
CSE532CSE532
Relational Algebra and SQL

CSE 532, Theory of Database Systems
Ston Brook Uni ersitStony Brook University

http://www.cs.stonybrook.edu/~cse532

Relational Query Languages
 Languages for describing queries on a relational database
 Structured Query LanguageStructured Query Language (SQL)Structured Query LanguageStructured Query Language (SQL)
 Predominant application-level query language
 Declarative

 Relational AlgebraRelational Algebra
 Intermediate language used within DBMS
 ProceduralProcedural

(c) Pearson and P.Fodor (CS Stony Brook)
2

What is an Algebra?

 A language based on operators and a domain of values
 Operators map values taken from the domain into other Operators map values taken from the domain into other

domain values
 Hence, an expression involving operators and arguments p g p g

produces a value in the domain
 When the domain is a set of all relations (and the

 d ib d l) h l l l l operators are as described later), we get the relational relational
algebraalgebra

 We refer to the expression as a queryquery and the value We refer to the expression as a queryquery and the value
produced as the queryquery resultresult

(c) Pearson and P.Fodor (CS Stony Brook)
3

Relational Algebra

 Domain: set of relations

 B i t l tl t j tj t ii tt diffdiff Basic operators: selectselect, projectproject, unionunion, setset differencedifference,
CartesianCartesian productproduct

 Derived operators: set intersectionset intersection divisiondivision joinjoin Derived operators: set intersectionset intersection, divisiondivision, joinjoin

 Procedural: Relational expression specifies query by
describing an algorithm (the sequence in which describing an algorithm (the sequence in which
operators are applied) for determining the result of an
expressionp

(c) Pearson and P.Fodor (CS Stony Brook)
4

The Role of Relational Algebra in a DBMS

(c) Pearson and P.Fodor (CS Stony Brook)
5

Select Operator

 Produce table containing subset of rows of argument table
satisfying conditiony g

condition (relation)

 Example:p

Person Person Hobby=‘stamps’(PersonPerson)

1123 John 123 Main stamps 1123 John 123 Main stamps
Id Name Address Hobby Id Name Address Hobby

1123 John 123 Main stamps
1123 John 123 Main coins
5556 Mary 7 Lake Dr hiking
9876 Bart 5 Pine St stamps

1123 John 123 Main stamps
9876 Bart 5 Pine St stamps

(c) Pearson and P.Fodor (CS Stony Brook)

9876 Bart 5 Pine St stamps

6

Selection Condition

 Operators: <, , , >, =,
 Simple selection condition: Simple selection condition:
 <attribute> operator <constant>
 <attribute> operator <attribute>p

 <condition> AND <condition>

 <condition> OR <condition>

 NOT <condition>

(c) Pearson and P.Fodor (CS Stony Brook)
7

Selection Condition - Examples

 Id>3000 OR Hobby=‘hiking’ (PersonPerson)

 Id>3000 AND Id <3999 (PersonPerson)

 (PersonPerson) NOT(Hobby=‘hiking’) (PersonPerson)

 Hobby‘hiking’ (PersonPerson)

(c) Pearson and P.Fodor (CS Stony Brook)
8

Project Operator

 Produces table containing subset of columns of argument
table

attribute list(relation)

 Example:

PersonPerson Name,Hobby(PersonPerson)

1123 John 123 Main stamps John stamps

Id Name Address Hobby Name Hobby

1123 John 123 Main stamps
1123 John 123 Main coins
5556 Mary 7 Lake Dr hiking
9876 Bart 5 Pine St stamps

p
John coins
Mary hiking
Bart stamps

(c) Pearson and P.Fodor (CS Stony Brook)

9876 Bart 5 Pine St stamps Bart stamps

9

Project Operator
• Example:

PersonPerson N Add (PersonPerson)

1123 John 123 Main stamps John 123 Main
Id Name Address Hobby Name Address

PersonPerson Name,Address(PersonPerson)

1123 John 123 Main stamps
1123 John 123 Main coins
5556 Mary 7 Lake Dr hiking

John 123 Main
Mary 7 Lake Dr
Bart 5 Pine St

9876 Bart 5 Pine St stamps

Result is a table (no duplicates); can have fewer tuples
than the original

(c) Pearson and P.Fodor (CS Stony Brook)
10

ExpressionsExpressions

((PP))

Id Name Address Hobby Id Name

 Id, Name (Hobby=’stamps’ OR Hobby=’coins’ (PersonPerson))

