
XSB Prolog

CSE 392, Computers Playing Jeopardy!, Fall 2011

Stony Brook UniversityStony Brook University

http://www.cs.stonybrook.edu/~cse392

1

IBM Watson Question Analysis for
J d ! = UIMA + P lJeopardy! = UIMA + Prolog

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

What Is Prolog?

 Prolog is a logic-based language

 Simple Knowledge Representation Simple Knowledge Representation

 With a few simple rules, information can be analyzed
 Socrates is a man.
 All men are mortal.
 Therefore, Socrates is mortal.

Thi i l i C P l d i ? This is logic. Can Prolog do it?
 Yes, but infinite in some cases

 XSB = Prolog + tabling XSB Prolog tabling
 better termination properties

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Brief History

 The first, official version of Prolog was developed
 at the University of Marseilles France by Alain Colmerauer in at the University of Marseilles, France by Alain Colmerauer in

the early 1970s
 as a tool for PROgramming in LOGic.

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Application Areas

 Prolog has been a very important tool in
 artificial intelligence applications artificial intelligence applications
 expert systems
 natural language interfaces
 smart information management systems

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Declarative Language
 This means that
 The programmer p g
 declares facts
 defines rules for reasoning with the facts

 Prolog uses deductive reasoning to Prolog uses deductive reasoning to
 decide whether a proposed fact (goal) can be logically derived from

known facts
(such a decision is called a conclusion)()

 determine new facts from old

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Monotonic logic

 Standard logic is monotonic: once you prove something is
true, it is true forevertrue, it is true forever

 Logic isn't a good fit to reality

 NOT = negation as failure g
 illegal(X) :- \+ legal(X).
 If no proof can be found, the original goal succeeds.

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Nonmonotonic logic

 A non-monotonic logic is a formal
logic whose consequence relation is not monotonic.logic whose consequence relation is not monotonic.

 Adding a formula to a theory produces a reduction of its set
of consequences.
p:- \+ q.
 p is true because q is not known/derivable to be true

h f l d Th f l What if later q is asserted? Then p is false.
 The \+/1 prefix operator is called the "not provable" operator,

since the query ?- \+ Goal. succeeds if Goal is not provable.q y p

 XSB Prolog uses nonmonotonic logic

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Formalizing Arguments
 Abstracting with symbols for predicates, we get an argument

form that looks like this:
if p then q

p
therefore qtherefore q

 ((q :- p) p) q

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Forward and backward reasoning

 A syllogism gives two premises, then asks, "What can we
conclude?"conclude?
 This is forward reasoning -- from premises to conclusions
 it's inefficient when you have lots of premises

 Instead, you ask Prolog specific questions
 Prolog seeks for the goals provided by the user as questions
 Prolog uses backward reasoning -- from (potential) conclusions

to facts
 Prolog searches successful paths and if it reaches unsuccessful branch, it g p

backtracks to previous one and tries to apply alternative clauses

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Prolog: Facts, Rules and Queries

()

Prolog

Socrates is a man.

All men are mortal.

man(socrates).

mortal(X) :- man(X).All men are mortal.

Is Socrates mortal?

mortal(X) : man(X).

?- mortal(socrates).

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Facts, rules, and queries

 Fact: Socrates is a man.

man(socrates)man(socrates).
 Rule: All men are mortal.

mortal(X) :- man(X)mortal(X) : man(X).
 Query: Is Socrates mortal?

?- mortal(socrates)? mortal(socrates).

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Running XSB Prolog

 Install XSB Prolog
 Windows distributionWindows distribution
 build/configure and make for Linux and MacOS

 Create your "database" (program) in any editory (p g) y
man(socrates).
mortal(X) :- man(X).

 Save it as text only, with a .P extension (or .pl)

 Run xsb

? l (' l')?- consult('socrates.pl').
 Then, ask your question at the prompt:

?- mortal(socrates)

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

?- mortal(socrates).

