Chapter 4: Classical Propositional Semantics

Language :

$$
\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow\}} .
$$

Classical Semantics assumptions:

TWO VALUES: there are only two logical values: truth (T) and false (F), and

EXTENSIONALITY: the logical value of a formula depends only on a main connective and logical values of its sub-formulas.

We define formally a classical semantics for \mathcal{L} in terms of two factors: classical truth tables and a truth assignment.

We summarize now here the chapter 2 tables for $\mathcal{L}_{\{\neg, \mathrm{U}, \cap, \Rightarrow\}}$ in one simplified table as follows.

Observe that The first row of the above table reads:

For any formulas A, B, if the logical value of $A=T$ and $B=T$, then logical values of $\neg A=T,(A \cap B)=T,(A \cup B)=T$ and $(A \Rightarrow B)=T$.

We read and write the other rows in a similar manner.

Our table indicates that the logical value of of propositional connectives depends only on the logical values of its factors; i.e. it is independent of the formulas A, B.

EXTENSIONAL CONNECTIVES: The logical value of a given connective depend only of the logical values of its factors.

We write now the last table as the following equations.

$$
\neg T=F, \quad \neg F=T ;
$$

$$
\begin{aligned}
& (T \cap T)=T, \quad(T \cap F)=F, \quad(F \cap T)=F, \quad(F \cap F)=F ; \\
& (T \cup T)=T, \quad(T \cup F)=T, \quad(F \cup T)=T, \quad(F \cup F)=F ; \\
& (T \Rightarrow T)=T, \quad(T \Rightarrow F)=F, \quad(F \Rightarrow T)=T, \quad(F \Rightarrow F)=T .
\end{aligned}
$$

Observe now that the above equations describe a set of unary and binary operations (functions) defined on a set $\{T, F\}$ and a set $\{T, F\} \times\{T, F\}$, respectively.

Negation \neg is a function:

$$
\neg: \quad\{T, F\} \longrightarrow\{T, F\}
$$

such that $\neg T=F, \neg F=T$.

Conjunction \cap is a function:

$$
\cap: \quad\{T, F\} \times\{T, F\} \longrightarrow\{T, F\},
$$

such that

$$
\begin{array}{ll}
(T \cap T)=T, & (T \cap F)=F \\
(F \cap T)=F, & (F \cap F)=F
\end{array}
$$

Dissjunction \cup is a function:

$$
\cup: \quad\{T, F\} \times\{T, F\} \longrightarrow\{T, F\},
$$

such that

$$
\begin{array}{ll}
(T \cup T)=T, & (T \cup F)=T \\
(F \cup T)=T, & (F \cup F)=F .
\end{array}
$$

Implication \Rightarrow is a function:

$$
\Rightarrow: \quad\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}
$$

such that

$$
\begin{aligned}
& (T \Rightarrow T)=T, \quad(T \Rightarrow F)=F \\
& (F \Rightarrow T)=T, \quad(F \Rightarrow F)=T
\end{aligned}
$$

Observe that if we have have a language $\mathcal{L}_{\{\neg, \cup, \cap, \Rightarrow, \Leftrightarrow\}}$ containing also the equivalence connective \Leftrightarrow we define

$$
\Leftrightarrow: \quad\{T, F\} \times\{T, F\} \longrightarrow\{T, F\}
$$

as a function such that

$$
\begin{aligned}
& (T \Leftrightarrow T)=T, \quad(T \Leftrightarrow F)=F, \\
& (F \Leftrightarrow T)=F, \quad(T \Leftrightarrow T)=T .
\end{aligned}
$$

We write these definitions of connectives as the following tables, usually called the classical truth tables.

Negation : Disjunction :

> | \neg | T | F |
| :---: | :---: | :---: |
| | F | T |

\cup	T	F
T	T	T
F	T	F

Conjunction : Implication :

Equivalence :

\Leftrightarrow	T	F
T	T	F
F	F	T

A truth assignment is any function

$$
v: V A R \longrightarrow\{T, F\} .
$$

Observe that the truth assignment is defined only on variables (atomic formulas).

We define its extension v^{*} to the set \mathcal{F} of all formulas of \mathcal{L} as follows.

$$
v^{*}: \mathcal{F} \longrightarrow\{T, F\}
$$

is such that
(i) for any $a \in V A R$,

$$
v^{*}(a)=v(a) ;
$$

(ii) and for any $A, B \in \mathcal{F}$,

$$
\begin{gathered}
v^{*}(\neg A)=\neg v^{*}(A) \\
v^{*}(A \cap B)=\left(v^{*}(A) \cap v^{*}(B)\right) \\
v^{*}(A \cup B)=\left(v^{*}(A) \cup v^{*}(B)\right) \\
v^{*}(A \Rightarrow B)=\left(v^{*}(A) \Rightarrow v^{*}(B)\right) \\
v^{*}(A \Leftrightarrow B)=\left(v^{*}(A) \Leftrightarrow v^{*}(B)\right)
\end{gathered}
$$

where
the symbols on the left-hand side of the equations represent connectives in their natural language meaning and
the symbols on the right-hand side represent connectives in their logical meaning given by the classical truth tables.

