## Chapter 6

## Propositional Tautologies, Logical Equivalences, Definability of Connectives and Equivalence of Languages

## Propositional Tautologies for Implication

Modus Ponens known to the Stoics (3rd century B.C)

$$
\vDash((A \cap(A \Rightarrow B)) \Rightarrow B)
$$

Detachment

$$
\begin{aligned}
& \models((A \cap(A \Leftrightarrow B)) \Rightarrow B) \\
& \models((B \cap(A \Leftrightarrow B)) \Rightarrow A)
\end{aligned}
$$

Sufficient Given an implication

$$
(A \Rightarrow B)
$$

$A$ is called a sufficient condition for $B$ to hold.

Necessary Given an implication

$$
(A \Rightarrow B),
$$

$B$ is called a necessary condition for $A$ to hold.

## Implication Names

Simple $\quad(A \Rightarrow B)$ is called a simple implication.

Converse $\quad(B \Rightarrow A)$ is called a converse implication to $(A \Rightarrow B)$.

Opposite $\quad(\neg B \Rightarrow \neg A)$ is called an opposite implication to $(A \Rightarrow B)$.

Contrary $\quad(\neg A \Rightarrow \neg B)$ is called a contrary implication to $(A \Rightarrow B)$.

## Laws of contraposition

$$
\begin{aligned}
& \models((A \Rightarrow B) \Leftrightarrow(\neg B \Rightarrow \neg A)), \\
& \models((B \Rightarrow A) \Leftrightarrow(\neg A \Rightarrow \neg B)) .
\end{aligned}
$$

The laws of contraposition make it possible to replace, in any deductive argument, a sentence of the form $(A \Rightarrow B)$ by $\neg B \Rightarrow \neg A$ ), and conversely.

Necessary and sufficient :

We read $\quad(A \Leftrightarrow B) \quad$ as
$B$ is necessary and sufficient for $A$
because of the following tautology.

$$
\vDash((A \Leftrightarrow B)) \Leftrightarrow((A \Rightarrow B) \cap(B \Rightarrow A))) .
$$

Hypothetical syllogism (Stoics, 3rd century B.C.)

$$
\vDash(((A \Rightarrow B) \cap(B \Rightarrow C)) \Rightarrow(A \Rightarrow C)),
$$

$$
\vDash((A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))),
$$

$$
\models((B \Rightarrow C) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C))) .
$$

Modus Tollendo Ponens (Stoics, 3rd century B.C.)

$$
\begin{aligned}
& =(((A \cup B) \cap \neg A) \Rightarrow B), \\
& \vDash(((A \cup B) \cap \neg B) \Rightarrow A)
\end{aligned}
$$

Duns Scotus (12/13 century)

$$
\vDash(\neg A \Rightarrow(A \Rightarrow B))
$$

Clavius (16th century)

$$
\vDash((\neg A \Rightarrow A) \Rightarrow A)
$$

Frege (1879, first formulation of the classical propositional logic as a formalized axiomatic system )

$$
\begin{aligned}
& \vDash(((A \Rightarrow(B \Rightarrow C)) \cap(A \Rightarrow B)) \Rightarrow(A \Rightarrow C)), \\
& \vDash((A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \Rightarrow B) \Rightarrow(A \Rightarrow C)))
\end{aligned}
$$

Apagogic Proofs : means proofs by reductio ad absurdum.

Reductio ad absurdum : to prove $A$ to be true, we assume $\neg A$.

If we get a contradiction, means we have proved $A$ to be true.

$$
\vDash((\neg A \Rightarrow(B \cap \neg B)) \Rightarrow A)
$$

Implication form : we want to prove $(A \Rightarrow B)$ by reductio ad absurdum. Correctness of reasoning is based on the following tautologies.

$$
\vDash(((\neg(A \Rightarrow B) \Rightarrow(C \cap \neg C)) \Rightarrow(A \Rightarrow B))
$$

