Chapter 6

Propositional Tautologies, Logical Equivalences, Definability of Connectives and Equivalence of Languages

Propositional Tautologies for Implication

Modus Ponens known to the Stoics (3rd century B.C)

$$\models ((A \cap (A \Rightarrow B)) \Rightarrow B)$$

Detachment

$$\models ((A \cap (A \Leftrightarrow B)) \Rightarrow B)$$

 $\models ((B \cap (A \Leftrightarrow B)) \Rightarrow A)$

Sufficient Given an implication

$$(A \Rightarrow B),$$

A is called a *sufficient condition* for B to hold.

Necessary Given an implication

$$(A \Rightarrow B),$$

B is called a *necessary condition* for A to hold.

Implication Names

- **Simple** $(A \Rightarrow B)$ is called *a simple implication*.
- **Converse** $(B \Rightarrow A)$ is called *a converse implication* to $(A \Rightarrow B)$.
- **Opposite** $(\neg B \Rightarrow \neg A)$ is called *an opposite implication* to $(A \Rightarrow B)$.
- **Contrary** $(\neg A \Rightarrow \neg B)$ is called *a contrary implication* to $(A \Rightarrow B)$.

Laws of contraposition

$$\models ((A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)),$$
$$\models ((B \Rightarrow A) \Leftrightarrow (\neg A \Rightarrow \neg B)).$$

The laws of contraposition make it possible to replace, in any deductive argument, a sentence of the form $(A \Rightarrow B)$ by $\neg B \Rightarrow \neg A$, and conversely.

Necessary and sufficient :

We read $(A \Leftrightarrow B)$ as

B is necessary and sufficient for A

because of the following tautology.

 $\models ((A \Leftrightarrow B)) \Leftrightarrow ((A \Rightarrow B) \cap (B \Rightarrow A))).$

Hypothetical syllogism (Stoics, 3rd century B.C.)

$$\models (((A \Rightarrow B) \cap (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)),$$
$$\models ((A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))),$$
$$\models ((B \Rightarrow C) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))).$$

Modus Tollendo Ponens (Stoics, 3rd century B.C.)

$$\models (((A \cup B) \cap \neg A) \Rightarrow B),$$
$$\models (((A \cup B) \cap \neg B) \Rightarrow A)$$

Duns Scotus (12/13 century)

$$\models (\neg A \Rightarrow (A \Rightarrow B))$$

Clavius (16th century)

$$\models ((\neg A \Rightarrow A) \Rightarrow A)$$

Frege (1879, first formulation of the classical propositional logic as a formalized axiomatic system)

$$\models (((A \Rightarrow (B \Rightarrow C)) \cap (A \Rightarrow B)) \Rightarrow (A \Rightarrow C)),$$

$$\models ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))$$

Apagogic Proofs : means proofs by *reductio ad absurdum*.

Reductio ad absurdum : to prove A to be true, we assume $\neg A$.

If we get a contradiction, means we have proved A to be true.

$$\models ((\neg A \Rightarrow (B \cap \neg B)) \Rightarrow A)$$

Implication form : we want to prove $(A \Rightarrow B)$ by *reductio ad absurdum*. Correctness of reasoning is based on the following tautologies.

$$\models (((\neg (A \Rightarrow B) \Rightarrow (C \cap \neg C)) \Rightarrow (A \Rightarrow B)),$$

We use the equivalence: $\neg(A \Rightarrow B) \equiv (A \cap \neg B)$ and get

$$\models (((A \cap \neg B) \Rightarrow (C \cap \neg C)) \Rightarrow (A \Rightarrow B)).$$

$$\models (((A \cap \neg B) \Rightarrow \neg A) \Rightarrow (A \Rightarrow B)).$$

$$\models (((A \cap \neg B) \Rightarrow B) \Rightarrow (A \Rightarrow B)).$$

Logical equivalence : For any formulas A, B, $A \equiv B \quad iff \models (A \Leftrightarrow B).$

Property:

 $A \equiv B \quad iff \models (A \Rightarrow B) \quad and \models (B \Rightarrow A).$

Laws of contraposition

$$(A \Rightarrow B) \equiv (\neg B \Rightarrow \neg A),$$
$$(B \Rightarrow A) \equiv (\neg A \Rightarrow \neg B),$$
$$(\neg A \Rightarrow B) \equiv (\neg B \Rightarrow A),$$
$$(A \Rightarrow \neg B) \equiv (B \Rightarrow \neg A).$$

Theorem Let B_1 be obtained from A_1 by substitution of a formula B for one or more occurrences of a sub-formula A of A_1 , what we denote as

$$B_1 = A_1(A/B).$$

Then the following holds.