Example

Consider a formula

$$
((a \Rightarrow b) \cup \neg a))
$$

a truth assignment v such that

$$
v(a)=T, v(b)=F .
$$

We calculate the logical value of the formula A as follows: $\left.v^{*}(A)=v^{*}((a \Rightarrow b) \cup \neg a)\right)=$ $\left(v^{*}(a \Rightarrow b) \cup v^{*}(\neg a)\right)=((v(a) \Rightarrow v(b)) \cup$ $\neg v(a))=((T \Rightarrow F) \cup \neg T)=(F \cup F)=$ $\cup(F, F)=F$.

Observe that we did not need (and usually we don't) to specify the $v(x)$ of any $x \in V A R-$ $\{a, b\}$, as these values do not influence the computation of the logical value $v^{*}(A)$.

SATISFACTION relation

Definition: Let $v: V A R \longrightarrow\{T, F\}$. We say
that
v satisfies a formula $A \in \mathcal{F}$ iff $v^{*}(A)=T$

Notation:
$v \vDash A$.

Definition: We sat that
v does not satisfy a formula $A \in \mathcal{F}$ iff $v^{*}(A) \neq T$.

Notation: $\quad v \not \vDash A$.

REMARK In our classical semantics we have that
$v \not \vDash A$ iff $v^{*}(A)=F$ and we say that v falsifies the formula A.

OBSERVE $v^{*}(A) \neq T$ is is equivalent to the fact that $v^{*}(A)=F$ ONLY in 2-valued logic!

This is why we adopt the following

Definition: For any v, v does not satisfy a formula $A \in \mathcal{F}$ iff $v^{*}(A) \neq T$

Example

$$
A=((a \Rightarrow b) \cup \neg a))
$$

$$
v: V A R \longrightarrow\{T, F\}
$$

such that $v(a)=T, v(b)=F$.

Calculation of $v^{*}(A)$ using the short hand notation:

$$
\begin{array}{r}
((T \Rightarrow F) \cup \neg T)=(F \cup F)=F . \\
v \not \vDash((a \Rightarrow b) \cup \neg a)) .
\end{array}
$$

Observe that we did not need (and usually we don't) to specify the $v(x)$ of any $x \in V A R-$ $\{a, b\}$, as these values do not influence the computation of the logical value $v^{*}(A)$.

Example

$$
\begin{aligned}
& A=((a \cap \neg b) \cup \neg c) \\
& v: V A R \longrightarrow\{T, F\}
\end{aligned}
$$

such that $v(a)=T, v(b)=F, v(c)=T$.

Calculation in a short hand notation:

$$
\begin{gathered}
(T \cap \neg F) \cup \neg T=(T \cap T) \cup F=T \cup F=T . \\
v \vDash((a \cap \neg b) \cup \neg c) .
\end{gathered}
$$

Formula: $\quad A=((a \cap \neg b) \cup \neg c)$.

Consider now $v_{1}: V A R \longrightarrow\{T, F\}$ such that

$$
\begin{aligned}
& v_{1}(a)=T, v_{1}(b)=F, v_{1}(c)=T, \text { and } \\
& v_{1}(x)=F, \quad \text { for all } x \in V A R-\{a, b, c\},
\end{aligned}
$$

Observe: $v(a)=v_{1}(a), v(b)=v_{1}(b), v(c)=$ $v_{1}(c)$, so we get

$$
v_{1} \models((a \cap \neg b) \cup \neg c) .
$$

Consider $v_{2}: V A R \longrightarrow\{T, F\}$ such that
$v_{2}(a)=T, v_{2}(b)=F, v_{2}(c)=T, v_{2}(d)=T$, and
$v_{2}(x)=F, \quad$ for all $x \in V A R-\{a, b, c, d\}$,

Observe: $v(a)=v_{2}(a), v(b)=v_{2}(b), v(c)=$ $v_{2}(c)$, so we get

$$
v_{2} \models((a \cap \neg b) \cup \neg c)
$$

We are going to prove that there are as many of such truth assignments as real numbers! but they are all the same as the first v with respect to the formula A.

When we ask a question: "How many truth assignments satisfy/fasify a formula A?" we mean to find all assignment that are different on the formula A, not just different on a set $V A R$ of all variables, as all of our v_{1}, v_{2} 's were.

To address and to answer this question formally we first introduce some notations and definitions.

Notation: for any formula A, we denote by

$$
V A R_{A}
$$

a set of all variables that appear in A.

Definition: Given a formula $A \in \mathcal{F}$, any function

$$
w: V A R_{A} \longrightarrow\{T, F\}
$$

is called a truth assignment restricted to A.

Example

$$
\begin{gathered}
A=((a \cap \neg b) \cup \neg c) \\
V A R_{A}=\{a, b, c\}
\end{gathered}
$$

Truth assignment restricted to A is any func-

 tion:$$
w:\{a, b, c\} \longrightarrow\{T, F\} .
$$

We use the following theorem to count all possible truth assignment restricted to A.