We use the equivalence: $\neg(A \Rightarrow B) \equiv(A \cap \neg B)$ and get

$$
\begin{aligned}
& \vDash(((A \cap \neg B) \Rightarrow(C \cap \neg C)) \Rightarrow(A \Rightarrow B)) \\
& \quad \vDash(((A \cap \neg B) \Rightarrow \neg A) \Rightarrow(A \Rightarrow B)) \\
& \quad=(((A \cap \neg B) \Rightarrow B) \Rightarrow(A \Rightarrow B))
\end{aligned}
$$

Logical equivalence : For any formulas $A, B$,

$$
A \equiv B \quad \text { iff } \quad \models(A \Leftrightarrow B) .
$$

Property:

$$
A \equiv B \quad \text { iff } \quad \models(A \Rightarrow B) \text { and } \models(B \Rightarrow A)
$$

Laws of contraposition

$$
\begin{aligned}
& (A \Rightarrow B) \equiv(\neg B \Rightarrow \neg A), \\
& (B \Rightarrow A) \equiv(\neg A \Rightarrow \neg B), \\
& (\neg A \Rightarrow B) \equiv(\neg B \Rightarrow A), \\
& (A \Rightarrow \neg B) \equiv(B \Rightarrow \neg A) .
\end{aligned}
$$

Theorem Let $B_{1}$ be obtained from $A_{1}$ by substitution of a formula $B$ for one or more occurrences of a sub-formula $A$ of $A_{1}$, what we denote as

$$
B_{1}=A_{1}(A / B) .
$$

Then the following holds.

$$
\text { If } \quad A \equiv B, \quad \text { then } \quad A_{1} \equiv B_{1},
$$

## Definability of Connectives

$$
(A \Rightarrow B) \equiv(\neg A \cup B)
$$

Transform a formula with implication into a logically equivalent formula without implication.

We transform (via our Theorem) a formula

$$
((C \Rightarrow \neg B) \Rightarrow(B \cup C))
$$

into its logically equivalent form not containing $\Rightarrow$ as follows.

$$
\begin{gathered}
((C \Rightarrow \neg B) \Rightarrow(B \cup C)) \equiv(\neg(C \Rightarrow \neg B) \cup(B \cup C))) \\
\equiv(\neg(\neg C \cup B) \cup(B \cup C))) .
\end{gathered}
$$

We get

$$
((C \Rightarrow \neg B) \Rightarrow(B \cup C)) \equiv(\neg(\neg C \cup B) \cup(B \cup C))) .
$$

Substitution Theorem Let $B_{1}$ be obtained from $A_{1}$ by substitution of a formula $B$ for one or more occurrences of a sub-formula $A$ of $A_{1}$.

We denote it as

$$
B_{1}=A_{1}(A / B) .
$$

Then the following holds.

$$
\text { If } A \equiv B, \quad \text { then } \quad A_{1} \equiv B_{1} \text {, }
$$

The next set of equivalences, or corresponding tautologies, deals with what is called a definability of connectives in classical semantics.

For example, a tautology

$$
\vDash((A \Rightarrow B) \Leftrightarrow(\neg A \cup B))
$$

makes it possible to define implication in terms of disjunction and negation.

We state it in a form of logical equivalence as follows.

Definability of Implication in terms of negation and disjunction:

$$
(A \Rightarrow B) \equiv(\neg A \cup B)
$$

We use logical equivalence notion, instead of the tautology notion, as it makes the manipulation of formulas much easier.

Definability of Implication equivalence allows us, by the force of Substitution Theorem to replace any formula of the form ( $A \Rightarrow B$ ) placed anywhere in another formula by a formula ( $\neg A \cup B$ ).

Hence we transform a given formula containing implication into an logically equivalent formula that does contain implication (but contains negation and disjunction).

Example 1 We transform (via Substitution Theorem) a formula

$$
((C \Rightarrow \neg B) \Rightarrow(B \cup C))
$$

into its logically equivalent form not containing $\Rightarrow$ as follows.

$$
\begin{aligned}
& ((C \Rightarrow \neg B) \Rightarrow(B \cup C)) \\
\equiv & (\neg(C \Rightarrow \neg B) \cup(B \cup C))) \\
\equiv & (\neg(\neg C \cup B) \cup(B \cup C))) .
\end{aligned}
$$

We get

$$
\begin{aligned}
& ((C \Rightarrow \neg B) \Rightarrow(B \cup C)) \\
\equiv & (\neg(\neg C \cup B) \cup(B \cup C))) .
\end{aligned}
$$

It means that that we can, by the Substitution Theorem transform a language

$$
\mathcal{L}_{1}=\mathcal{L}_{\{\neg, \cap, \Rightarrow\}}
$$

into a language

$$
\mathcal{L}_{2}=\mathcal{L}_{\{\neg, \cap, \cup\}}
$$

with all its formulas being logically equivalent.