If $A \equiv B$, then $A_1 \equiv B_1$,

Definability of Connectives

$$(A \Rightarrow B) \equiv (\neg A \cup B)$$

Transform a formula with implication into a logically equivalent formula without implication.

We transform (via our Theorem) a formula

$$((C \Rightarrow \neg B) \Rightarrow (B \cup C))$$

into its logically equivalent form not containing \Rightarrow as follows.

$$((C \Rightarrow \neg B) \Rightarrow (B \cup C)) \equiv (\neg (C \Rightarrow \neg B) \cup (B \cup C)))$$
$$\equiv (\neg (\neg C \cup B) \cup (B \cup C))).$$

We get

 $((C \Rightarrow \neg B) \Rightarrow (B \cup C)) \equiv (\neg (\neg C \cup B) \cup (B \cup C))).$

Substitution Theorem Let B_1 be obtained from A_1 by substitution of a formula B for one or more occurrences of a sub-formula A of A_1 .

We denote it as

$$B_1 = A_1(A/B).$$

Then the following holds.

If $A \equiv B$, then $A_1 \equiv B_1$,

The next set of equivalences, or corresponding tautologies, deals with what is called a definability of connectives in classical semantics.

For example, a tautology

 $\models ((A \Rightarrow B) \Leftrightarrow (\neg A \cup B))$

makes it possible to define implication in terms of disjunction and negation.

We state it in a form of logical equivalence as follows.

Definability of Implication in terms of negation and disjunction:

$$(A \Rightarrow B) \equiv (\neg A \cup B)$$

- We use logical equivalence notion, instead of the tautology notion, as it makes the manipulation of formulas much easier.
- **Definability of Implication** equivalence allows us, by the force of **Substitution Theorem to replace** any formula of the form $(A \Rightarrow B)$ placed anywhere in another formula by a formula $(\neg A \cup B)$.
 - Hence we transform a given formula containing implication into an logically equivalent formula that does contain implication (but contains negation and disjunction).

Example 1 We transform (via Substitution Theorem) a formula

$$((C \Rightarrow \neg B) \Rightarrow (B \cup C))$$

into its logically equivalent form not containing \Rightarrow as follows.

$$((C \Rightarrow \neg B) \Rightarrow (B \cup C))$$
$$\equiv (\neg (C \Rightarrow \neg B) \cup (B \cup C)))$$
$$\equiv (\neg (\neg C \cup B) \cup (B \cup C))).$$

We get

$$((C \Rightarrow \neg B) \Rightarrow (B \cup C))$$
$$\equiv (\neg(\neg C \cup B) \cup (B \cup C))).$$

It means that that we can, by the Substitution Theorem transform a language

$$\mathcal{L}_1 = \mathcal{L}_{\{\neg, \cap, \Rightarrow\}}$$

into a language

$$\mathcal{L}_2 = \mathcal{L}_{\{\neg, \cap, \cup\}}$$

with all its formulas being logically equivalent.

We write it as the following condition.

C1: for any formula A of \mathcal{L}_1 , there is a formula B of \mathcal{L}_2 , such that $A \equiv B$.

Example 2 : Let A be a formula $(\neg A \cup (\neg A \cup \neg B))$

We use the definability of implication equivalence to eliminate disjunction as follows

$$(\neg A \cup (\neg A \cup \neg B)) \equiv (\neg A \cup (A \Rightarrow \neg B))$$

 $\equiv (A \Rightarrow (A \Rightarrow \neg B)).$

Observe, that we can't always use the equivalence $(A \Rightarrow B) \equiv (\neg A \cup B)$ to eliminate any disjunction.