Counting Functions Theorem (1) For any finite sets A and A, if A has \mathbf{n} elements and B has \mathbf{m} elements, then there are $\mathbf{m}^{\mathbf{n}}$ possible functions that map A into B.

There are $2^{3}=8$ truth assignment restricted to $A=((a \Rightarrow \neg b) \cup \neg c)$.

General case For any A there are $2^{\left|V A R_{A}\right|}$
possible truth assignments w restricted to A.

All w restricted to A are listed in the table below.

\[

\]

Model for A is a v such that

$$
v \models A
$$

$w_{1}, w_{2}, w_{3}, w_{4} w_{5}, w_{6}, w_{8}$ are models for A.

Counter- Model for A is a v such that $v \not \vDash A$.
w_{7} is a counter- model for A.

Tautology :

A is a tautology iff any v is a model for A, i.e.

$$
\forall v(v \vDash A)
$$

Not a tautology :

A is not a tautology iff there is v : $V A R \longrightarrow\{T, F\}$, such that v is a countermodel for A, i.e.

$$
\exists v(v \not \vDash A) .
$$

Tautology Notation
 $\vDash A$

Example

$$
\not \vDash((a \cap \neg b) \cup \neg c)
$$

because the truth assignment w_{7} is a countermodel for A.

Tautology Verification

Truth Table Method: list and evaluate all possible truth assignments restricted to A.

Example: $(a \Rightarrow(a \cup b))$.

v	a	b	$v^{*}(A)$ computation	$v^{*}(A)$
v_{1}	$\mathrm{\top}$	T	$(T \Rightarrow(T \cup T))=(T \Rightarrow T)=T$	丁
v_{2}	$\mathrm{\top}$	F	$(T \Rightarrow(T \cup F))=(T \Rightarrow T)=T$	Т
v_{3}	F	$\mathrm{\top}$	$(F \Rightarrow(F \cup T))=(F \Rightarrow T)=T$	丁
v_{4}	F	F	$(F \Rightarrow(F \cup F))=(F \Rightarrow F)=T$	Т

for all $v: V A R \longrightarrow\{T, F\}, v \vDash A$, i.e.

$$
\vDash(a \Rightarrow(a \cup b))
$$

Proof by Contradiction Method

One works backwards, trying to find a truth assignment v which makes a formula A false.

If we find one, it means that A is not a tautology,
if we prove that it is impossible ,
it means that the formula is a tautology.

Example $A=(a \Rightarrow(a \cup b)$

Step 1 Assume that $\not \vDash A$, i.e. $A=F$.

Step 2 Analyze Strep 1:

$$
\begin{aligned}
& (a \Rightarrow(a \cup b))=F \quad \text { iff } \quad a=T \quad \text { and } \\
& a \cup b=F
\end{aligned}
$$

Step 3 Analyze Step 2:

$$
a=T \text { and } a \cup b=F, \text { i.e. } T \cup b=F
$$

This is impossible by the definition of \cup.

Conclusion:

$$
\vDash \quad(a \Rightarrow(a \cup b))
$$

Observe that exactly the same reasoning proves that for any formulas $A, B \in \mathcal{F}$,

$$
\vDash(A \Rightarrow(A \cup B))
$$

Observe that he following formulas are tautologies

$$
\begin{aligned}
& ((((a \Rightarrow b) \cap \neg c) \Rightarrow((((a \Rightarrow b) \cap \neg c) \cup \neg d)), \\
& \quad(((a \Rightarrow b) \cap \neg C) \cup d) \cap \neg e) \Rightarrow \\
& (((a \Rightarrow b) \cap \neg C) \cup d) \cap \neg e) \cup((a \Rightarrow \neg e)))
\end{aligned}
$$

because they are of the form

$$
(A \Rightarrow(A \cup B))
$$

Tautologies, Contradictions

$$
\begin{gathered}
\mathbf{T}=\{A \in \mathcal{F}: \models A\} \\
\mathbf{C}=\{A \in \mathcal{F}: \forall v(v \not \models A)\}
\end{gathered}
$$

Theorem 1 For any formula $A \in \mathcal{F}$ the following conditions are equivalent.
(1) A is a tautology
(2) $A \in \mathrm{~T}$
(3) $\neg A$ is a contradiction
(4) $\neg A \in \mathrm{C}$
(5) $\forall v\left(v^{*}(A)=T\right)$
(6) $\forall v(v \models A)$
(7) Every v is a model for A

Theorem 2 For any formula $A \in \mathcal{F}$ the following conditions are equivalent.
(1) A is a contradiction
(2) $A \in C$
(3) $\neg A$ is a tautology
(4) $\neg A \in \mathrm{~T}$
(5) $\forall v\left(v^{*}(A)=F\right)$
(6) $\forall v(v \not \models A)$
(7) A does not have a model.