We write it as the following condition.

C1: for any formula $A$ of $\mathcal{L}_{1}$, there is a formula $B$ of $\mathcal{L}_{2}$, such that $A \equiv B$.

Example 2 : Let $A$ be a formula

$$
(\neg A \cup(\neg A \cup \neg B))
$$

We use the definability of implication equivalence to eliminate disjunction as follows

$$
\begin{gathered}
(\neg A \cup(\neg A \cup \neg B)) \equiv(\neg A \cup(A \Rightarrow \neg B)) \\
\equiv(A \Rightarrow(A \Rightarrow \neg B)) .
\end{gathered}
$$

Observe, that we can't always use the equivalence $(A \Rightarrow B) \equiv(\neg A \cup B)$ to eliminate any disjunction.

For example, we can't use it for a formula

$$
A=((a \cup b) \cap \neg a)
$$

In order to be able to transform any formula of a language containing disjunction (and some other connectives) into a language with negation and implication (and some other connectives), but without disjunction we need the following logical equivalence.

Definability of Disjunction in terms of negation and implication:

$$
(A \cup B) \equiv(\neg A \Rightarrow B)
$$

Example 3 Consider a formula $A$

$$
(a \cup b) \cap \neg a) .
$$

We transform $A$ into its logically equivalent form not containing $\cup$ as follows.

$$
((a \cup b) \cap \neg a) \equiv((\neg a \Rightarrow b) \cap \neg a) .
$$

In general, we transform the language $\mathcal{L}_{2}=$ $\mathcal{L}_{\{\neg, \cap, \cup\}}$ to the language $\mathcal{L}_{1}=\mathcal{L}_{\{\neg, \cap, \Rightarrow\}}$ with all its formulas being logically equivalent.

We write it as the following condition.

C1: for any formula $C$ of $\mathcal{L}_{2}$, there is a formula $D$ of $\mathcal{L}_{1}$, such that $C \equiv D$.

The languages $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ for which we the conditions C1, C2 hold are called logically equivalent.

We denote it by

$$
\mathcal{L}_{1} \equiv \mathcal{L}_{2} .
$$

A general, formal definition goes as follows.

## Definition of Equivalence of Languages

Given two languages: $\quad \mathcal{L}_{1}=\mathcal{L}_{C O N_{1}}$ and $\quad \mathcal{L}_{2}=\mathcal{L}_{C O N_{2}}, \quad$ for $C O N_{1} \neq C O N_{2}$.

We say that they are logically equivalent, i.e.

$$
\mathcal{L}_{1} \equiv \mathcal{L}_{2}
$$

if and only if the following conditions C1, C2 hold.

C1: For every formula $A$ of $\mathcal{L}_{1}$, there is a formula $B$ of $\mathcal{L}_{2}$, such that

$$
A \equiv B
$$

C2: For every formula $C$ of $\mathcal{L}_{2}$, there is a formula $D$ of $\mathcal{L}_{1}$, such that

$$
C \equiv D
$$

Example 4 To prove the logical equivalence of the languages

$$
\mathcal{L}_{\{\neg, \cup\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow\}}
$$

we need two definability equivalences:
implication in terms of disjunction and negation,
disjunction in terms of implication and negation, and the Substitution Theorem.

Example 5 To prove the logical equivalence of the languages

$$
\mathcal{L}_{\{\neg, \cap, \mathrm{U}, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \cap, \mathrm{U}\}}
$$

we need only the definability of implication equivalence.

It proves, by Substitution Theorem that for any formula $A$ of

$$
\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}
$$

there is $B$ of $\mathcal{L}_{\{\neg, \cap, \cup\}}$ that equivalent to $A$, i.e.

$$
A \equiv B
$$

and condition C1 holds.