For example, we can't use it for a formula $A = ((a \cup b) \cap \neg a).$

- In order to be able to transform *any formula* of a language containing **disjunction** (and some other connectives) into a language with negation and implication (and some other connectives), but **without disjunction** we need the following logical equivalence.
- **Definability of Disjunction** in terms of negation and implication:

$$(A \cup B) \equiv (\neg A \Rightarrow B)$$

Example 3 Consider a formula A

$$(a \cup b) \cap \neg a).$$

We transform A into its logically equivalent form not containing \cup as follows.

$$((a \cup b) \cap \neg a) \equiv ((\neg a \Rightarrow b) \cap \neg a).$$

In general, we transform the language $\mathcal{L}_2 = \mathcal{L}_{\{\neg, \cap, \cup\}}$ to the language $\mathcal{L}_1 = \mathcal{L}_{\{\neg, \cap, \Rightarrow\}}$ with all its formulas being logically equivalent.

We write it as the following condition.

- **C1:** for any formula C of \mathcal{L}_2 , there is a formula D of \mathcal{L}_1 , such that $C \equiv D$.
- The languages \mathcal{L}_1 and \mathcal{L}_2 for which we the conditions C1, C2 hold are called logically equivalent.

We denote it by

$$\mathcal{L}_1 \equiv \mathcal{L}_2.$$

A general, formal definition goes as follows.

Definition of Equivalence of Languages

Given two languages: $\mathcal{L}_1 = \mathcal{L}_{CON_1}$ and $\mathcal{L}_2 = \mathcal{L}_{CON_2}$, for $CON_1 \neq CON_2$.

We say that they are logically equivalent, i.e.

 $\mathcal{L}_1 \equiv \mathcal{L}_2$

if and only if the following conditions **C1**, **C2** hold.

C1: For every formula A of \mathcal{L}_1 , there is a formula B of \mathcal{L}_2 , such that

$$A \equiv B,$$

C2: For every formula C of \mathcal{L}_2 , there is a formula D of \mathcal{L}_1 , such that

$$C \equiv D.$$

Example 4 To prove the logical equivalence of the languages

$$\mathcal{L}_{\{\neg,\cup\}}\equiv\mathcal{L}_{\{\neg,\Rightarrow\}}$$

we need two definability equivalences:

implication in terms of disjunction and negation,

disjunction in terms of implication and negation, and the Substitution Theorem. **Example 5** To prove the logical equivalence of the languages

$$\mathcal{L}_{\{\neg,\cap,\cup,\Rightarrow\}}\equiv\mathcal{L}_{\{\neg,\cap,\cup\}}$$

- we need only the definability of implication equivalence.
- It proves, by Substitution Theorem that for any formula A of

$$\mathcal{L}_{\{\neg,\cap,\cup,\Rightarrow\}}$$

there is B of $\mathcal{L}_{\{\neg,\cap,\cup\}}$ that equivalent to A, i.e.

 $A \equiv B$

and condition C1 holds.

Observe, that any formula A of language

$$\mathcal{L}_{\{\neg,\cap,\cup\}}$$

is also a formula of

$$\mathcal{L}_{\{\neg,\cap,\cup,\Rightarrow\}}$$

and of course

$$A \equiv A,$$

so C2 also holds.