1123 John 123 Main stamps
1123 John 123 Main coins

1123 John
9876 Bart

Id Name Address Hobby Id Name

5556 Mary 7 Lake Dr hiking
9876 Bart 5 Pine St stamps

PersonPerson

ResultResult

PersonPerson

(c) Pearson and P.Fodor (CS Stony Brook)
11

Set Operators

 Relation is a set of tuples, so set operations should apply: ,
, (set difference), (set difference)

 Result of combining two relations with a set operator is a
relation => all its elements must be tuples having same
structure

 Hence, scope of set operations limited to union compatible union compatible
llrelationsrelations

(c) Pearson and P.Fodor (CS Stony Brook)
12

Union Compatible Relations

 Two relations are union compatibleunion compatible if
 Both have same number of columnsBoth have same number of columns
 Names of attributes are the same in both
 Attributes with the same name in both relations have the same

domain

 Union compatible relations can be combined using unionunion,
i t tii t ti d tt diffdiffintersectionintersection, and setset differencedifference

(c) Pearson and P.Fodor (CS Stony Brook)
13

Example

Tables:
PersonPerson (SSN, Name, Address, Hobby)
ProfessorProfessor (Id, Name, Office, Phone)
t i tiblare not union compatible.

ButBut
 Name (PersonPerson) and Name (ProfessorProfessor)

are union compatible soare union compatible so

 Name (PersonPerson) - Name (ProfessorProfessor)
k

(c) Pearson and P.Fodor (CS Stony Brook)

makes sense.
14

Cartesian Product

 If RR and SS are two relations, RR SS is the set of all
concatenated tuples <x,y>, where x is a tuple in RR and yp ,y , p y
is a tuple in SS
 RR and SS need not be union compatible

 RR SS is expensive to compute:
 Factor of two in the size of each row
 Quadratic in the number of rowsQuadratic in the number of rows

A B C D A B C D
x1 x2 y1 y2 x1 x2 y1 y2y y y y
x3 x4 y3 y4 x1 x2 y3 y4

x3 x4 y1 y2

(c) Pearson and P.Fodor (CS Stony Brook)

RR SS x3 x4 y3 y4
RR SS15

Renaming

 Result of expression evaluation is a relation

 Att ib t f l ti t h di ti t Thi i Attributes of relation must have distinct names. This is
not guaranteed with Cartesian product
 e.g., suppose in previous example a and c have the same namee.g., suppose in previous example a and c have the same name

 Renaming operator tidies this up. To assign the names
A1, A2,… An to the attributes of the n column relation 1, 2, n

produced by expression expr use

expr [A1, A2, … An]

(c) Pearson and P.Fodor (CS Stony Brook)
16

Example

TranscriptTranscript (StudId CrsCode Semester Grade)TranscriptTranscript (StudId, CrsCode, Semester, Grade)
TeachingTeaching (ProfId, CrsCode, Semester)

 StudId, CrsCode (TranscriptTranscript)[StudId, CrsCode1]
 ProfId, CrsCode(TeachingTeaching) [ProfId, CrsCode2]

This is a relation with 4 attributes:

(c) Pearson and P.Fodor (CS Stony Brook)

StudId, CrsCode1, ProfId, CrsCode2
17

Derived Operation: Join
A (generalgeneral or thetatheta) join join of R and S is the expression

R join-condition Sjoin condition
where join-condition is a conjunction of terms:

Ai oper Bi
in which Ai is an attribute of R; Bi is an attribute of S;
and oper is one of =, <, >, , .

The meaning is:
 join-condition´ (R S)join-condition ()

where join-condition and join-condition´ are the same,
except for possible renamings of attributes (next)

(c) Pearson and P.Fodor (CS Stony Brook)
18

Join and Renaming

 Problem: R and S might have attributes with the
same name in which case the Cartesian product is same name – in which case the Cartesian product is
not defined

 Solutions:
1. Rename attributes prior to forming the product and use

new names in join-condition´.
2 Qualify common attribute names with relation names 2. Qualify common attribute names with relation names

(thereby disambiguating the names). For instance:
Transcript.Transcript.CrsCodeCrsCode or Teaching.Teaching.CrsCodeCrsCode

Thi l i i i b d ’ l k id– This solution is nice, but doesn’t always work: consider

RR join_condition RR

In RR.A, how do we know which R is meant?

(c) Pearson and P.Fodor (CS Stony Brook)
19

Theta Join – Example

Employee(Employee(Name,Id,MngrId,SalaryName,Id,MngrId,Salary)
Manager(Manager(Name,Id,SalaryName,Id,Salary)

O h f ll l hOutput the names of all employees that earn
more than their managers.