Observe, that any formula $A$ of language

$$
\mathcal{L}_{\{\neg, \cap, \cup\}}
$$

is also a formula of

$$
\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}
$$

and of course

$$
A \equiv A
$$

so C2 also holds.

The logical equalities below

Definability of Conjunction in terms of implication and negation

$$
(A \cap B) \equiv \neg(A \Rightarrow \neg B),
$$

Definability of Implication in terms of conjunction and negation

$$
(A \Rightarrow B) \equiv \neg(A \cap \neg B),
$$

and the Substitution Theorem prove that

$$
\mathcal{L}_{\{\neg, \cap\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow\}} .
$$

## Exercise 1

(a) Prove that

$$
\mathcal{L}_{\{\cap, \neg\}} \equiv \mathcal{L}_{\{\cup, \neg\}} .
$$

(b) Transform a formula $A=\neg(\neg(\neg a \cap \neg b) \cap a)$ of $\mathcal{L}_{\{\cap, \neg\}}$ into a logically equivalent formula $B$ of $\mathcal{L}_{\{\cup, \neg\}}$.
(c) Transform a formula $A=(((\neg a \cup \neg b) \cup a) \cup(a \cup \neg c))$ of $\mathcal{L}_{\{\cup, \neg\}}$ into a formula $B$ of $\mathcal{L}_{\{\cap, \neg\}}$, such that $A \equiv B$.
(d) Prove/disaprove: $\vDash \neg(\neg(\neg a \cap \neg b) \cap a)$.
(e) Prove/disaprove:
$\vDash(((\neg a \cup \neg b) \cup a) \cup(a \cup \neg c))$.

Solution (a) True due to the Substitution Theorem and two definability of connectives equivalences:

$$
(A \cap B) \equiv \neg(\neg A \cup \neg B), \quad(A \cup B) \equiv \neg(\neg A \cap \neg B) .
$$

## Solution (b)

$$
\begin{aligned}
& \neg(\neg(\neg a \cap \neg b) \cap a) \\
\equiv & \neg(\neg \neg(\neg \neg a \cup \neg \neg b) \cap a) \\
\equiv & \neg((a \cup b) \cap a) \\
\equiv & \neg(\neg(a \cup b) \cup \neg a) .
\end{aligned}
$$

The formula $B$ of $\mathcal{L}_{\{\cup, \neg\}}$ equivalent to $A$ is

$$
B=\neg(\neg(a \cup b) \cup \neg a) .
$$

Solution (c)

$$
\begin{gathered}
\quad(((\neg a \cup \neg b) \cup a) \cup(a \cup \neg c)) \\
\equiv((\neg(\neg \neg a \cap \neg \neg b) \cup a) \cup \neg(\neg a \cap \neg \neg c)) \\
\equiv((\neg(a \cap b) \cup a) \cup \neg(\neg a \cap c)) \\
\equiv(\neg(\neg \neg(a \cap b) \cap \neg a) \cup \neg(\neg a \cap c)) \\
\equiv(\neg((a \cap b) \cap \neg a) \cup \neg(\neg a \cap c)) \\
\equiv \neg(\neg \neg((a \cap b) \cap \neg a) \cap \neg \neg(\neg a \cap c)) \\
\equiv \neg(((a \cap b) \cap \neg a) \cap(\neg a \cap c))
\end{gathered}
$$

There are two formulas $B$ of $\mathcal{L}_{\{\cap, \neg\}}$, such that $A \equiv B$.

$$
\begin{gathered}
B=B_{1}=\neg(\neg \neg((a \cap b) \cap \neg a) \cap \neg \neg(\neg a \cap c)), \\
B=B_{2}=\neg(((a \cap b) \cap \neg a) \cap(\neg a \cap c)) .
\end{gathered}
$$

## Solution (d)

$$
\not \vDash \neg(\neg(\neg a \cap \neg b) \cap a)
$$

Our formula $A$ is logically equivalent, as proved in (c) with the formula
$B=\neg(\neg(a \cup b) \cup \neg a)$.

Consider any truth assignment $v$, such that $v(a)=F$, then $(\neg(a \cup b) \cup T)=T$, and hence $v^{*}(B)=F$.