The logical equalities below

Definability of Conjunction in terms of implication and negation

$$(A \cap B) \equiv \neg (A \Rightarrow \neg B),$$

Definability of Implication in terms of conjunction and negation

$$(A \Rightarrow B) \equiv \neg (A \cap \neg B),$$

and the Substitution Theorem prove that

$$\mathcal{L}_{\{\neg,\cap\}} \equiv \mathcal{L}_{\{\neg,\Rightarrow\}}.$$

Exercise 1

(a) Prove that

$$\mathcal{L}_{\{\cap,\neg\}}\equiv\mathcal{L}_{\{\cup,\neg\}}.$$

- (b) Transform a formula $A = \neg(\neg(\neg a \cap \neg b) \cap a)$ of $\mathcal{L}_{\{\cap,\neg\}}$ into a logically equivalent formula B of $\mathcal{L}_{\{\cup,\neg\}}$.
- (c) Transform a formula $A = (((\neg a \cup \neg b) \cup a) \cup (a \cup \neg c)) \text{ of } \mathcal{L}_{\{\cup,\neg\}} \text{ into}$ a formula B of $\mathcal{L}_{\{\cap,\neg\}}$, such that $A \equiv B$.
- (d) Prove/disaprove: $\models \neg(\neg(\neg a \cap \neg b) \cap a)$.
- (e) Prove/disaprove: $\models (((\neg a \cup \neg b) \cup a) \cup (a \cup \neg c)).$

Solution (a) True due to the Substitution Theorem and two definability of connectives equivalences:

 $(A \cap B) \equiv \neg(\neg A \cup \neg B), \quad (A \cup B) \equiv \neg(\neg A \cap \neg B).$

Solution (b)

$$\neg(\neg(\neg a \cap \neg b) \cap a)$$
$$\equiv \neg(\neg \neg (\neg \neg a \cup \neg \neg b) \cap a)$$
$$\equiv \neg((a \cup b) \cap a)$$
$$\equiv \neg(\neg(a \cup b) \cup \neg a).$$

The formula B of $\mathcal{L}_{\{\cup,\neg\}}$ equivalent to A is $B = \neg(\neg(a \cup b) \cup \neg a).$

Solution (c)

$$(((\neg a \cup \neg b) \cup a) \cup (a \cup \neg c))$$

$$\equiv ((\neg (\neg \neg a \cap \neg \neg b) \cup a) \cup \neg (\neg a \cap \neg \neg c))$$

$$\equiv ((\neg (a \cap b) \cup a) \cup \neg (\neg a \cap c))$$

$$\equiv (\neg ((\neg \neg (a \cap b) \cap \neg a) \cup \neg (\neg a \cap c)))$$

$$\equiv (\neg ((a \cap b) \cap \neg a) \cup \neg (\neg a \cap c))$$

$$\equiv \neg (((a \cap b) \cap \neg a) \cap \neg \neg (\neg a \cap c))$$

There are two formulas B of $\mathcal{L}_{\{\cap,\neg\}}$, such that $A \equiv B$.

$$B = B_1 = \neg (\neg \neg ((a \cap b) \cap \neg a) \cap \neg \neg (\neg a \cap c)),$$
$$B = B_2 = \neg (((a \cap b) \cap \neg a) \cap (\neg a \cap c)).$$

Solution (d)

$$\not\models \neg(\neg(\neg a \cap \neg b) \cap a)$$

Our formula A is logically equivalent, as proved in (c) with the formula $B = \neg(\neg(a \cup b) \cup \neg a).$

Consider any truth assignment v, such that v(a) = F, then $(\neg(a \cup b) \cup T) = T$, and hence $v^*(B) = F$. Solution (e) $\models (((\neg a \cup \neg b) \cup a) \cup (a \cup \neg c))$ because it was proved in (c) that $(((\neg a \cup \neg b) \cup a) \cup (a \cup \neg c))$ $\equiv \neg (((a \cap b) \cap \neg a) \cap (\neg a \cap c))$ and obviously the formula $(((a \cap b) \cap \neg a) \cap (\neg a \cap c))$ is a contradiction.

Hence its negation is a tautology.

Exercise 2 Prove by transformation, using proper logical equivalences that

1.

$$\neg (A \Leftrightarrow B) \equiv ((A \cap \neg B) \cup (\neg A \cap B)),$$

2.

$$((B \cap \neg C) \Rightarrow (\neg A \cup B))$$
$$\equiv ((B \Rightarrow C) \cup (A \Rightarrow B)).$$

Solution 1.

$$\neg (A \Leftrightarrow B)$$

$$\equiv^{def} \neg ((A \Rightarrow B) \cap (B \Rightarrow A))$$

$$\equiv^{de \ Morgan} (\neg (A \Rightarrow B) \cup \neg (B \Rightarrow A))$$

$$\equiv^{neg \ impl} ((A \cap \neg B) \cup (B \cap \neg A))$$

$$\equiv^{commut} ((A \cap \neg B) \cup (\neg A \cap B)).$$

Solution 2.