EmployeeEmployee.Name (EmployeeEmployee MngrId=Id AND Salary>Salary ManagerManager)

The join yields a table with attributes:
EmployeeEmployee.Name, EmployeeEmployee.Id, EmployeeEmployee.Salary, MngrId
ManagerManager.Name, ManagerManager.Id, ManagerManager.Salary

(c) Pearson and P.Fodor (CS Stony Brook)
20

Equijoin Join - Example

 (StudentStudent (TranscriptTranscript))

EquijoinEquijoin: Join condition is a conjunction of equalities.

Name,CrsCode(StudentStudent Id=StudId Grade=‘A’ (TranscriptTranscript))

StudentStudent TranscriptTranscript
Id Name Addr Status
111 John ….. …..
222 M

StudId CrsCode Sem Grade
111 CSE305 S00 B
222 CSE306 S99 A222 Mary ….. …..

333 Bill ….. …..
444 Joe

222 CSE306 S99 A
333 CSE304 F99 A

444 Joe ….. …..

Mary CSE306
The equijoin is used very
frequently since it combines
related data in different relation

(c) Pearson and P.Fodor (CS Stony Brook)

Bill CSE304 related data in different relation

21

Natural Join

 Special case of equijoin:
 join condition equates all and only those attributes with the same join condition equates all and only those attributes with the same

name (condition doesn’t have to be explicitly stated)
 duplicate columns eliminated from the result

TranscriptTranscript (StudId, CrsCode, Sem, Grade)
Teaching (Teaching (ProfId, CrsCode, Sem)g (g (f , ,)

TranscriptTranscript TeachingTeaching =
StudId, Transcript.CrsCode, Transcript.Sem, Grade, ProfId

(TranscriptTranscript CrsCode=CrsCode AND Sem=Sem Sem Teaching Teaching)
[StudId CrsCode Sem Grade ProfId]

(c) Pearson and P.Fodor (CS Stony Brook)

[StudId, CrsCode, Sem, Grade, ProfId]
22

Natural Join (cont’d)Natural Join (cont d)

 More generally:More generally:

RR SS = attr-list (join-cond (RR × SS))

where
attr-list = attributes (RR) attributes (SS)

(duplicates are eliminated) and join-cond has
the form:

A1 = A1 AND … AND An = An
where

(c) Pearson and P.Fodor (CS Stony Brook)

{A1 … An} = attributes(RR) attributes(SS)
23

Natural Join Example

 List all Ids of students who took at least two different
courses:

StudId (CrsCode CrsCode2 (
T i tT i tTranscriptTranscript

TranscriptTranscript [StudId, CrsCode2, Sem2, Grade2]))

We don’t want to join on CrsCode, Sem, and Grade attributes,
hence renaming!

(c) Pearson and P.Fodor (CS Stony Brook)

e ce e g!

24

Division

 Goal: Produce the tuples in one relation, r, that match all tuples
in another relation, s,
 rr (A1, …An, B1, …Bm)

 ss (B1 …Bm)

 rr/ss, with attributes A1, …An, is the set of all tuples <a> such that
for every tuple in ss, <a,b> is in rr

 Can be expressed in terms of projection set difference and Can be expressed in terms of projection, set difference, and
cross-product

(c) Pearson and P.Fodor (CS Stony Brook)
25

Division (cont’d)

(c) Pearson and P.Fodor (CS Stony Brook)
26

Division - Example

 List the Ids of students who have passed all courses that were
taught in spring 2000

 Numerator:
 StudId and CrsCode for every course passed by every student:

StudId CrsCode (Grade ‘F’ (TranscriptTranscript))StudId, CrsCode (Grade F (pp))
 Denominator:
 CrsCode of all courses taught in spring 2000

((T hiT hi))CrsCode (Semester=‘S2000’ (TeachingTeaching))
 Result is numerator/denominator

(c) Pearson and P.Fodor (CS Stony Brook)
27

Schema for Student Registration
SystemSystem

StudentStudent (Id, Name, Addr, Status)
ProfessorProfessor (Id, Name, DeptId)
CourseCourse (DeptId, CrsCode, CrsName, Descr)
TranscriptTranscript (StudId, CrsCode, Semester, Grade)
TeachingTeaching (ProfId, CrsCode, Semester)
DepartmentDepartment (DeptId, Name)

(c) Pearson and P.Fodor (CS Stony Brook)
28

Query Sublanguage of SQLQ y g g Q
SELECT C.CrsName
FROM CC CFROM CourseCourse C
WHERE C.DeptId = ‘CS’

 Tuple variable Tuple variable C ranges over rows of CourseCourse.