## Solution (e)

$$
\equiv(((\neg a \cup \neg b) \cup a) \cup(a \cup \neg c))
$$

because it was proved in (c) that

$$
\begin{aligned}
& (((\neg a \cup \neg b) \cup a) \cup(a \cup \neg c)) \\
\equiv & \neg(((a \cap b) \cap \neg a) \cap(\neg a \cap c))
\end{aligned}
$$

and obviously the formula

$$
(((a \cap b) \cap \neg a) \cap(\neg a \cap c))
$$

is a contradiction.

Hence its negation is a tautology.

Exercise 2 Prove by transformation, using proper logical equivalences that
1.

$$
\neg(A \Leftrightarrow B) \equiv((A \cap \neg B) \cup(\neg A \cap B)),
$$

2. 

$$
\begin{aligned}
& ((B \cap \neg C) \Rightarrow(\neg A \cup B)) \\
\equiv & ((B \Rightarrow C) \cup(A \Rightarrow B)) .
\end{aligned}
$$

Solution 1.

$$
\begin{gathered}
\neg(A \Leftrightarrow B) \\
\equiv^{\text {def }} \neg((A \Rightarrow B) \cap(B \Rightarrow A)) \\
\equiv{ }^{\text {de }}{ }^{\text {Morgan }}(\neg(A \Rightarrow B) \cup \neg(B \Rightarrow A)) \\
\equiv{ }^{\text {neg impl }}((A \cap \neg B) \cup(B \cap \neg A)) \\
\equiv^{\text {commut }}((A \cap \neg B) \cup(\neg A \cap B)) .
\end{gathered}
$$

Solution 2.

$$
\begin{gathered}
((B \cap \neg C) \Rightarrow(\neg A \cup B)) \\
\equiv^{\text {impl }}(\neg(B \cap \neg C) \cup(\neg A \cup B)) \\
\equiv^{\text {de } \text { Morgan }}((\neg B \cup \neg \neg C) \cup(\neg A \cup B)) \\
\equiv^{\text {neg }}((\neg B \cup C) \cup(\neg A \cup B)) \\
\equiv^{\text {impl }}((B \Rightarrow C) \cup(A \Rightarrow B)) .
\end{gathered}
$$

## SOME PROBLEMS: chapters 5,6

Reminder: We define $\mathbf{H}$ semantics operations $\cup$ and $\cap$ as follows

$$
a \cup b=\max \{a, b\}, \quad a \cap b=\min \{a, b\} .
$$

The Truth Tables for Implication and Vegaton are:

## H-Implication



## H Negation

| $\neg$ | F | $\perp$ | T |
| :--- | :--- | :--- | :--- |
|  | T | $F$ | F |

## QUESTION 1 We know that

$$
v: V A R \longrightarrow\{F, \perp, T\}
$$

is such that

$$
v^{*}((a \cap b) \Rightarrow(a \Rightarrow c))=\perp
$$

under $\mathbf{H}$ semantics.
evaluate:
$v^{*}(((b \Rightarrow a) \Rightarrow(a \Rightarrow \neg c)) \cup(a \Rightarrow b))$.

Solution : $v^{*}((a \cap b) \Rightarrow(a \Rightarrow c))=\perp$ under H semantics if and only if (we use shorthand notation) $(a \cap b)=T$ and $(a \Rightarrow c)=\perp$ if and only if $a=T, b=T$ and $(T \Rightarrow c)=\perp$ if and only if $c=\perp$. I.e. we have that $v^{*}((a \cap b) \Rightarrow(a \Rightarrow c))=\perp \quad$ iff $a=T, b=T, c=\perp$

Now we can we evaluate $v^{*}(((b \Rightarrow a) \Rightarrow$ $(a \Rightarrow \neg c)) \cup(a \Rightarrow b)$ ) as follows (in shorthand notation).
$v^{*}(((b \Rightarrow a) \Rightarrow(a \Rightarrow \neg c)) \cup(a \Rightarrow b))=$ $(((T \Rightarrow T) \Rightarrow(T \Rightarrow \neg \perp)) \cup(T \Rightarrow T))=$ $((T \Rightarrow(T \Rightarrow F)) \cup T)=T$.