$$((B \cap \neg C) \Rightarrow (\neg A \cup B))$$

$$\equiv^{impl} (\neg (B \cap \neg C) \cup (\neg A \cup B))$$

$$\equiv^{de \ Morgan} ((\neg B \cup \neg \neg C) \cup (\neg A \cup B))$$

$$\equiv^{neg} ((\neg B \cup C) \cup (\neg A \cup B))$$

$$\equiv^{impl} ((B \Rightarrow C) \cup (A \Rightarrow B)).$$

SOME PROBLEMS: chapters 5,6

Reminder: We define **H** semantics operations \cup and \cap as follows

 $a \cup b = max\{a, b\}, \quad a \cap b = min\{a, b\}.$

The Truth Tables for Implication and Negation are:

H-Implication

$$\begin{array}{c|c} \neg & \mathsf{F} & \bot & \mathsf{T} \\ \hline & \mathsf{T} & F & \mathsf{F} \\ & & \end{array}$$

QUESTION 1 We know that

$$v: VAR \longrightarrow \{F, \bot, T\}$$

is such that

$$v^*((a \cap b) \Rightarrow (a \Rightarrow c)) = \bot$$

under **H** semantics.

evaluate:

$$v^*(((b \Rightarrow a) \Rightarrow (a \Rightarrow \neg c)) \cup (a \Rightarrow b)).$$

Solution : $v^*((a \cap b) \Rightarrow (a \Rightarrow c)) = \bot$ under H semantics if and only if (we use shorthand notation) $(a \cap b) = T$ and $(a \Rightarrow c) = \bot$ if and only if a = T, b = T and $(T \Rightarrow c) = \bot$ if and only if $c = \bot$. I.e. we have that

 $v^*((a \cap b) \Rightarrow (a \Rightarrow c)) = \perp iff a = T, b = T, c = \perp$

Now we can we **evaluate** $v^*(((b \Rightarrow a) \Rightarrow (a \Rightarrow \neg c)) \cup (a \Rightarrow b))$ as follows (in shorthand notation). $v^*(((b \Rightarrow a) \Rightarrow (a \Rightarrow \neg c)) \cup (a \Rightarrow b)) = (((T \Rightarrow T) \Rightarrow (T \Rightarrow \neg \bot)) \cup (T \Rightarrow T)) =$

 $((T \Rightarrow (T \Rightarrow F)) \cup T) = T.$

We define a 4 valued \mathbf{L}_4 logic semantics as follows. The language is $\mathcal{L} = \mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$.

We define the logical connectives $\neg, \Rightarrow, \cup, \cap$ of **L**₄ as the following operations in the set $\{F, \bot_1, \bot_2, T\}$, where $\{F < \bot_1 < \bot_2 < T\}$.

Negation \neg : { F, \bot_1, \bot_2, T } \longrightarrow { F, \bot_1, \bot_2, T },

such that

 $\neg \perp_1 = \perp_1, \ \neg \perp_2 = \perp_2, \ \neg F = T, \ \neg T = F.$

Conjunction \cap : { F, \perp_1, \perp_2, T } × { F, \perp_1, \perp_2, T } \longrightarrow { F, \perp_1, \perp_2, T }

such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$,

$$a \cap b = min\{a, b\}.$$

Disjunction \cup : { F, \perp_1, \perp_2, T } × { F, \perp_1, \perp_2, T } \longrightarrow { F, \perp_1, \perp_2, T }

such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$,

$$a \cup b = max\{a, b\}.$$

Implication \Rightarrow : { F, \perp_1, \perp_2, T }×{ F, \perp_1, \perp_2, T } \longrightarrow { F, \perp_1, \perp_2, T },

such that for any $a, b \in \{F, \bot_1, \bot_2, T\}$,

$$a \Rightarrow b = \begin{cases} \neg a \cup b & \text{if } a > b \\ T & \text{otherwise} \end{cases}$$