 Evaluation strategy:
 FROM clause produces Cartesian product of listed tables
 WHERE clause assigns rows to C in sequence and produces table

containing only rows satisfying conditioncontaining only rows satisfying condition

 SELECT clause retains listed columns

 Equivalent to: C N D tId=‘CS’(CourseCourse)

(c) Pearson and P.Fodor (CS Stony Brook)

Equivalent to: CrsNameDeptId= CS (CourseCourse)

29

Join QueriesQ
SELECT C.CrsName
FROM CourseCourse C, TeachingTeaching T
WHERE C CrsCode=T CrsCode AND T Semester=‘S2000’

 List CS courses taught in S2000
 T l i bl l if i

WHERE C.CrsCode=T.CrsCode AND T.Semester= S2000

 Tuple variables clarify meaning.
 Join condition “C.CrsCode=T.CrsCode”
 relates facts to each other

 Selection condition “ T.Semester=‘S2000’ ”
 eliminates irrelevant rows

 Equivalent (using natural join) to: Equivalent (using natural join) to:

CrsName(CourseCourse Semester=‘S2000’ (TeachingTeaching))

(c) Pearson and P.Fodor (CS Stony Brook)

CrsName (Sem=‘S2000’ (CourseCourse TeachingTeaching))
30

Correspondence Between SQL and
Relational Algebra

SELECT C CrsNameSELECT C.CrsName
FROM CourseCourse C, TeachingTeaching T
WHERE C.CrsCode = T.CrsCode AND T.Semester = ‘S2000’

Also equivalent to:
CrsName C CrsCode=T CrsCode AND Semester=‘S2000’_ _

(CourseCourse [C_CrsCode, DeptId, CrsName, Desc]
 TeachingTeaching [ProfId, T_CrsCode, Semester])

• This is the simplest evaluation algorithm for SELECT.
• Relational algebra expressions are procedural.

(c) Pearson and P.Fodor (CS Stony Brook)

Which of the two equivalent expressions is more easily evaluated
31

Self-join Queriesj Q

Find Ids of all professors who taught at least two
courses in the same semester:courses in the same semester:

SELECT T1.ProfId
FROM TeachingTeaching T1 TeachingTeaching T2FROM TeachingTeaching T1, TeachingTeaching T2
WHERE T1.ProfId = T2.ProfId

AND T1.Semester = T2.Semester
AND T1.CrsCode <> T2.CrsCode

Tuple variables are essential in this query!

Equivalent to:
ProfId (T1 CrsCodeT2 CrsCode(TeachingTeaching[ProfId, T1.CrsCode, Semester]

(c) Pearson and P.Fodor (CS Stony Brook)

ProfId (T1.CrsCodeT2.CrsCode(gg[f , ,]
TeachingTeaching[ProfId, T2.CrsCode, Semester]))

32

Duplicates

 Duplicate rows not allowed in a relation

 However duplicate elimination from query result is costly However, duplicate elimination from query result is costly
and not done by default; must be explicitly requested:

SELECT DISTINCT …..
FROM …..

(c) Pearson and P.Fodor (CS Stony Brook)
33

Use of Expressions

E lit d i t l tEquality and comparison operators apply to
strings (based on lexical ordering)

WHERE S.Name < ‘P’

Concatenate operator applies to strings
WHERE S.Name || ‘--’ || S.Address = ….

Expressions can also be used in SELECT clause:Expressions can also be used in SELECT clause:
SELECT S.Name || ‘--’ || S.Address AS NmAdd
FROM StudentStudent S

(c) Pearson and P.Fodor (CS Stony Brook)

FROM StudentStudent S
34

Set OperatorsSet Operators
 SQL provides UNION, EXCEPT (set difference), and

INTERSECT for union compatible tables
 Example: Find all professors in the CS Department and all

f th t h t ht CS professors that have taught CS courses

(SELECT P.Name
FROMFROM ProfessorProfessor P, TeachingTeaching T
WHERE P.Id=T.ProfId AND T.CrsCode LIKE ‘CS%’)
UNIONUNION
(SELECT P.Name
FROM ProfessorProfessor P

(c) Pearson and P.Fodor (CS Stony Brook)

FROM ProfessorProfessor P
WHERE P.DeptId = ‘CS’)

35

N d Q iNested Queries
List all courses that were not taught in S2000g

SELECT C.CrsName
FROM CourseCourse CFROM CourseCourse C
WHERE C.CrsCode NOT IN

(SELECT T.CrsCode --subquery(q y
FROM TeachingTeaching T
WHERE T.Sem = ‘S2000’)

Evaluation strategy: subquery evaluated once to
produces set of courses taught in S2000. Each row

(c) Pearson and P.Fodor (CS Stony Brook)

p g
(as C) tested against this set.