We define a 4 valued $\left\llcorner_{4}\right.$ logic semantics as follows. The language is $\mathcal{L}=\mathcal{L}_{\{\neg, \Rightarrow, \cup, \cap\}}$.

We define the logical connectives $\neg, \Rightarrow, \cup, \cap$ of $\mathbf{t}_{4}$ as the following operations in the set $\left\{F, \perp_{1}, \perp_{2}, T\right\}$, where $\left\{F<\perp_{1}<\perp_{2}<T\right\}$.

Negation $\neg:\left\{F, \perp_{1}, \perp_{2}, T\right\} \longrightarrow\left\{F, \perp_{1}, \perp_{2}, T\right\}$, such that

$$
\neg \perp_{1}=\perp_{1}, \quad \neg \perp_{2}=\perp_{2}, \quad \neg F=T, \quad \neg T=F
$$

Conjunction $\cap:\left\{F, \perp_{1}, \perp_{2}, T\right\} \times\left\{F, \perp_{1}, \perp_{2}, T\right\} \longrightarrow$ $\left\{F, \perp_{1}, \perp_{2},, T\right\}$
such that for any $a, b \in\left\{F, \perp_{1}, \perp_{2}, T\right\}$,

$$
a \cap b=\min \{a, b\}
$$

Disjunction $\cup:\left\{F, \perp_{1}, \perp_{2}, T\right\} \times\left\{F, \perp_{1}, \perp_{2}, T\right\}$
$\left\{F, \perp_{1}, \perp_{2}, T\right\}$
such that for any $a, b \in\left\{F, \perp_{1}, \perp_{2}, T\right\}$,

$$
a \cup b=\max \{a, b\} .
$$

Implication $\Rightarrow:\left\{F, \perp_{1}, \perp_{2}, T\right\} \times\left\{F, \perp_{1}, \perp_{2}, T\right\} \longrightarrow$ $\left\{F, \perp_{1}, \perp_{2}, T\right\}$,
such that for any $a, b \in\left\{F, \perp_{1}, \perp_{2}, T\right\}$,

$$
a \Rightarrow b= \begin{cases}\neg a \cup b & \text { if } a>b \\ T & \text { otherwise }\end{cases}
$$

## QUESTION 2

Part 1 Write all Tables for $\mathbf{t}_{4}$

Solution :
$\mathbf{t}_{4}$ Negation

| $\neg$ | F | $\perp_{1}$ | $\perp_{2}$ | T |
| :--- | :--- | :--- | :--- | :--- |
|  | T | $\perp_{1}$ | $\perp_{2}$ | F |

$\mathbf{t}_{4}$ Conjunction

$$
\begin{array}{c|cccc}
\cap & \mathrm{F} & \perp_{1} & \perp_{2} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} \\
\perp_{1} & \mathrm{~F} & \perp_{1} & \perp_{1} & \perp_{1} \\
\perp_{2} & \mathrm{~F} & \perp_{1} & \perp_{2} & \perp_{2} \\
\mathrm{~T} & \mathrm{~F} & \perp_{1} & \perp_{2} & \mathrm{~T}
\end{array}
$$

## $\mathbf{t}_{4}$ Disjunction

| $\cup$ | F | $\perp_{1}$ | $\perp_{2}$ | T |
| :---: | :---: | :---: | :---: | :---: |
| F | F | $\perp_{1}$ | $\perp_{2}$ | T |
| $\perp_{1}$ | $\perp_{1}$ | $\perp_{1}$ | $\perp_{2}$ | T |
| $\perp_{2}$ | $\perp_{2}$ | $\perp_{2}$ | $\perp_{2}$ | T |
| T | T | T | T | T |

## $\mathbf{t}_{4}$-Implication

$$
\begin{array}{c|cccc}
\Rightarrow & \mathrm{F} & \perp_{1} & \perp_{2} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\perp_{1} & \perp_{1} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\perp_{2} & \perp_{2} & \perp_{2} & \mathrm{~T} & \mathrm{~T} \\
\mathrm{~T} & \mathrm{~F} & \perp_{1} & \perp_{2} & \mathrm{~T}
\end{array}
$$

Part 2 Verify whether

$$
\models_{Ł_{4}}((a \Rightarrow b) \Rightarrow(\neg a \cup b))
$$

Solution : Let $v$ be a truth assignment such that $v(a)=v(b)=\perp_{1}$.