QUESTION 2

Part 1 Write all Tables for L_4

Solution :

Ł₄ Negation

Ł₄ Conjunction

Ł₄ Disjunction

U	F	\perp_1	\perp_2	Т
		\perp_1		
\perp_1	\perp_1	\perp_1	\perp_2	Т
\perp_2	\perp_2	\perp_2 T	\perp_2	Т
Т	Т	Т	Т	Т

Ł₄-Implication

Part 2 Verify whether

$$\models_{\mathsf{L}_4}((a \Rightarrow b) \Rightarrow (\neg a \cup b))$$

Solution : Let v be a truth assignment such that $v(a) = v(b) = \bot_1$.

We evaluate $v^*((a \Rightarrow b) \Rightarrow (\neg a \cup b)) =$ $((\bot_1 \Rightarrow \bot_1) \Rightarrow (\neg \bot_1 \cup \bot_1)) = (T \Rightarrow (\bot_1 \cup \bot_1)) = (T \Rightarrow \bot_1) = \bot_1.$

This proves that v is a counter-model for our formula and

$$\not\models_{\mathsf{L}_4}((a \Rightarrow b) \Rightarrow (\neg a \cup b)).$$

Observe that a v such that $v(a) = v(b) = \bot_2$ is also a counter model, as $v^*((a \Rightarrow b) \Rightarrow (\neg a \cup b)) = ((\bot_2 \Rightarrow \bot_2) \Rightarrow (\neg \bot_2 \cup \bot_2)) = (T \Rightarrow (\bot_2 \cup \bot_2)) = (T \Rightarrow \bot_2) = \bot_2.$

QUESTION 3 Prove using proper logical equivalences (list them at each step) that

1. $\neg (A \Leftrightarrow B) \equiv ((A \cap \neg B) \cup (\neg A \cap B)),$

Solution:
$$\neg (A \Leftrightarrow B) \equiv^{def} \neg ((A \Rightarrow B) \cap (B \Rightarrow A)) \equiv^{deMorgan} (\neg (A \Rightarrow B) \cup \neg (B \Rightarrow A)) \equiv^{negimpl} ((A \cap \neg B) \cup (B \cap \neg A)) \equiv^{commut} ((A \cap \neg B) \cup (\neg A \cap B)).$$

2. $((B \cap \neg C) \Rightarrow (\neg A \cup B)) \equiv ((B \Rightarrow C) \cup (A \Rightarrow B)).$

Solution: $((B \cap \neg C) \Rightarrow (\neg A \cup B)) \equiv^{impl} (\neg (B \cap \neg C) \cup (\neg A \cup B)) \equiv^{deMorgan} ((\neg B \cup \neg \neg C) \cup (\neg A \cup B))$ $\equiv^{dneg} ((\neg B \cup C) \cup (\neg A \cup B)) \equiv^{impl} ((B \Rightarrow C) \cup (A \Rightarrow B)).$

QUESTION 4 We define an EQUIVALENCE of LANGUAGES as follows:

Given two languages:

 $\mathcal{L}_1 = \mathcal{L}_{CON_1}$ and $\mathcal{L}_2 = \mathcal{L}_{CON_2}$, for $CON_1 \neq CON_2$.

We say that they are **logically equivalent**, i.e.

$$\mathcal{L}_1 \equiv \mathcal{L}_2$$

if and only if the following conditions **C1**, **C2** hold.

C1: For every formula A of \mathcal{L}_1 , there is a formula B of \mathcal{L}_2 , such that

$$A \equiv B,$$

C2: For every formula C of \mathcal{L}_2 , there is a formula D of \mathcal{L}_1 , such that

$$C \equiv D.$$

Prove that $\mathcal{L}_{\{\neg,\cap\}} \equiv \mathcal{L}_{\{\neg,\Rightarrow\}}.$

Solution: The equivalence of languages holds due to two definability of connectives equivalences:

 $(A \cap B) \equiv \neg (A \Rightarrow \neg B), \quad (A \Rightarrow B) \equiv \neg (A \cap \neg B).$