36

Correlated Nested Queries Correlated Nested Queries
Output a row <prof, dept> if prof has taught a course
in deptin dept.

SELECT P.Name, D.Name --outer query, q y
FROM ProfessorProfessor P, DepartmentDepartment D
WHERE P.Id IN

set of all ProfId’s who have taught a course in
(SELECT T.ProfId --subquery
FROM TeachingTeaching T, CourseCourse C

-- set of all ProfId s who have taught a course in
D.DeptId

WHERE T.CrsCode=C.CrsCode AND
C.DeptId=D.DeptId --correlation

)

(c) Pearson and P.Fodor (CS Stony Brook)

)

37

Correlated Nested Queries (con’t)Q ()

 Tuple variables T and C are local to subquery
 Tuple variables P and D are global to subquery
 CorrelationCorrelation: subquery uses a global variable, D
 The value of D.DeptId parameterizes an evaluation of the

subquery
 S b t (t l t) b l t d f h di ti t Subquery must (at least) be re-evaluated for each distinct

value of D.DeptId

 Correlated queries can be expensive to evaluate

(c) Pearson and P.Fodor (CS Stony Brook)
38

Division in SQL
 Query type: Find the subset of items in one set that are

related to all items in another set
E l F d f h h ll Example: Find professors who taught courses in all
departments
 Why does this involve division?y

ProfId
DeptId

DeptId
All department IdsContains row p All department Ids

<p,d> if professor
p taught a
course incourse in
department d

(T hi C) / (D)

(c) Pearson and P.Fodor (CS Stony Brook)

ProfId,DeptId(Teaching Course) / DeptId(Department)
39

Division in SQL

 Strategy for implementing division in SQL:
Find set, A, of all departments in which a particular , , p p

professor, p, has taught a course
Find set, B, of all departments Find set, B, of all departments
Output p if A B, or, equivalently, if B–A is empty

(c) Pearson and P.Fodor (CS Stony Brook)
40

Division SQL SolutionDivision – SQL Solution
SELECT P.Id
FROM ProfessorProfessor P
WHERE NOT EXISTS

(SELECT D.DeptId -- set B of all dept Ids(S C . ept d set of all dept ds
FROM DepartmentDepartment D

EXCEPT
SELECT C DeptId set A of dept Ids of depts inSELECT C.DeptId -- set A of dept Ids of depts in

-- which P taught a course
FROM TeachingTeaching T, CourseCourse C
WHERE T.ProfId=P.Id -- global variable

AND T.CrsCode=C.CrsCode)

(c) Pearson and P.Fodor (CS Stony Brook)
41

Aggregates

 Functions that operate on sets:
 COUNT, SUM, AVG, MAX, MIN

 Produce numbers (not tables)

 Not part of relational algebra (but not hard to add)

SELECT COUNT(*)
FROM ProfessorProfessor P

SELECT MAX (Salary)
FROM EmployeeEmployee E

(c) Pearson and P.Fodor (CS Stony Brook)
42

Aggregates (cont’d)
Count the number of courses taught in S2000

SELECT COUNT (T.CrsCode)
FROM TeachingTeaching T

Count the number of courses taught in S2000

FROM TeachingTeaching T
WHERE T.Semester = ‘S2000’

B if l i l i fBut if multiple sections of same course
are taught, use:

SELECT COUNT (DISTINCT T.CrsCode)
FROM TeachingTeaching T
WHERE T S ‘S2000’

(c) Pearson and P.Fodor (CS Stony Brook)

WHERE T.Semester = ‘S2000’
43

Grouping
 But how do we compute the number of courses taught in S2000 per

professor?
 ff f h f Strategy 1: Fire off a separate query for each professor:

SELECT COUNT(T.CrsCode)
FROM TeachingTeachingT
WHERE T S ‘S2000’ T P f d 123456789WHERE T.Semester = ‘S2000’ AND T.ProfId = 123456789

 Cumbersome
 What if the number of professors changes? Add another query?