We evaluate $v^{*}((a \Rightarrow b) \Rightarrow(\neg a \cup b))=$ $\left(\left(\perp_{1} \Rightarrow \perp_{1}\right) \Rightarrow\left(\neg \perp_{1} \cup \perp_{1}\right)\right)=\left(T \Rightarrow\left(\perp_{1} \cup\right.\right.$ $\left.\left.\perp_{1}\right)\right)=\left(T \Rightarrow \perp_{1}\right)=\perp_{1}$.

This proves that $v$ is a counter-model for our formula and

$$
\ell_{Ł_{4}}((a \Rightarrow b) \Rightarrow(\neg a \cup b)) .
$$

Observe that a $v$ such that $v(a)=v(b)=$ $\perp_{2}$ is also a counter model, as $v^{*}((a \Rightarrow b) \Rightarrow$ $(\neg a \cup b))=\left(\left(\perp_{2} \Rightarrow \perp_{2}\right) \Rightarrow\left(\neg \perp_{2} \cup \perp_{2}\right)\right)=$ $\left(T \Rightarrow\left(\perp_{2} \cup \perp_{2}\right)\right)=\left(T \Rightarrow \perp_{2}\right)=\perp_{2}$.

QUESTION 3 Prove using proper logical equivalences (list them at each step) that

$$
\text { 1. } \neg(A \Leftrightarrow B) \equiv((A \cap \neg B) \cup(\neg A \cap B)) \text {, }
$$

Solution: $\neg(A \Leftrightarrow B) \equiv^{\text {def }} \neg((A \Rightarrow B) \cap(B \Rightarrow$
$A)) \equiv$ deMorgan $(\neg(A \Rightarrow B) \cup \neg(B \Rightarrow A))$
$\equiv{ }^{\text {negimpl }}((A \cap \neg B) \cup(B \cap \neg A)) \equiv^{\text {commut }}((A \cap$ $\neg B) \cup(\neg A \cap B))$.
2. $((B \cap \neg C) \Rightarrow(\neg A \cup B)) \equiv((B \Rightarrow C) \cup(A \Rightarrow$ $B)$ ).

Solution: $((B \cap \neg C) \Rightarrow(\neg A \cup B)) \equiv^{i m p l}(\neg(B \cap$ $\neg C) \cup(\neg A \cup B)) \equiv{ }^{\text {deMorgan }}((\neg B \cup \neg \neg C) \cup(\neg A \cup$ B)
$\equiv^{\text {dneg }}((\neg B \cup C) \cup(\neg A \cup B)) \equiv^{i m p l}((B \Rightarrow C) \cup$ ( $A \Rightarrow B)$ ).

QUESTION 4 We define an EQUIVALENCE of LANGUAGES as follows:

Given two languages:
$\mathcal{L}_{1}=\mathcal{L}_{C O N_{1}}$ and $\mathcal{L}_{2}=\mathcal{L}_{C O N_{2}}$, for $\operatorname{CON}_{1} \neq$ $\mathrm{CON}_{2}$.
We say that they are logically equivalent, i.e.

$$
\mathcal{L}_{1} \equiv \mathcal{L}_{2}
$$

if and only if the following conditions $\mathbf{C 1}$, C2 hold.

C1: For every formula $A$ of $\mathcal{L}_{1}$, there is a formula $B$ of $\mathcal{L}_{2}$, such that

$$
A \equiv B,
$$

C2: For every formula $C$ of $\mathcal{L}_{2}$, there is a formula $D$ of $\mathcal{L}_{1}$, such that

$$
C \equiv D .
$$

## Prove that $\quad \mathcal{L}_{\{\neg, \cap\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow\}}$.

Solution: The equivalence of languages holds due to two definability of connectives equivalences:
$(A \cap B) \equiv \neg(A \Rightarrow \neg B), \quad(A \Rightarrow B) \equiv \neg(A \cap \neg B)$.