Prolog is a theorem prover

 Prolog's "Yes" means "I can prove it“

 Prolog's "No" means "I can't prove it" Prolog s No means I can t prove it

?- mortal(plato).
No

 XSB Prolog has closed world assumption: knows everything
it needs to know

 Prolog supplies values for variables when it can

 ?- mortal(X).
X = socratesX = socrates

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Prolog Example: Reachability
edge(1,2).

edge(2,3).

edge(2,4).

reachable(X,Y) :- edge(X,Y).

reachable(X Y) : edge(X Z) reachable(Z Y)reachable(X,Y) :- edge(X,Z), reachable(Z, Y).

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Prolog Example: Reachability
| ?- reachable(X,Y).

X = 1
Y = 2; Type a semi-colon repeatedly

X = 2
Y = 3;;

X = 2
Y = 4;

X = 1
Y = 3;

X = 1
Y = 4;

no

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

| ?- halt. Command to Exit XSB

XSB Prolog Example: Reachability
edge(1,2).

edge(2,3).

edge(2,4).

edge(4,1).

: table(reachable/2):- table(reachable/2).

reachable(X,Y) :- edge(X,Y).

reachable(X,Y) :- edge(X,Z), reachable(Z, Y).

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Prolog

 A predicate is a collection of clauses with the same functor
(name) and arity (number of arguments).(name) and arity (number of arguments).

parent(paul,steven).
parent(peter,olivia).
parent(tom liz)parent(tom,liz).
parent(tony, ann).
parent(michael,paul).
parent(jill,tania).

 A program is a collection of predicates.

 Clauses within a predicate are used in the order in which
they occur.

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Syntax

 Variables begin with a capital letter or underscore:
X, Socrates, resultX, Socrates, _result

 Atoms do not begin with a capital letter:
socrates, paul

 Atoms containing special characters, or beginning with a capital
letter, must be enclosed in single quotes: ‘Socrates’

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Data types

 An atom is a general-purpose name with no inherent
meaning.meaning.

 Numbers can be floats or integers.

 A compound term is composed of an atom called a p p
"functor" and a number of "arguments", which are again
terms: tree(node(a),tree(node(b),node(c)))

 Special cases of compound terms:
 Lists: ordered collections of terms: [], [1,2,3], [a,1,X|T]
 St i A f h t d d b t i Strings: A sequence of characters surrounded by quotes is

equivalent to a list of (numeric) character codes: “abc”, “to be,
or not to be”

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Representation of Lists
 List is handled as binary tree in Prolog

[Head | Tail] OR[|]
.(Head,Tail)
 Where Head is an atom and Tail is a list
 W it [b] ((b ([]))) We can write [a,b,c] or .(a,.(b,.(c,[]))).

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Matching
 Given two terms, they are identical or the variables in both

terms can have same objects after being instantiatedj g
date(D,M,2006) unification date(D1,feb,Y1)

D=D1, M=feb, Y1=2006

 General Rule to decide whether two terms S and T match General Rule to decide whether two terms, S and T match
are as follows:
 If S and T are constants, S=T if both are same object
 If S is a variable and T is anything, T=S
 If T is variable and S is anything, S=T
 If S and T are structures S=T ifIf S and T are structures, S T if
 S and T have same functor
 All their corresponding arguments components have to match

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Prolog Evaluation

 Execution of a Prolog program is initiated by the user's
posting of a single goal, called the query.posting of a single goal, called the query.
 SLD resolution
 If the negated query can be refuted, it follows that the query, with the

i i bl bi di i l i l i l f h appropriate variable bindings in place, is a logical consequence of the
program.

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Declarative and Procedural Way

 Prolog programs can be understood two ways: declaratively
and procedurally.and procedurally.

 P:- Q,R

 Declarative Wayy
 P is true if Q and R are true

 Procedural Way
 To solve problem P, first solve Q and then R (or) To satisfy P,

first satisfy Q and then R
 Procedural a does not onl define logical relation bet een Procedural way does not only define logical relation between

the head of the clause and the goals in the body, but also the
order in which the goal are processed.

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Formal Declarative Meaning

 Given a program and a goal G,p g g
 A goal G is true (that is satisfiable, or logically follows from the

program) if and only if:
 Th i l C i th h th t There is a clause C in the program such that
 There is a clause instance I of C such that
 The head of I is identical to G, and
 All the goals in the body of I are true.