 St t 2 d fi i l i ti t Strategy 2: define a special grouping operatorgrouping operator:
SELECT T.ProfId, COUNT(T.CrsCode)
FROM TeachingTeaching T
WHERE T S ‘S2000’WHERE T.Semester = ‘S2000’
GROUP BY T.ProfId

(c) Pearson and P.Fodor (CS Stony Brook)
44

GROUP BY

(c) Pearson and P.Fodor (CS Stony Brook)
45

GROUP BY - Examplep

TranscriptTranscriptTranscriptTranscript

Attributes:
student’s Id–student’s Id

–avg grade
–number of courses

1234 3.3 41234
1234 number of courses
1234
1234

SELECT T.StudId, AVG(T.Grade), COUNT (*)
FROM T i tT i t T

(c) Pearson and P.Fodor (CS Stony Brook)

FROM TranscriptTranscript T
GROUP BY T.StudId46

HAVING Clause
 Eliminates unwanted groups (analogous to WHERE

clause, but works on groups instead of individual tuples)
HAVING d d f b f HAVING condition is constructed from attributes of
GROUP BY list and aggregates on attributes not in that
list

SELECT T.StudId, SELECT T.StudId,
AVG(T.Grade) AS CumGpa,
COUNT (*) AS NumCrs

FROM TranscriptTranscript TFROM Transcript Transcript T
WHERE T.CrsCode LIKE ‘CS%’
GROUP BY T.StudId

(c) Pearson and P.Fodor (CS Stony Brook)

HAVING AVG (T.Grade) > 3.5
47

Evaluation of GroupBy with Having

(c) Pearson and P.Fodor (CS Stony Brook)
48

ExampleExample

 Output the name and address of all seniors on the Dean’s
List

SELECT S Id S NSELECT S.Id, S.Name
FROM StudentStudent S, TranscriptTranscript T
WHERE S.Id = T.StudId AND S.Status = ‘senior’

GROUP BY S.Id -- wrong
S.Id, S.Name -- right

Every attribute that occurs in
SELECT clause must also
occur in GROUP BY or it
must be an aggregate S Name

HAVING AVG (T.Grade) > 3.5 AND SUM (T.Credit) > 90

must be an aggregate. S.Name
does not.

(c) Pearson and P.Fodor (CS Stony Brook)
49

Aggregates: Proper and Improper
UUsage

S C CO SELECT COUNT (T.CrsCode), T. ProfId
– makes no sense (in the absence of

GROUP BY clause)GROUP BY clause)

SELECT COUNT (*), AVG (T.Grade)
– but this is OK

WHERE T.Grade > COUNT (SELECT ….)
– aggregate cannot be applied to result

f SELECT t t t
(c) Pearson and P.Fodor (CS Stony Brook)

of SELECT statement
50

ORDER BY Clause

 Causes rows to be output in a specified order

SELECT T.StudId, COUNT (*) AS NumCrs,
AVG(T Grade) AS CumGpaAVG(T.Grade) AS CumGpa

FROM TranscriptTranscript T
WHERE T.CrsCode LIKE ‘CS%’
GROUP BY T.StudId
HAVING AVG (T.Grade) > 3.5
ORDER BY DESC CumGpa, ASC StudId

(c) Pearson and P.Fodor (CS Stony Brook)

Descending Ascending

51

Query Evaluation with GROUP BY,
HAVING ORDER BYHAVING, ORDER BY

1 Evaluate FROM: produces Cartesian product, A, of tables in
FROM listFROM list

2 Evaluate WHERE: produces table, B, consisting of rows of A that
satisfy WHERE condition r

e

3 Evaluate GROUP BY: partitions B into groups that agree on
attribute values in GROUP BY list

4 Evaluate HAVING: eliminates groups in B that do not satisfy b
 e

 f
o

4 Evaluate HAVING: eliminates groups in B that do not satisfy
HAVING condition

5 Evaluate SELECT: produces table C containing a row for each
group Attributes in SELECT list limited to those in GROUP BY

A
 s

group. Attributes in SELECT list limited to those in GROUP BY
list and aggregates over group

6 Evaluate ORDER BY: orders rows of C

(c) Pearson and P.Fodor (CS Stony Brook)
52

Views

 Used as a relation but rows are not physically stored Used as a relation, but rows are not physically stored.
 The contents of a view is computed when it is used within an SQL

statement

 View is the result of a SELECT statement over other
views and base relations

 When used in an SQL statement, the view definition is
substituted for the view name in the statement

A SELECT FROM As SELECT statement nested in FROM clause

(c) Pearson and P.Fodor (CS Stony Brook)
53

View - Example

CREATE VIEW CumGpaCumGpa (StudId, Cum) AS
SELECT T.StudId, AVG (T.Grade), ()
FROM TranscriptTranscript T
GROUP BY T.StudId

SELECT S.Name, C.Cum,
FROM CumGpaCumGpa C, StudentStudent S
WHERE C.StudId = S.StudId AND C.Cum > 3.5

(c) Pearson and P.Fodor (CS Stony Brook)
54

View Benefits
 Access Control: Users not granted access to base tables.

