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Today

 2 parts:
 theoretical: costs of searching substrings  data structures for theoretical: costs of searching substrings, data structures for 

string search 
 practical: implementation of text search
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Sub-array algorithm example
 Given an array {t,h,i,s,i,s,a,t,e,s,t} and a pattern {t,e,s,t}, write a 

program that checks whether the pattern is present in the array:p g p p y
public static boolean substring(char[] s, char[] sub){

for(int i=0; i < s.length - sub.length; i++)

if( t t With( b i)) t tif(startsWith(s,sub,i)) return true;

return false;

}

public static boolean startsWith(char[] s, char[] sub, 
int m){

for(int i=0; i<sub.length; i++)( ; g ; )

if(sub[i] != s[m+i]) return false;

return true;


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} Cost: m x n 



Suffix arrays and trees

 Idea: preprocess the text, so the search of the substring is fast

 Specialized data structures (e g  tries) Specialized data structures (e.g., tries)
 Assumption: no suffix is a prefix of another suffix (can be a 

substring, but not a prefix)
 Assure this by adding a character $ to end of S

 Costs:
 Build data structure for text (e.g., suffix tree)

 This is preprocessing O(m)
 Search time: 

 For example: Suffix trees: O(n+k) where k is the number of 
occurrences of P in T
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Suffix arrays
 A f i t  i i  th  t ti  iti  f ffi f  An array of integers giving the starting positions of suffixes of 

a string in lexicographical order
1 2 3 4 5 6 7 8

T E S T I N G $

 8 suffixes: “TESTING$”, “ESTING$”, “STING$”, “TING$”, “ING$”, “NG$”, “G$”, “$”.

One-based indexing: {8,2,5,7,6,3,1,4}

L t  fi  h   h t

T E S T I N G $

index Sorted suffix lcp
Longest common prefix: how many characters

one suffix has in common with the one above it 
8 $ 0

2 ESTING$ 0

5 ING$ 05 ING$ 0

7 G$ 0

6 NG$ 0

3 STING$ 0

1 TESTING$ 0

4 TING$ 1
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Suffix arrays
 C t ti  i  t  ffi  t Construction: comparison sort or suffix trees

 Application: fast search of every occurrence of a substring within a string
 find every suffix that begins with the substring

 Cost: O(m log n) time
if W <= suffixAt(pos[1]) then

ans = 1

else if W > suffixAt(pos[n]) thene se su t(pos[ ]) t e

ans = n

else{

L = 1, R = n

hile R L > 1 do{while R-L > 1 do{

M = (L + R)/2

if W <= suffixAt(pos[M]) then

R = M

else

L = M

}

ans = R
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Suffix tries
 Tries = ordered tree data structure that is used to store 

associative arrays where the keys are usually strings

The time to insert, or to delete or to 
find is identical
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Suffix trees

 A data structure that presents the suffixes of a given string in 
a way that allows for fast implementation of string operationsa way that allows for fast implementation of string operations
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Building trees: O(m2) algorithm

 Initialize
 One edge for the entire string S[1 m]$ One edge for the entire string S[1..m]$

 For i = 2 to m
 Add suffix S[i..m] to suffix treeAdd suffix S[i..m] to suffix tree
 Find match point for string S[i..m] in current tree

 If in “middle” of edge, create new node w

 Add i d  f S[i ]  d  l b l t  ffi  i l f Add remainder of S[i..m] as edge label to suffix i leaf

 Running Time
 O(m-i) time to add suffix S[i m]O(m i) time to add suffix S[i..m]
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Assignment

 The Suffix Array Representing "BANANAS"

 The Suffix Trie Representing "BANANAS“ The Suffix Trie Representing BANANAS

 The Suffix Tree Representing "BANANAS"
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Before search: Tokenization

 Automatically recognize words and sentences
 identify what constitutes an individual or distinct word  identify what constitutes an individual or distinct word, 

referred to as a token

 Tokenizer or lexer
 sequences of characters which represent words and other 

elements, such as punctuation, which are represented by 
numeric codesnumeric codes,

 email addresses, phone numbers, and URLs
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Other indexes

 Theoretical: Gödel numbering (assigns to each symbol 
and well-formed formula of some formal language a and well formed formula of some formal language a 
unique natural number) – not practical

 Hashing: fast, but not unique – collisions, clustering

 B-trees: balanced search trees where every node has between  
m/2  and m children, where m>1 is a fixed integer
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Inverted index

 A mapping from content, such as words or numbers, to its 
locations in a database file, or in a document or a set of locations in a database file, or in a document or a set of 
documents
 T0 = "it is what it is” "a": {2} 

"banana": {2}
 T1 = "what is it“
 T2 = "it is a banana"

"banana": {2} 
"is": {0, 1, 2} 
"it": {0, 1, 2} 
"what": {0, 1}

search for the terms "what", "is" and "it" would give
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Hash tables
 hash table: an array of some fixed size, that positions 

elements according to an algorithm called a hash 
function 0

h h f …hash func.
h(element)

length –1 
hash table
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Hashing, hash functions

 Map every element into some index in the array
 Lookup becomes constant-time: simply look at that one slot again Lookup becomes constant time: simply look at that one slot again 

later to see if the element is there
 add, remove, contains all become O(1) !
 Example: h(i) = i % array.length
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B-trees

 The data items are stored at leaves
 The nonleaf nodes store up to M-1 keys to guide the  The nonleaf nodes store up to M-1 keys to guide the 

searching; key I represents the smallest key in subtree I 
+1.

 The root is either a leaf or has between two and M 
children.
All l f d  (  h  ) h  b  [M/2]  All nonleaf nodes (except the root) have between [M/2] 
and M children

 All leaves are at the same depth and have between [L/2] All leaves are at the same depth and have between [L/2] 
and L children, for some L (the determination of L is 
described shortly).
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Apache Lucene

 http://lucene.apache.org/

 Tutorial:  Tutorial: 

 http://www.lucenetutorial.com/lucene-in-5-minutes.html
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Parallelism: MapReduce

 Input: a set of key/value pairs

 User supplies two functions: User supplies two functions:
 map(k,v)  list(k1,v1)
 reduce(k1, list(v1))  v2( , ( ))

 (k1,v1) is an intermediate key/value pair

 Output is the set of (k1,v2) pairs
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Hadoop

 An open-source implementation of Map Reduce in Java
 Uses HDFS for stable storageUses HDFS for stable storage

 Download from:

http://lucene.apache.org/hadoop/p: . p . g p

http://developer.yahoo.com/hadoop/tutorial/module3.html
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