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Evaluation
mother_child(trude, sally).

father_child(tom, sally).

father_child(tom, erica).

father_child(mike, tom)._

parent_child(X, Y) :- father_child(X, Y).

parent child(X, Y) :- mother child(X, Y).parent_child(X, Y) : mother_child(X, Y).

sibling(X, Y):- parent_child(Z, X), parent_child(Z, Y).

?- sibling(sally, erica).

Yes (by chronological backtracking)

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Evaluation

 ?- father_child(Father, Child).
enumerates all valid answers on backtracking.enumerates all valid answers on backtracking.

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Append example

append([],L,L).
append([X|L], M, [X|N]) :- append(L,M,N).

append([1,2],[3,4],X)?

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia
28

Append example

append([],L,L).
append([X|L],M,[X|N]) :- append(L,M,N).

append([1,2],[3,4],X)? X=1,L=[2],M=[3,4],A=[X|N]

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia
29

Append example

append([],L,L).
append([X|L],M,[X|N]) :- append(L,M,N).

append([1,2],[3,4],X)? X=1,L=[2],M=[3,4],A=[X|N]

append([2],[3,4],N)?

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia
30

Append example

append([],L,L).
append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia
31

Append example

append([],L,L).
append([X|L],M,[X|N’]) :- append(L,M,N’).

append([],[3,4],N’)?

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia
32

Append example

append([],L,L).
append([X|L],M,[X|N’]) :- append(L,M,N’).

append([],[3,4],N’)? L = [3,4], N’ = L

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia
33

Append example

append([],L,L).
append([X|L],M,[X|N’]) :- append(L,M,N’).

A = [1|N]
N = [2|N’]
N’= L
L = [3,4]

append([],[3,4],N’)? L = [3,4], N’ = L

Answer: A = [1,2,3,4]

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’]append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia
34

Quicksort Example
partition([], _, [], []).

partition([X|Xs], Pivot, Smalls, Bigs) :-

(X @< Pivot ->

Smalls = [X|Rest],

partition(Xs Pivot Rest Bigs)partition(Xs, Pivot, Rest, Bigs)

; Bigs = [X|Rest],

partition(Xs, Pivot, Smalls, Rest)

).

quicksort([]) --> [].

quicksort([X|Xs]) -->quicksort([X|Xs]) >

{ partition(Xs, X, Smaller, Bigger) },

quicksort(Smaller), [X], quicksort(Bigger).

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Interfaces to Java

 XSB Prolog: InterProlog (native || sockets)

 SWI Prolog: JPL (native) SWI-Prolog: JPL (native)

 Sicstus: PrologBeans (sockets)

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

More Examples

member(X,[X|R]).

member(X [Y|R]) : member(X R)member(X,[Y|R]) :- member(X,R)

 X is a member of a list whose first element is X.

 X is a member of a list whose tail is R if X is a member of R X is a member of a list whose tail is R if X is a member of R.

?- member(2,[1,2,3]).

YesYes

?- member(X,[1,2,3]).

X = 1 ;;

X = 2 ;

X = 3 ;

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

;

No

More Examples

select(X,[X|R],R).

select(X [F|R] [F|S]) : select(X R S)select(X,[F|R],[F|S]) :- select(X,R,S).

 When X is selected from [X|R], R results.

 When X is selected from the tail of [X|R] [X|S] results where S is When X is selected from the tail of [X|R], [X|S] results, where S is
the result of taking X out of R.

?- select(X,[1,2,3],L). ([])

X=1 L=[2,3] ;

X=2 L=[1,3] ;

X=3 L=[1,2] ;

No

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

More Examples

append([],X,X).

append([X|Y] Z [X|W]) : append(Y Z W) append([X|Y],Z,[X|W]) :- append(Y,Z,W).

?- append([1 2 3] [4 5] X) ? append([1,2,3],[4,5],X).

X=[1,2,3,4,5]

YesYes

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

More Examples

reverse([X|Y],Z,W) :- reverse(Y,[X|Z],W).

reverse([] X X)reverse([],X,X).

?- reverse([1 2 3] [] X)? reverse([1,2,3],[],X).

X = [3,2,1]

YesYes

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

More Examples

perm([],[]).

perm([X|Y] Z) : perm(Y W) select(X Z W)perm([X|Y],Z) :- perm(Y,W), select(X,Z,W).