Instead they are granted access to the view of the database y g
appropriate to their needs.
 External schemaExternal schema is composed of views.
 View allows owner to provide SELECT access to a subset of View allows owner to provide SELECT access to a subset of

columns (analogous to providing UPDATE and INSERT access
to a subset of columns)

(c) Pearson and P.Fodor (CS Stony Brook)
55

Views – Limiting Visibility

CREATE VIEW PartOfTranscriptPartOfTranscript (StudId, CrsCode, Semester) AS

Grade projected out

SELECT T. StudId, T.CrsCode, T.Semester -- limit columns
FROM TranscriptTranscript T
WHERE T.Semester = ‘S2000’ -- limit rowsWHERE T.Semester S2000 limit rows

Give permissions to access data through view:
GRANT SELECT ON Of iOf i TO jGRANT SELECT ON PartOfTranscriptPartOfTranscript TO joe

This would have been analogous to:

GRANT SELECT (StudId,CrsCode,Semester)
ON TranscriptTranscript TO joe

(c) Pearson and P.Fodor (CS Stony Brook)

on regular tables, ifif SQL allowed attribute lists in GRANT
SELECT 56

View Benefits (cont’d)

 Customization: Users need not see full complexity of database.
View creates the illusion of a simpler database customized to View creates the illusion of a simpler database customized to
the needs of a particular category of users

 A view is similar in many ways to a subroutine in standard
programming
 Can be reused in multiple queries

(c) Pearson and P.Fodor (CS Stony Brook)
57

NullsNulls
 Conditions: x op y (where op is <, >, <>, =, etc.) has value

unknownunknown (U) when either x or y is nullunknownunknown (U) when either x or y is null
 WHERE T.cost > T.price

 Arithmetic expression: x op y (where op is +, –, *, etc.) has p p y (p , , ,)
value NULL if x or y is NULL
 WHERE (T. price/T.cost) > 2

CO l k h l Aggregates: COUNT counts NULLs like any other value;
other aggregates ignore NULLs

SELECT COUNT (T.CrsCode), AVG (T.Grade)
FROM TranscriptTranscript T
WHERE T St dId ‘1234’

(c) Pearson and P.Fodor (CS Stony Brook)

WHERE T.StudId = ‘1234’
58

Nulls (cont’d)
 WHERE clause uses a threethree--valued logic valued logic ––T, F, U(ndefined) T, F, U(ndefined) ––

to filter rows. Portion of truth table:

()

C1 C2 C1 AND C2 C1 OR C2
T U U T
F U F U
U U U U

 Rows are discarded if WHERE condition is F(alse) or ()
U(nknown)

 Ex: WHERE T.CrsCode = ‘CS305’ AND T.Grade > 2.5

(c) Pearson and P.Fodor (CS Stony Brook)
59

Modifying Tables – Insert

 Inserting a single row into a table
 Attribute list can be omitted if it is the same as in CREATE Attribute list can be omitted if it is the same as in CREATE

TABLE (but do not omit it)
 NULL and DEFAULT values can be specified

INSERT INTO TranscriptTranscript(StudId, CrsCode, Semester, Grade)
VALUES (12345, ‘CSE305’, ‘S2000’, NULL)(, , ,)

(c) Pearson and P.Fodor (CS Stony Brook)
60

Bulk Insertion
 Insert the rows output by a SELECT

CREATE TABLE DeansListDeansList (CREATE TABLE DeansListDeansList (
StudId INTEGER,
Credits INTEGER,
C G FLOATCumGpa FLOAT,
PRIMARY KEY StudId)

INSERT INTO DeansListDeansList (StudId, Credits, CumGpa)
SELECT T.StudId, 3 * COUNT (*), AVG(T.Grade)
FROM TranscriptTranscript TFROM TranscriptTranscript T
GROUP BY T.StudId
HAVING AVG (T.Grade) > 3.5 AND COUNT(*) > 30

