers.

(7) To find all models or counter-models for A2 we have only to find all re-
stricted models or counter-models , as all others are always their exten-
sions.

We have just shown in (6) that there is only one restricted counter-model
(with all its extensions) for A. So there is 22− 1 = 3 restricted models for
A2.

We have also shown in (3), (4) that any v

v : V AR −→ {T, F}

such that
v(a) = F, v(b) = T

is a model for A2. Other two other models:

v(a) = F and v(b) = F,

v(a) = T and v(b) = F.

(8) A2 6∈C because A2 has a model. A2 6∈T because A2 has a counter-model.

Exercise 2

Consider a formula

A = (¬((a ∪ b)⇒ ((c⇒ d) ∪ e))⇒ ((a ∪ b) ∩ (¬(c⇒ d) ∩ ¬e))).

Find all models, counter-models for A (if exists). Determine whether

|= A.

Solution

Observe that V ARA = {a, b, c, d, e}, so there are 25 = 32 truth assignments to
consider. Much too much to use the truth table method.

The ”proof by contradiction” method may be shorter, but before we apply it
let’s look closer at the sub-formulas of A and patterns they form inside the
formula A.
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We apply first the ”substitution method”. I.e. we denote : B = (a ∪ b), C =
(c⇒ d), and D = e. We re-write A as

(¬(B ⇒ (C ∪D))⇒ (B ∩ (¬C ∩ ¬D))).

Now we apply ”proof by contradiction” method.

Step 1: Assume (¬(B ⇒ (C ∪ D)) ⇒ (B ∩ (¬C ∩ ¬D))) = F . It is possible
only when (B ⇒ (C ∪D)) = F and (B ∩ (¬C ∩ ¬D)) = F .
Step 2: (B ⇒ (C ∪D)) = F only when

B = T, C = F,D = F.

Step 3: From Step 1 we have that

(B ∩ (¬C ∩ ¬D)) = F.

We now evaluate its logical value for B = T, C = F,D = F obtained in Step
2, i.e. compute:

(T ∩ (¬F ∩ ¬F )) = F,

(T ∩ (T ∩ T )) = F,

T = F.

Contradiction. This proves that

|= (¬(B ⇒ (C ∪D))⇒ (B ∩ (¬C ∩ ¬D))),

and hence

|= (¬((a ∪ b)⇒ ((c⇒ d) ∪ e))⇒ ((a ∪ b) ∩ (¬(c⇒ d) ∩ ¬e))).

All truth assignments are models for A, i.e. A does not have a counter-model.

Exercise 3

(1) Write the following natural language statement

If it is not believed that quiz is easy or quiz is not easy, then from the fact
that 2 + 2 = 5 we deduce that it is believed that quiz is easy.

as a formula

Formula 1 A1 ∈ F1 of a language L1 = L{¬,B,∩,∪,⇒}, where B is a believe
connective. Statement BA says: It is believed that A.
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Formula 2 A2 ∈ F2 of a language L2 = L{¬,∩,∪,⇒}.

2. Degree of the formula A1 is: , degree of the formula A2 is:

3. List all proper sub-formulas of A1.

4. List all non-atomic sub-formulas of A2.

5. Find all counter-models (restricted) for A2. Use short-hand notation. Don’t
construct Truth Tables! Explain.

6. Find a restricted model for A2. Use short-hand notation. Don’t construct
Truth Tables! Explain your solution.

7. How many are there possible restricted models for A2? Don’t need to list
them, just justify your answer.

8. List 2 models (not restricted) for A2 by extending the model you have found
in 6. to the V AR of all variables.

9. How many are there possible models for A2?
How many are there possible counter-models for A2?

HOMEWORK PROBLEMS

Problem 1

(1) Write the following natural language statement

It is believed that yellow flowers are blue, or from the fact that 2 + 2 = 5
we deduce that it is not believed that it is not true that yellow flowers are
blue.

as a formula

1. A1 ∈ F1 of a language L1 = L{¬,B,∩,∪,⇒}, where B is a believe con-
nective. Statement BA says: It is believed that A.
2. A2 ∈ F2 of a language L2 = L{¬,∩,∪,⇒}.

(2) Can you find a model, or a counter-model for A1 ∈ F1 of L1?

(3) Find a model v restricted to the formula A2 ∈ F2 of L2.

(4) Find all counter-model restricted to formula A2 ∈ F2 (if exists).
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(5) How are there many models restricted to A?

(6) Find 2 extensions w of v from (3), i.e. two models w of A2 of L2, such that
v∗(A2) = w∗(A2), for v from (3).
How many of such models exist?

(7) Find 3 counter-models w for A2 different from counter models found in (4).

Problem 2

(1) Write the following natural language statement

From the the fact that it is possible that both 2 + 2 = 5 and it is not
necessary that 1 + 3 6= 5, we deduce that 2 + 2 6= 5 or possibly 1 + 3 = 5.

as a formula

1. A1 ∈ F1 of a language L1 = L{¬,C,I,∩,∪,⇒},

2. A2 ∈ F2 of a language L2 = L{¬,∩,∪,⇒}.

(2) Can you find a model, or a counter-model for A1 ∈ F1 of L1?

(3) Find a model v restricted to the formula A2 ∈ F2 of L2.

(4) Find all counter-model restricted to formula A2 ∈ F2 (if exists).

(5) How are there many models restricted to A?

(6) Find 2 extensions w of v from (3), i.e. two models w of A2 of L2, such that
v∗(A2) = w∗(A2), for v from (3).
How many of such models exist?

(7) Find 3 counter-models w for A2 different from counter models found in (4).

Problem 3

Find all models and a counter-model restricted to S (if exist) for the following
sets S of formulas. Use shorthand notation.

(1) S1 = {a, (a ∩ ¬b), (¬a⇒ (a ∪ b))}

(2) S2 = {(a⇒ b), (c ∩ ¬a), b}

(3) S3 = {a, (a ∩ ¬b),¬a, c}
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Problem 4

For the formulas listed below determine whether they are tautologies or not.
If a formula is not a tautology list its counter-model (restricted).
Use shorthand notation.

(1) A1 = (¬(a⇒ (b ∩ ¬c))⇒ (a ∩ ¬(b ∩ ¬c)))

(2) A2 = ((a ∩ ¬b)⇒ ((c ∩ ¬d)⇒ (a ∩ ¬b)))

(3) A2 = (¬(A ∩ ¬B) ∪ (A ∩ ¬B))

Problem 5

Given v : V AR −→ {T, F} such that v∗((¬a ∪ b)⇒ (a⇒ ¬c)) = F
under classical semantics. Evaluate: v∗(((b⇒ a)⇒ (a⇒ ¬c)) ∪ (a⇒ b)).
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