?- perm([1 2 3] P) ? perm([1,2,3],P).

P = [1,2,3] ;

P = [2,1,3] ; P [2,1,3] ;

P = [2,3,1] ;

P = [1,3,2] ; [, ,] ;

P = [3,1,2] ;

P = [3,2,1]

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

[, ,]

More Examples

 Sets
union([X|Y],Z,W) :- member(X,Z), union(Y,Z,W).

union([X|Y],Z,[X|W]) :- \+ member(X,Z), union(Y,Z,W).

union([],Z,Z).

intersection([X|Y],M,[X|Z]) :- member(X,M), intersection(Y,M,Z).

intersection([X|Y],M,Z) :- \+ member(X,M), intersection(Y,M,Z).

intersection([],M,[]).

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Definite clause grammar (DCG)

 A DCG is a way of expressing grammar in a logic
programming language such as Prologprogramming language such as Prolog

 The definite clauses of a DCG can be considered a set of
axioms where the fact that it has a parse tree can be
considered theorems that follow from these axioms

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

DCG Example

sentence --> noun_phrase, verb_phrase.

noun phrase > det nounnoun_phrase --> det, noun.

verb_phrase --> verb, noun_phrase.

det --> [the]det > [the].

det --> [a].

noun --> [cat].noun [cat].

noun --> [bat].

verb --> [eats].[]

?- sentence(X,[]).

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

(,[])

DCG

 Not only context-free grammars

 Context sensitive grammars can also be expressed with Context-sensitive grammars can also be expressed with
DCGs, by providing extra arguments

s --> symbols(Sem,a), symbols(Sem,b), symbols(Sem,c).y (,), y (,), y (,)

symbols(end,_) --> [].

symbols(s(Sem),S) --> [S], symbols(Sem,S).y (()) [] y ()

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

DCG

sentence --> pronoun(subject), verb_phrase.

verb phrase > verb pronoun(object)verb_phrase --> verb, pronoun(object).

pronoun(subject) --> [he].

pronoun(subject) --> [she]pronoun(subject) > [she].

pronoun(object) --> [him].

pronoun(object) --> [her].pronoun(object) [her].

verb --> [likes].

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Parsing with DCGs
sentence(s(NP,VP)) --> noun_phrase(NP), verb_phrase(VP).

noun_phrase(np(D,N)) --> det(D), noun(N).

verb_phrase(vp(V,NP)) --> verb(V), noun_phrase(NP).

det(d(the)) --> [the].

det(d(a)) --> [a].(()) []

noun(n(bat)) --> [bat].

noun(n(cat)) --> [cat].

verb(v(eats)) --> [eats].verb(v(eats)) > [eats].

?- sentence(Parse_tree, [the,bat,eats,a,cat], []).

P t = ((d(th) (b t)) ((t) (d() (t))))Parse_tree = s(np(d(the),n(bat)),vp(v(eats),np(d(a),n(cat))))

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

s --> np, vp.

np --> det, n.

vp --> tv, np.

vp --> v.

det --> [the]. | ?- s([a,man,loves,the,woman],[]).
det --> [a].

det --> [every].

n --> [man]

| ? s([a,man,loves,the,woman],[]).
yes
| ?- s([every,woman,walks],[]).
yes
| ?- s([a,woman,likes,the,park],[]).n > [man].

n --> [woman].

n --> [park].

t > [l]

| ? s([a,wo a , es,t e,pa],[]).
yes
| ?- s([a,woman,likes,the,prak],[]).
no

tv --> [loves].

tv --> [likes].

v --> [walks].

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

Cut (logic programming)

 Cut (! in Prolog) is a goal which always succeeds, but cannot
be backtracked pastbe backtracked past

 Green cut
gamble(X) :- gotmoney(X),!. g g y
gamble(X) :- gotcredit(X), \+ gotmoney(X).
 cut says “stop looking for alternatives”
 by explicitly writing \+ gotmoney(X), it guarantees that the

second rule will always work even if the first one is removed by
accident or changedg

 Red cut
gamble(X) :- gotmoney(X),!.

(c) 2011 P.Fodor (CS Stony Brook) & Wikipedia

gamble(X) :- gotcredit(X).