(c) Pearson and P.Fodor (CS Stony Brook)
61

Modifying Tables – Delete y g

 Similar to SELECT except:
 N j t li t i DELETE l No project list in DELETE clause
 No Cartesian product in FROM clause (only 1 table name)
 Rows satisfying WHERE clause (general form, including y g g g

subqueries, allowed) are deleted instead of output

DELETE FROM TranscriptTranscript T
WHERE T G d IS NULL AND T S t <> ‘S2000’WHERE T.Grade IS NULL AND T.Semester <> ‘S2000’

(c) Pearson and P.Fodor (CS Stony Brook)
62

Modifying Data - Update

UPDATE EmployeeEmployee E
SET E.Salary = E.Salary * 1.05
WHERE

 U d t i i l t bl

WHERE E.Department = ‘R&D’

 Updates rows in a single table

 All rows satisfying WHERE clause (general form, including
subqueries allowed) are updated subqueries, allowed) are updated

(c) Pearson and P.Fodor (CS Stony Brook)
63

Updating ViewsUpdating Views

 Question: Since views look like tables to users, can they be
updated?

 Answer: Yes – a view update changes the underlying base
t bl t d th t d h t th itable to produce the requested change to the view

CREATE VIEW CsRegCsReg (StudId, CrsCode, Semester) AS
SELECT T.StudId, T. CrsCode, T.Semester
FROM TranscriptTranscript TFROM TranscriptTranscript T
WHERE T.CrsCode LIKE ‘CS%’ AND T.Semester=‘S2000’

(c) Pearson and P.Fodor (CS Stony Brook)
64

Updating Views - Problem 1

INSERT INTO CsRegCsReg (StudId, CrsCode, Semester)
VALUES (1111, ‘CSE305’, ‘S2000’)

 Question: What value should be placed in attributes of
underlying table that have been projected out (e g Grade)?

(, ,)

underlying table that have been projected out (e.g., Grade)?

 Answer: NULL (assuming null allowed in the missing
attribute) or DEFAULT)

(c) Pearson and P.Fodor (CS Stony Brook)
65

Updating Views Problem 2Updating Views - Problem 2

INSERT INTO C RC R (St dId C C d S t)INSERT INTO CsRegCsReg (StudId, CrsCode, Semester)
VALUES (1111, ‘ECO105’, ‘S2000’)

 Problem: New tuple not in view

 Solution: Allow insertion (assuming the WITH CHECK Solution: Allow insertion (assuming the WITH CHECK
OPTION clause has not been appended to the CREATE
VIEW statement)

(c) Pearson and P.Fodor (CS Stony Brook)
66

Updating Views - Problem 3

 Update to a view might not uniquely specify the change to
h b bl () h l i h d i d difi i f the base table(s) that results in the desired modification of

the view (ambiguity)

CREATE VIEW ProfDeptProfDept (PrName, DeName) AS
SELECT P Name D NameSELECT P.Name, D.Name
FROM ProfessorProfessor P, DepartmentDepartment D
WHERE P.DeptId = D.DeptIdWHERE P.DeptId D.DeptId

(c) Pearson and P.Fodor (CS Stony Brook)
67

Updating Views Problem 3 (cont’d) Updating Views - Problem 3 (cont d)

 Tuple <Smith, CS> can be deleted from ProfDeptProfDept by:Tuple Smith, CS can be deleted from ProfDeptProfDept by:
 Deleting row for Smith from ProfessorProfessor (but this is inappropriate

if he is still at the University)
 D l ti f CS f D t tD t t (t h t i i t d d) Deleting row for CS from DepartmentDepartment (not what is intended)
 Updating row for Smith in ProfessorProfessor by setting DeptId to null

(seems like a good idea, but how would the computer know?)

(c) Pearson and P.Fodor (CS Stony Brook)
68

Updating Views - Restrictions

 Updatable views are restricted to those in which
 No Cartesian product in FROM clause
 no aggregates, GROUP BY, HAVING
 …

For example, if we allowed:
CREATE VIEW AvgSalaryAvgSalary (DeptId, Avg_Sal) AS

SELECT E D Id AVG(E S l)SELECT E.DeptId, AVG(E.Salary)
FROM EmployeeEmployee E
GROUP BY E.DeptIdp

then how do we handle:
UPDATE AvgSalaryAvgSalary

(c) Pearson and P.Fodor (CS Stony Brook)

SET Avg_Sal = 1.1 * Avg_Sal
69

