
Text search

CSE 392, Computers Playing Jeopardy!, Fall 2011

Stony Brook UniversityStony Brook University

http://www.cs.stonybrook.edu/~cse392

1

Today

 2 parts:
 theoretical: costs of searching substrings data structures for theoretical: costs of searching substrings, data structures for

string search
 practical: implementation of text search

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)

Sub-array algorithm example
 Given an array {t,h,i,s,i,s,a,t,e,s,t} and a pattern {t,e,s,t}, write a

program that checks whether the pattern is present in the array:p g p p y
public static boolean substring(char[] s, char[] sub){

for(int i=0; i < s.length - sub.length; i++)

if(t t With(b i)) t tif(startsWith(s,sub,i)) return true;

return false;

}

public static boolean startsWith(char[] s, char[] sub,
int m){

for(int i=0; i<sub.length; i++)(; g ;)

if(sub[i] != s[m+i]) return false;

return true;



(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)
10/4/20113

} Cost: m x n 

Suffix arrays and trees

 Idea: preprocess the text, so the search of the substring is fast

 Specialized data structures (e g tries) Specialized data structures (e.g., tries)
 Assumption: no suffix is a prefix of another suffix (can be a

substring, but not a prefix)
 Assure this by adding a character $ to end of S

 Costs:
 Build data structure for text (e.g., suffix tree)

 This is preprocessing O(m)
 Search time:

 For example: Suffix trees: O(n+k) where k is the number of
occurrences of P in T

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)

Suffix arrays
 A f i t i i th t ti iti f ffi f  An array of integers giving the starting positions of suffixes of

a string in lexicographical order
1 2 3 4 5 6 7 8

T E S T I N G $

 8 suffixes: “TESTING$”, “ESTING$”, “STING$”, “TING$”, “ING$”, “NG$”, “G$”, “$”.

One-based indexing: {8,2,5,7,6,3,1,4}

L t fi h h t

T E S T I N G $

index Sorted suffix lcp
Longest common prefix: how many characters

one suffix has in common with the one above it
8 $ 0

2 ESTING$ 0

5 ING$ 05 ING$ 0

7 G$ 0

6 NG$ 0

3 STING$ 0

1 TESTING$ 0

4 TING$ 1

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)

Suffix arrays
 C t ti i t ffi t Construction: comparison sort or suffix trees

 Application: fast search of every occurrence of a substring within a string
 find every suffix that begins with the substring

 Cost: O(m log n) time
if W <= suffixAt(pos[1]) then

ans = 1

else if W > suffixAt(pos[n]) thene se su t(pos[]) t e

ans = n

else{

L = 1, R = n

hile R L > 1 do{while R-L > 1 do{

M = (L + R)/2

if W <= suffixAt(pos[M]) then

R = M

else

L = M

}

ans = R

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)

}

Suffix tries
 Tries = ordered tree data structure that is used to store

associative arrays where the keys are usually strings

The time to insert, or to delete or to
find is identical

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)

Suffix trees

 A data structure that presents the suffixes of a given string in
a way that allows for fast implementation of string operationsa way that allows for fast implementation of string operations

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)

Building trees: O(m2) algorithm

 Initialize
 One edge for the entire string S[1 m]$ One edge for the entire string S[1..m]$

 For i = 2 to m
 Add suffix S[i..m] to suffix treeAdd suffix S[i..m] to suffix tree
 Find match point for string S[i..m] in current tree

 If in “middle” of edge, create new node w

 Add i d f S[i] d l b l t ffi i l f Add remainder of S[i..m] as edge label to suffix i leaf

 Running Time
 O(m-i) time to add suffix S[i m]O(m i) time to add suffix S[i..m]

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)

Assignment

 The Suffix Array Representing "BANANAS"

 The Suffix Trie Representing "BANANAS“ The Suffix Trie Representing BANANAS

 The Suffix Tree Representing "BANANAS"

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)

Before search: Tokenization

 Automatically recognize words and sentences
 identify what constitutes an individual or distinct word identify what constitutes an individual or distinct word,

referred to as a token

 Tokenizer or lexer
 sequences of characters which represent words and other

elements, such as punctuation, which are represented by
numeric codesnumeric codes,

 email addresses, phone numbers, and URLs

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)

Other indexes

 Theoretical: Gödel numbering (assigns to each symbol
and well-formed formula of some formal language a and well formed formula of some formal language a
unique natural number) – not practical

 Hashing: fast, but not unique – collisions, clustering

 B-trees: balanced search trees where every node has between
m/2 and m children, where m>1 is a fixed integer

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)

Inverted index

 A mapping from content, such as words or numbers, to its
locations in a database file, or in a document or a set of locations in a database file, or in a document or a set of
documents
 T0 = "it is what it is” "a": {2}

"banana": {2}
 T1 = "what is it“
 T2 = "it is a banana"

"banana": {2}
"is": {0, 1, 2}
"it": {0, 1, 2}
"what": {0, 1}

search for the terms "what", "is" and "it" would give

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)

Hash tables
 hash table: an array of some fixed size, that positions

elements according to an algorithm called a hash
function 0

h h f …hash func.
h(element)

length –1
hash table

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)
14 elements (e.g., strings)

Hashing, hash functions

 Map every element into some index in the array
 Lookup becomes constant-time: simply look at that one slot again Lookup becomes constant time: simply look at that one slot again

later to see if the element is there
 add, remove, contains all become O(1) !
 Example: h(i) = i % array.length

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)
15

B-trees

 The data items are stored at leaves
 The nonleaf nodes store up to M-1 keys to guide the  The nonleaf nodes store up to M-1 keys to guide the

searching; key I represents the smallest key in subtree I
+1.

 The root is either a leaf or has between two and M
children.
All l f d (h) h b [M/2]  All nonleaf nodes (except the root) have between [M/2]
and M children

 All leaves are at the same depth and have between [L/2] All leaves are at the same depth and have between [L/2]
and L children, for some L (the determination of L is
described shortly).

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)

Apache Lucene

 http://lucene.apache.org/

 Tutorial:  Tutorial:

 http://www.lucenetutorial.com/lucene-in-5-minutes.html

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)

Parallelism: MapReduce

 Input: a set of key/value pairs

 User supplies two functions: User supplies two functions:
 map(k,v)  list(k1,v1)
 reduce(k1, list(v1))  v2(, ())

 (k1,v1) is an intermediate key/value pair

 Output is the set of (k1,v2) pairs

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)
Prasad 18L06MapReduce

Hadoop

 An open-source implementation of Map Reduce in Java
 Uses HDFS for stable storageUses HDFS for stable storage

 Download from:

http://lucene.apache.org/hadoop/p: . p . g p

http://developer.yahoo.com/hadoop/tutorial/module3.html

(c) 2011 Pearson Education, Inc. & P.Fodor (CS Stony Brook)
Prasad 19L06MapReduce

